
RESEARCH ARTICLE

Towards neuro-inspired symbolic models of cognition: linking
neural dynamics to behaviors through asynchronous
communications

Pierre Bonzon1

Received: 29 December 2016 / Revised: 19 February 2017 / Accepted: 8 March 2017 / Published online: 1 April 2017

� The Author(s) 2017. This article is an open access publication

Abstract A computational architecture modeling the

relation between perception and action is proposed. Basic

brain processes representing synaptic plasticity are first

abstracted through asynchronous communication proto-

cols and implemented as virtual microcircuits. These are

used in turn to build mesoscale circuits embodying par-

allel cognitive processes. Encoding these circuits into

symbolic expressions gives finally rise to neuro-inspired

programs that are compiled into pseudo-code to be

interpreted by a virtual machine. Quantitative evaluation

measures are given by the modification of synapse

weights over time. This approach is illustrated by models

of simple forms of behaviors exhibiting cognition up to

the third level of animal awareness. As a potential benefit,

symbolic models of emergent psychological mechanisms

could lead to the discovery of the learning processes

involved in the development of cognition. The exe-

cutable specifications of an experimental platform allow-

ing for the reproduction of simulated experiments are

given in ‘‘Appendix’’.

Keywords Cognitive architecture � Cognitive
development � Symbolic model � Learning processes �
Neural dynamics � Asynchronous communications �
Virtual machine

Introduction

Necessity of a multilevel approach to cognition

From a functional perspective, the brain can be seen as a

kind of computing machine relating input and output in a

significant manner defining behaviors. Yet no basic

instruction set is known for the brain, nor is any kind of

addressable repository of instructions and data, which

together would allow for defining this relation in a formal

way. This machine obviously does not work as traditional

computers, whose design still follows the concepts intro-

duced by von Neumann in the 1940’s i.e., it does not

involve a stored program acting on stored data. Interest-

ingly enough, the usual way to simulate a brain today still

follows pioneering work dating back from about the same

time i.e., that of McCulloch and Pitts (1943) defining finite-

state automata that implement a threshold logic, Hodgkin

and Huxley (1952) using differential equations to simulate

the electrical processes surrounding neurons, and Rall

(1964) taking into account the dendritic trees to define

neuronal input–output relations. In these approaches, the

brain is considered solely as a physical substrate. By

analogy, this would amount to restricting the study of a

computer to the description of its electronic circuits, or

hardware, ignoring its software level that expresses algo-

rithms under the form of programs. Similarly to the way

algorithms running on a computer do represent computa-

tion, one may then ask: could symbolic programs intended

to represent cognition be implemented on top of a simu-

lated brain substrate?

In a similar perspective, the ‘‘what’’ and ‘‘how’’ of

cognitive science can be described using the historical ‘‘tri-

level’’ hypothesis (Marr 1982) that distinguishes compu-

tational, algorithmic and implementation levels. According

& Pierre Bonzon

pierre.bonzon@unil.ch

1 Department of Information Systems, Faculty of HEC,

University of Lausanne, 1015 Lausanne, Switzerland

123

Cogn Neurodyn (2017) 11:327–353

DOI 10.1007/s11571-017-9435-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9435-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9435-3&domain=pdf

to (Poggio 2012), the original work that led to this

hypothesis included first a behavioral level that was

eventually replaced by the computational one (as noted by

this author, this replacement was indeed influential in the

development of computational neuroscience as we have

witnessed it since). This same author further argues that, in

order to discover the representations used by the brain, one

needs to understand ‘‘how an individual organism learns

and evolves them from experience of the natural world’’,

and that ‘‘learning algorithms and their a priori assump-

tions are deeper and more useful than a description of the

details of what is actually learned’’. As a consequence,

evolution and learning should be added to the list of levels

in cognitive studies.

Analogous conclusions about the necessity of a behav-

ioral learning dimension in cognition can be found in the

insightful review of van der Velde and de Kamps (2015),

who argue that cognitive processes are executed in con-

nection structures that link sensory circuits (i.e., percep-

tion) with motor (i.e., action). What is needed, they add, is

‘‘a mechanism that shows how the information (synchrony

of activation in this case) can be used by the brain’’. An

argument very much related to this can be found in (For-

stmann and Wagenmakers 2015). According to these

authors, top–down approaches via analytical and/or

abstract mathematical tools such as Bayesian inference

rules (see e.g., Ma and Pouget 2008), and for that matter we

may add the bottom-up approaches of the classical theories

based on artificial neural networks (Kohonen 1982; Hop-

field 1982; Rumelhart and McClelland 1986; for an intro-

duction see, Anderson 1995) as well as methods related to

dynamical systems theory (see e.g., Wright and Bourke

2013; for an introduction, see Vernon 2014), are well

suited for describing computations in Marr’s sense, but

‘‘fail to identify algorithms and underlying circuits’’. What

is then needed, they conclude, is a ‘‘middle-out’’ approach

that can identify plausible structures linking biology and

cognition.

Roadmap towards a ‘‘middle-out’’ approach

Looking at the brain as a computing device linking neural

dynamics to behaviors has led to the emergence of quite a

few related research domains. Whereas computational

neuroscience addresses low level neural mechanisms that

give rise to higher level processes representing computa-

tions, cognitive neuroscience attempts to relate brain and

behavior by linking latent cognitive processes to the neural

mechanisms that generate them (Frank and Badre 2015).

These two disciplines, when taken together, form the

computational cognitive neuroscience (or CCN) paradigm

(O’Reilly and Munakata 2000; Ashby and Helie 2011), in

which artificial neural network models and methods serve

both to specify and to concretize theories (Herd et al.

2013). A cognitive model however doesn’t have to repre-

sent its underlying neuronal processes itself, as the present

approach to CCN does, but could rather adds an interme-

diate explanatory layer between the neuronal and behav-

ioral level (Mulder et al. 2014; Frank 2015), using formal

models to connect findings from neuroscience to the cog-

nitive processes at hand (Forstmann and Wagenmakers

2015). The interface between these various layers could be

described using computer science methods that allow for a

delineation and implementation of successive levels of

complexity.

Among the concepts that could be applied towards this

goal, two are of particular relevance, namely concurrent

communicating systems, on one hand, and virtual machi-

nes, on the other. The notion of a concurrent communi-

cating system, which can be used to model the interaction

of objects obeying various communication protocols,

reflects a high level view of a network of interactive neu-

rons. The concept of a virtual machine interpreting a

compiled code that differs from a processor’s native code

constitutes the key mechanism that allows for interfacing

high level abstract objects i.e., software, with their low

level physical support i.e., hardware. Following classical

results of computer science, symbolic expressions that have

been compiled and then interpreted by a virtual machine

get their operational semantics from the transitions they

induce on the state of this machine. In the context of a

multi-level model of brain structures and processes, this

means that low levels physiological details could be

ignored, and grounded models of cognition be formulated

by relating input and output (i.e., perception and behavior)

at a symbolic level.

Yet, we still don’t know what a neural code for relating

perception and behavior might be, and how to discover it.

A possible way towards designing and/or guessing such a

code is to explore the emergence of cognition in animals

and then to try and reproduce it in computational terms, an

idea somehow related to the ideas put forward by Badre

et al. (2015) in their proposed birectional interaction

between animal and human studies. In order to follow a

smooth pattern of evolution leading to human behavior,

models should be developed in progressive steps starting

with the simplest of animal behaviors. Towards this end,

experimental results from comparative zoology could be

used to identify invariant fundamental traits of animal

cognition (Pepperberg and Lynn 2000). In parallel,

advances in the neuroscience (Gerstner and Kistler 2002)

should allow to abstract functionalities of synaptic plas-

ticity into neurally plausible microcircuits. These could be

used in turn to build mesoscale circuits (Badre et al. 2015)

corresponding to neural assemblies supporting the basic

cognitive functions just identified. These circuits would

328 Cogn Neurodyn (2017) 11:327–353

123

then constitute the building blocks of perception (Perin

et al. 2011).

This is the path that we have followed. A new simula-

tion framework along the lines just sketched above is

proposed: as computer applications can be first pro-

grammed, then compiled and finally interpreted by a virtual

machine running as a native program, animal behaviors

will be similarly encoded, compiled and then interpreted by

virtual neurological microcircuits representing a brain’s

innate processes. As a consequence, there will be no ref-

erence to any specific neural network model, but instead a

step-wise refinement of successive virtual machines will

eventually relate actual brain processes to overt behaviors.

In contrast to the usual approach of creating neural models

of interactive brain areas to by quantitatively fitting data

(i.e., where latent estimated parameters are being corre-

lated with neural measures), the goal here is to construct a

generative model of how behaviors can be interfaced with

neural dynamics in order to try and discover the learning

processes involved in the emergence of cognition.

Potential benefits

The potential advantages of such a symbolic computational

framework can be described as follows: while the proposed

formalism constitutes a way of expressing cognitive oper-

ations, and therefore remains a psychological description

rather than a physiological one, it does it by providing a

clear interface between the two domains. More specifically,

and according to a notable attempt in this direction (Jilk

et al. 2008), ‘‘the various levels of description will remain

necessary to explain the full range of phenomena’’. How-

ever, instead of considering the hierarchical arrangement of

multiple neuronal layers such as the hierarchy of visual

cortical layers V1 ? V2 ? V4 ? IT ? …, as neurosci-

entists usually do, this is to be understood in the sense of a

hierarchy of model entities such as cell(or neuron) ? cell

assemblies ? cognitive states ? behavior ? …. In par-

ticular, while the idea of a synchronous activation of brain

processes (Singer 1993) is generally accepted when it

comes to describe the functioning of the cortex, it is

questionable whether the same hypothesis applies to the

cognitive level (Eliasmith 2013), for instance to solve the

binding problem (Feldman 2013) that arises when trying to

link perception and behavior. Actually, a counterview has

been recently advocated by Zeki (2015), which suggests

that ‘‘there is no central neural clock in the (visual) brain

that synchronizes the activity of different processing sys-

tems’’, and that more likely ‘‘activity in each of the parallel

processing-perceptual systems of the visual brain is reset

independently, making of the brain a massively asyn-

chronous organ’’. Concretely then, the results of activities

in the different processing-perceptual systems might not be

bound by physiological interactions between cells in the

specialized visual areas, but post-perceptually and asyn-

chronously, outside the visual brain. In other words, if there

is no doubt that at the physiological level e.g., in the cortex,

the activity is widely synchronous, the description of the

cognitive operations taking place at the psychological

level, and more precisely their link with the underlying

concrete neural circuitry, could be asynchronously driven.

Again, as noted above, symbolic models of such mecha-

nisms could lead to the discovery of the learning processes

involved in the development of cognition. To support this

hypothesis, our own work does rely on a bidirectional, or

interactive, approach (see e.g., O’Reilly and Munakata

2000), where bottom-up (i.e., working from biological facts

up to cognition) and top–down (i.e., working from cogni-

tion constraints down to biological facts) processes interact

in coordination, in our case through asynchronous

communications.

As a final word of introduction, let us stress here the

exploratory nature of this work, which by no means rep-

resents a truthful modeling of the brain, and as such does

not constitute a definite and mature alternative to some of

the more ambitious projects currently underway (de Garis

et al. 2010). The results that are reported here can be

summarized as providing

• a simulation of a functional model of a brain as a

symbolic virtual machine

• a graphical formalism whose repetitive patterns could

be identified as its neural circuits

• an experimental platform that allows for reproducing

these simulations.

The whole approach is illustrated in the ‘‘Results’’ with

examples of simulated behaviors exhibiting cognition up to

the third level of animal awareness (Pepperberg and Lynn

2000). More complex models including a simple form of

meta-cognition (Fleming et al. 2012; Templer and Hamp-

ton 2012) as well as the learning of transitive relations via a

form of analogical reasoning (Gentner and Forbus 2011)

will be found in a companion paper.

Materials and methods

Our overall methodology can be described in the following

terms:

(a) mesoscale circuits (which correspond to basic cog-

nitive processes produced by evolution) must be first

induced from observed behaviors in comparative

zoology

(b) these mesoscale circuits are then compiled into

virtual code to be interpreted by a virtual machine

Cogn Neurodyn (2017) 11:327–353 329

123

running on top of microcircuits implementing

synaptic plasticity (or more precisely, by a virtual

machine executing virtual code designed to imple-

ment synaptic plasticity

(c) by definition, such a virtual machine constitutes an

interface which allows for defining mesoscale

circuits independently of the way the underlying

layers i.e., the microcircuits, are actually imple-

mented. Mesoscale circuits thus somehow corre-

spond to cognitive software running on top of a

biological substrate.

Circuits stand for cell assemblies (Hebb 1949; Palm 1982).

These assemblies constitute a theoretical framework, which

in some of its extensions (see e.g., Knoblauch et al. 2005;

Wennekers and Palm 2009; Huyck and Passmore 2013)

offers functional explanations of phenomena by linking

them to physiological processes. Virtual machines, which

in broad terms emulate the execution of a program in

language S on a system having its own language L, simi-

larly allow for interfacing two domains. To be more pre-

cise, the concept of a virtual machine that we use here (i.e.,

as it is usually understood in theoretical computer science,

as opposed to a more general concept pertaining to the

sharing of resources in operating systems) allows for

interpreting virtual object code L compiled from source

code S, as in the case of the Java virtual machine inter-

preting Java byte code obtained from the compilation of

Java source code. On one side, symbolic expressions s [S

will represent virtual circuits that correspond to invariant

fundamental traits of animal cognition. On the other side,

logical implications l [L compiled from these symbolic

expressions will be used to deduce virtual machine

instructions implementing neural dynamics. We follow a

bidirectional approach and present in turn the bottom up

design of virtual circuits followed by the top down con-

struction of a virtual machine.

Bottom up design of virtual circuits

Our bottom up design of virtual circuits follows from

experimental results relating simple animal behavior to

actual neuronal activity. As a general evolution principle,

organisms tend to devise and use ‘‘tricks’’ for their sur-

vival. The ability to evaluate a threat by learning predictive

relationships e.g., by associating a noise and the presence

of a predator, is an example of such tricks realized by

classical conditioning, as illustrated below with the

defensive reflex of aplysia (Kandel and Tauc 1965). The

ability to assess and to remember the consequences of

one’s own actions is another example of an associative

learning providing survival advantages. In this case, op-

erant conditioning (Skinner 1950) associates an action and

its result, which can be positive or negative. Toward this

goal, the organism will first receive either an excite or an

inhibit feedback stimulus, corresponding for instance to a

reward or punishment, respectively; it will then associate

this feedback with an appropriate action, let say accept or

reject a perceived item.

A case of classical conditioning

Let us first consider an example of classical conditioning,

where a light tactile conditioned stimulus cs elicits a weak

defensive reflex and a strong noxious unconditioned stim-

ulus us produces a massive withdrawal reflex. After a few

pairings of stimuli cs and us, where cs slightly precedes

us, a stimulus cs alone will trigger a significantly

enhanced withdrawal reflex i.e., the organism has learned a

new behavior. This can be represented by a wiring dia-

gram, or virtual circuit (Fig. 1), adapted from Carew et al.

(1981) to allow for a one to one correspondence with

symbolic expressions.

In Fig. 1, the components sense(us) and sen-

se(cs) are coupled with sensors (not shown here) cap-

turing external stimuli us and cs and correspond to

sensory neurons. The components motor(us) and mo-

tor(cs) are coupled with action effectors (also not

shown) and correspond to motor neurons. Finally, the

component ltp embodies the mechanism of long term

potentiation and acts as a facilitatory interneuron rein-

forcing the pathway (i.e. augmenting its weight) between

sense(cs) and motor(cs). The interaction of these

components are represented by the iconic symbols -[=[-

and/|\ that correspond to a synaptic transmission (i.e., -

[=[- represents a synapse) and to the modulation of a

synapse, respectively. The symbols * and ? stand for

conjunctive and disjunctive operators (i.e., they are used to

represent the convergence of incoming signals and the

dissemination of an outgoing signal, respectively). Classi-

cal conditioning then follows from the application of a

hebbian learning principle i.e., ‘‘neurons that fire together

wire together’’ (Hebb 1949; Gerstner and Kistler 2002).

Though it is admitted today that classical conditioning

in aplysia is mediated by multiple neuronal mechanisms

(Glanzman 1995; Antonov et al. 2003) including a post-

synaptic retroaction on a presynaptic site, the important

issue is that the learning of a new behavior requires a

sense(cs)-*->=>-motor(cs)
 /|\
 ltp
 |

sense(us)-+->=>-motor(us)

Fig. 1 A virtual circuit implementing classical conditioning

330 Cogn Neurodyn (2017) 11:327–353

123

conjoint activity of multiple neurons. This activity in turn

depends critically on the temporal pairing of the condi-

tioned and unconditioned stimuli cs and us, which in

conclusion leads to implement the ltp component as a

detector of coincidence.

A simple case of operant conditioning

Let us now consider a simple thought experiment where a

pigeon is probing food, e.g., is learning to discriminate

between items such grains and pebbles. Let us assume that

for each item he perceives, his external visual stimuli

consist of a vector I = [I1,I2,.] of primitive features

(e.g., vectors [mat,smooth] and [shiny,smooth]

could correspond to grains and pebbles, respectively). The

generic circuit given in Fig. 2, where I stands as a

parameter, represents the wiring of four components

sense(I), learn(accept(I)), accept(I) and

reject(I), together with two ltp and two opposite

ltd (for long term depression) components. In addition to

the external stimuli captured by component sense(I),

this circuit incorporates the two internal stimuli ex-

cite(accept(I)) and inhibit(accept(I)) that

correspond to feedbacks from probing the food according

to a set of accept elements.

This generic circuit will give rise to an instantiated

circuit for each possible vector I. At the beginning of the

simulation, and for any I, the pathway from sense(I) to

learn(accept(I)) is open, while the pathways to

both accept(I) and reject(I) are closed. After a

few trials, the pigeon will no longer probe his food, i.e., he

will have learned to close the pathway to learn(ac-

cept(I)) and to open either accept(I) or re-

ject(I), associating thus each input vector I with an

action. With regard to the hypothetical neurological sub-

strate corresponding to this scheme, let us just mention that

this process matches some recent results from neuro-

science, where emergent pictures of the brain are based on

the existence of

• two eligibility traces with different temporal profiles:

one corresponding to the induction of ltp, and the

other to the induction of ltd (Huertas et al. 2014;

He et al. 2015)

• two populations of neurons that have opposing spiking

patterns in anticipation of movement suggesting that

these reflect neural ensembles engaged in a competition

(Zagha et al. 2015)

• a fundamental principle in circuit neuroscience accord-

ing to which inhibition in neuronal networks during

baseline conditions allows in turn for disinhibition,

which then stands as a key mechanism for circuit

plasticity, learning, and memory retrieval (Letzkus

et al. 2015).

As a remark that will apply to all models introduced below

(thus illustrating our methodology), each of the compo-

nents contained in this generic model does represent neural

assemblies whose detailed structures should be in turn

modeled by a step-wise refinement of successive virtual

machines eventually relating actual brain processes to overt

behaviors.

Representing circuits by symbolic expressions

The basic entities of the proposed formalism for repre-

senting circuits are constituted by threads. In Computer

science, a thread is a sequence of instructions that executes

concurrently with other threads, may coexist with other

threads to form a process and share resources such as

memory. In the present context, a thread corresponds to a

single or a group of neurons and will be represented by a

symbolic expression enclosing an instruction tree (see

 |
 |
I))--

(I))-
 |
 |

---*->=>-accept(I)
| /|\
| LTP
| |
| +------------------------------------
| |
| LTD
| \|/ |excite(accept(

sense(I)-+---*->=>-learn(accept(I))|
| /|\ |inhibit(accept
| LTD
| |
| +------------------------------------
| |
| LTP
| \|/
---*->=>-reject(I)

Fig. 2 A generic virtual circuit

implementing simple operant

conditioning

Cogn Neurodyn (2017) 11:327–353 331

123

below for the definition of the corresponding formal lan-

guage S). Threads are communicating entities. Each com-

munication does involve a pair of threads and entails on

one side the signal transmitted by a pre-synaptic (source)

thread, and on the other side its reception, via a given

synapse, by a post-synaptic (recipient) thread. Similarly to

a neuron, a thread can be both a source and a recipient and

functions as a gate receiving incoming signals from dif-

ferent sources and sending an outgoing signal to possibly

many recipients. There are however two essential differ-

ences between threads and neurons that allow for a single

thread to represent a group of neurons i.e.,

• contrary to a neuron that alternates roles in cycles, a

thread can be simultaneously a source and a recipient

by maintaining parallel communications.

• contrary to traditional neuron models in which incom-

ing signals are summed in some way into an integrated

value, thread inputs can be processed individually.

Threads can be grouped into disjoint sets, or fibers, to

model neural assemblies, and discrete weights (e.g., integer

numbers) can be attached to pairs of communicating

threads belonging to the same fiber. In some sense, fibers

correspond to the formal notion of independent processes

made of concurrent threads. The interaction of threads

obeys various communication protocols. These protocols

will be implemented by means of procedures that operate

in pairs. As an example, the protocol depicted by the

symbol -[=[- corresponding to a synaptic transmission is

implemented by a send/receive pair, and the symbol

/|\ corresponding to the modulation of a synapse is

implemented by a join/merge pair. A thread named

Thread will be represented by a symbolic expression

having the format thread(Thread,Tree), where

Tree is an instruction tree. Similarly, a named fiber in a

named model will be represented by an expression

threads(Model(Fiber):List), where List is a

list of thread expressions. As an example, the circuit in

Fig. 1 gives rise to the fiber expression given in Fig. 3.

In this simple example, the instruction tree associated

with each thread reduces to a sequence (or linear list) of

virtual instructions such as fire, send, merge, etc. As

another example illustrated in Fig. 2, an instruction tree

can contain an alternative (e.g., as in the thread try that

has two branches commanded by a guard). Formally,

symbolic expressions representing instruction trees belong

to a language S whose syntax is defined by the production

rules given in Fig. 4.

Whereas the non-terminal symbol \guard[represents

conditions derived from internal stimuli (e.g., as a result of

neurotransmitters), \instruction[stands for virtual

machine instructions such as fire, send, merge, etc. (see

the ‘‘Appendix’’ for a definition of this instruction set).

This language S of instruction trees is not to be confused

with the language L that will be used to define virtual code

implications (and more generally the state of a virtual

machine, see ‘‘Top down construction of a virtual

machine’’ section) into which instruction trees will be then

compiled, as illustrated below.

Compiling instruction trees into virtual code implications

Virtual code implications are compiled from thread

expressions and have the following

Guard =[T:Instruction

where Instruction is a virtual machine instruction and T its

clock time. As an example, let us consider the thread

sense(us) in Fig. 3:

 thread(sense(us),
[fire(ltp(sense(cs),motor(cs))),
send(motor(us))]

The straightforward virtual code implications compiled

from this thread are:

 threads(aplysia(reflex)):

 [thread(sense(us),
[fire(ltp(sense(cs),motor(cs))),
send(motor(us))]),

thread(sense(cs),
[merge(ltp(sense(cs),motor(cs))),
send(motor(cs))]),

thread(motor(us),
[receive(sense(us)),
effector(motor(us))]),

thread(motor(cs),
[receive(sense(cs)),
 effector(motor(cs))]),

thread(ltp(Q,R),
[join(Q),
 increment(weight(Q,R))])].

 threads(aplysia(reflex)):

 [thread(sense(us),
[fire(ltp(sense(cs),motor(cs))),
send(motor(us))]),

thread(sense(cs),
[merge(ltp(sense(cs),motor(cs))),
send(motor(cs))]),

thread(motor(us),
[receive(sense(us)),
effector(motor(us))]),

thread(motor(cs),
[receive(sense(cs)),
 effector(motor(cs))]),

thread(ltp(Q,R),
[join(Q),
 increment(weight(Q,R))])].

Fig. 3 Fiber expression corresponding to the virtual circuit for

classical conditioning

<tree> ::= [] || <sequence> || [<alternative>]
<sequence> ::= [<instruction>|<tree>]
<alternative> ::= <branch> || (<branch>;<alternative>)
<branch> ::= (<guard>|<tree>)

Fig. 4 Production rules for

instruction trees

332 Cogn Neurodyn (2017) 11:327–353

123

true => 1:fire(ltp(sense(cs),motor(cs)))
true => 2:send(motor(us))
true => 3:end

In this simple example, successive clock time values

(i.e., 1, 2, 3) correspond to a linear list traversal. As another

example, the thread learn(accept(I)) from Fig. 2,

whose instruction tree contains an alternative giving rise to

the following expression

will be compiled into the following virtual code implica-

tions, whose repetitive successive clock values correspond

to possible descends into a tree:

Generally speaking, the compilation of virtual code

implications can follow from a recursive descent into an

instruction tree (see ‘‘Formal specifications’’ sections).

Top down construction of a virtual machine

Let us consider a set of fibers together with sets of initial

weights for pairs of communicating threads within fibers

and sets of accept elements in fibers. A fiber containing at

least one active thread i.e., a thread whose associated clock

is up and running, constitutes a stream. The virtual

machine consists of

• a set of registers comprising, for each active thread, a

local clock and four internal stimuli registers (i.e., fetch,

catch, excite, inhibit) holding one value at a time

• a set of local signal queues attached to active threads

and holding multiple values at a time

• a content addressable memory holding the virtual code

implications attached to threads, as well as the sets of

current weights and accept elements.

Let Model designate the state of the virtual machine as

described in a language L. At the top level, the virtual

machine is defined by a run procedure that consists of a

loop whose cycle comprises a sense procedure followed by

a react procedure:

run(Model)
loop sense(Model)

 react(Model)

At the next level below, the sense procedure reflects the

triggering of spike trains directed to sensory neurons. After

possibly capturing an interrupt from sensors directed to a given

stream (which initially can be a fiber i.e., without any active

thread), it updates Model using a transition function input:

if interrupt(Stream(Input))
sense(Model)

then Model<− input(Model(Stream),Input)

The transition function input first terminates the inter-

rupted stream by clearing all its registers and queues and

then resets the clocks of the sensory threads associated with

sensors.

The react procedure itself consists of a loop calling on

each active thread in any stream to first deduce a virtual

machine instruction and then update Model using a tran-

sition function output:

rn(accept(I)))),
ept(I)))]);
rn(accept(I)))),

thread(learn(accept(I)),
[receive(sense(I)),
test(accept(I)),
((excite(accept(I)) | [fire(ltd(sense(I),lea

fire(ltp(sense(I),acc
(inhibit(accept(I)) | [fire(ltd(sense(I),lea

fire(ltp(sense(I),reject(I)))]))]),

true => 1:receive(sense(I))
true => 2:test(accept(I))
excite(accept(I)) => 3:fire(ltd(sense(I),learn(accept(I))))
excite(accept(I)) => 4:fire(ltp(sense(I),accept(I)))
excite(accept(I)) => 5:end
inhibit(accept(I)) => 3:fire(ltd(sense(I),learn(accept(I))))
inhibit(accept(I)) => 4:fire(ltp(sense(I),reject(I)))
inhibit(accept(I)) => 5:end

for each Stream(Thread),T:Instruction,
such that ist(Model(Stream)(Thread),(clock(T), T:Instruction))
do Model <− output(Model(Stream)(Thread), T:Instruction)

react(Model)

Cogn Neurodyn (2017) 11:327–353 333

123

The transition function output corresponds to the exe-

cution of a virtual machine instruction and implements

communication protocols to be specified in the ‘‘Micro-

circuits implementing synaptic plasticity’’ section. T:In-

struction is deduced through contextual deduction (Bonzon

et al. 2000) from virtual code implications that have been

compiled from thread expressions and loaded into memory

(see in ‘‘Computational architecture formal specifications’’

section for formal definitions, including that of the ist

predicate standing for ‘‘is true’’).

Clock register values T, which correspond to program

counters in traditional virtual machines like the Java

machine, are used to deduce, for each active thread, the

next instruction satisfying the guard. Whenever a transi-

tion initiated by a thread succeeds, the thread clock is

advanced and the next instruction is deduced and executed,

and whenever it fails, the current instruction is executed

again i.e., the transition is attempted until it eventually

succeeds. Altogether, this amounts to descending into an

instruction tree, with its local clock time corresponding to

the currently reached depth, as illustrated in the previous

section.

The mechanisms enforced in this virtual machine

provide a solution to the problem of dynamically binding

roles to filler (Hummel and Holyoak 2005). More pre-

cisely, this is achieved via both its sense procedure and

the communication protocols between threads, which

together amount to implementing a systematic asyn-

chrony of firing as described in (Doumas et al. 2008).

This stands in contrast with the usual approach to binding

achieved through synchronized firing across separate but

interconnected areas of the brain (Treisman 1996; Feldman

2013).

Before proceeding to a detailed specification of this

machine, let us briefly summarize its salient features and

their relation to a possible macroscopic view of the brain:

• contrary to traditional stored-program computers, this

machine doesn’t have an instruction register holding

the current instruction being executed after its retrieval

from an addressable memory; by interpreting code

deduced just in time from virtual implications compiled

themselves from thread configurations that are akin to

brain states, the overall architecture of this system

could turn out to be closer to that of a brain.

• virtual code implications are reminiscent of daemons

that run as computer background processes and are

triggered by foreground application software; daemons

were in common use in the early days of the Artificial

Intelligence paradigm, when Neuroscience didn’t yet

provide a neural substrate for models of perception and

cognition (Powers 2015).

• similarly to machine code compiled from application

software, this new kind of daemons is compiled from

thread fibers that are thus akin to cognition software

• finally, as described above, these daemons are triggered

by local deductions within a given stream; global

deductions at the model level (to be introduced below)

will give access, from within any stream, to previously

active threads that will thus achieve the status of a

global memory (see ‘‘Microcircuits implementing

synaptic plasticity’’ sections).

Results

We first report on the neural aspects of this work by pre-

senting microcircuits implementing synaptic plasticity. We

then detail a computational architecture by presenting the

formal specifications of a virtual machine under the form of

enhanced Prolog code. Finally, we include examples of

mesoscale circuit modeling the first three levels of animal

awareness.

Microcircuits implementing synaptic plasticity

As illustrated in ‘‘Materials and methods’’ section, circuits

rely on communication protocols that are pictured in thread

diagrams by iconic symbols representing themselves

microcircuits. These protocols can be defined by means of

procedures that operate in pairs:

• send/receive denoted by the symbols

-[=[- or -\=\-

represent synaptic transmission

• join/merge denoted by

/|\ or \|/

implement long term potentiation/depression (ltp/

ltd)

• push/pull denoted by

-\A[-

model a short term cache memory (stm)

• store/retrieve denoted by

--{P}-

model an associative memory (ltm) based on long term

storage and retrieval (lts/ltr).

These protocols are detailed below together with the

corresponding microcircuits. The definition of the basic

threads implementing these microcircuits is given in the

‘‘Appendix’’.

334 Cogn Neurodyn (2017) 11:327–353

123

Synaptic transmission

The microcircuit implementing a synaptic transmission i.e.,

| |
P-+->=>-Q-+-

| |

can be represented by the following expressions

hread(P, [send(Q),.])t

thread(Q, [receive(P),.])

The calls send(Q) and receive(P) correspond to the

transmission of a local signal by a pre-synaptic neuron P fol-

lowed by its reception by a post-synaptic neuron Q and are

used to model local communications within a given stream.

The firing of P is assumed to have occurred earlier e.g., in

reaction to the capture of an external stimulus. These expres-

sions give rise to the communication protocol given in Fig. 5.

This send/receive protocol corresponds to an

asynchronous communication subject to a threshold. It

involves a predefined weight between the sender P and the

receiver Q. This weight can be incremented/decremented

by an ltp/ltd thread. After firing thread Q and sending it

a signal, thread P goes on executing its next instruction. On

the other side, thread Q waits for the reception of a signal

from thread P and proceeds only if the weight between P

and Q stands above a given threshold. In any case no data is

passed between the two threads, and the overall process

just amounts to allowing Q to proceed on behalf (or at the

demand) of P.

Long term potentiation/depression (ltp/ltd)

The join/merge pair is used in conjunction with the

send/receive pair in order to implement the modula-

tion of a synapse. The following microcircuit

implementing ltp gives rise to the protocol given in Fig. 6.

An ltd thread can be similarly implemented by decre-

menting weights. As an example, and according to the

experimental protocol of classical conditioning (cf. Fig. 1),

one must first detect the pairing of the two stimuli cs and

us. Towards this end, sense(us) fires an ltp thread

that in turn calls on a join thread to wait for a signal from

sense(cs). In parallel, sense(cs) calls on a merge

thread to post a signal for ltp and then executes a

send(motor(cs)) command to motor(cs). When

met by sense(cs), thread ltp eventually increments

the weight between sense(cs) and motor(cs).

Short term cache memory (stm)

As introduced in a model for the second level of animal

awareness (Pepperberg and Lynn 2000), cache memory

allows for remembering a location A. This can be repre-

sented by

|
P(A)-<A>-*-Q(A)

|

which gives rise to the protocol in Fig. 7.

Resetting stm(A) means that the previous value of A is

no longer available. Furthermore, broadcasting a path,

which amounts to posting a global signal, means that it can

be received by any thread Q attached to any stream.

Associative long term memory (ltm) based on long term

storage and retrieval (lts/ltr)

According to Pepperberg and Lynn (2000), an organism

having the third level of awareness must be able to recall

properties of actual objects from previous perceptions. This

P:send(Q)=fire thread Q
+post a local signal for Q

 Q:receive(P)=wait for a local signal from P
 +proceed if weight(P,Q)>0

Fig. 5 Communication protocol for synaptic transmission

:fire thread ltp(Q,R)

tp(Q,R):join(Q)=wait for a local signal from Q
+increment(weight(Q,R))

:merge(ltp(Q,R))=post a local signal for ltp(Q,R)
+send(R)=fire thread R

 +post a local signal for R

 P

 l

 Q

 R:receive(Q)=wait for a local signal from Q
 +proceed if weight(Q,R)>0

Fig. 6 Communication protocol implementing long term potentiation

Q---*->=>-R
 /|\
 ltp
 |

P---+-

(A):push(A)=reset and fire thread stm(A)

tm(A):feed(_)=broadcast a path

P

s

Q(A):pull(A)=wait for a path to stm(A)

Fig. 7 Communication protocol implementing a short term cache

memory

Cogn Neurodyn (2017) 11:327–353 335

123

implies in turn some kind of associative long term memory.

The concept of an associative memory has been studied

from various perspectives (see e.g., Palm 1980). In this

particular context, an associative memory extends the

mechanism of long term potentiation by allowing for two

threads P and Q attached to separate streams (and thus also

possibly active at different times) to be associated in order

to trigger a recall thread R. These two streams will be

linked together via a long term memory ltm(P)thread

embedded in a microcircuit driven by a double communi-

cation protocol depicted by -{P}-.This new protocol

involves two complementary long term storage/retrieval

(lts/ltr) threads that allow for the building of a storage

trace and a later retrieval of previously active threads. This

is well in line with results by Rubin and Fusi (2007)

demonstrating that if the initial memory trace in neurons is

below a certain threshold, then it cannot be retrieved

immediately after the occurrence of the experience that

created the memory. This can be represented by the fol-

lowing microcircuit:

Q-+---*->=>-R
| /|\
| ltr
| |

P-+---*-{P}-*---
 | /|\
 | lts

This microcircuit gives rise to the communication protocol

in Fig. 8.

As a distinctive difference from an ltp(Q,R) thread

(which gets fired by P and waits for a local signal from Q in

order to relate Q and R), an ltr(P,Q,R) thread is fired

by Q and waits for a path to ltm(P) in order to relate Q

and R.

Computational architecture formal specifications

The experimental platform allowing for running a virtual

machine is now described in a top down approach.

Functional signatures

Virtual machines essentially emulate the execution of a

program in language S on a system having its own lan-

guage L. We recall the language S of instruction trees

described in ‘‘Representing circuits by symbolic expres-

sions’’ section. As for the language L, it allows for defining

the state of the virtual machine itself (which we recall

consists of sets of registers and queues together with a

content addressable memory holding compiled virtual code

implications as well as current weights and accept

elements).

Compiling an instruction tree into a set of virtual code

implications can be represented by a compile function with

the following signature:

compile: S ? L

Compiling and then loading a set of virtual code

implications into a virtual machine leads to define a com-

bined load function (actually the composition of the com-

pile function with an insert function):

load: S.9 (S ? L) 9 L ? L

This function can be easily extended to include loading

the sets of initial weights and accept elements using a

compile function equal to the identity function. Finally, let

I and O be the languages defining input/output sentences

captured by sensors and delivered to effectors, respec-

tively. Running a model on a virtual machine then defines a

run function as follows:

run: I 9 S9 (S ? L) 9 L ? L9 O

Formal specifications

A complete specification of this computational architecture

is given below under the form of Prolog code, which at the

same time provides an effective, even if not really efficient,

implementation.

Language conventions used throughout include:

• identifiers starting with capital letters represent

variables

• expression F(|X) represents a term with an arbitrary

atomic functor F and any number of arguments e.g.,

F(|X) can be unified with p(1), f(a,b), etc.

• the character ‘‘ – ’’ represents a blank variable whose

instantiation is not required.

:fire thread lts(P)

ts(P):store(P)=fire thread ltm(P)
+increment(weight(P,ltm(P)))

tm(P):feed(_)=proceed if weight(P,ltm(P))>0
+broadcast a path

:fire thread ltr(P,Q,R)
+send(R)=fire thread R

 +post a local signal for R

tr(P,Q,R):retrieve(P)=wait for a path to ltm(P)
 +increment(weight(Q,R))

P

l

l

Q

l

R:receive(Q)=wait for a local signal from Q
 +proceed if weight(Q,R)>0

Fig. 8 Communication protocol implementing a long term associa-

tive memory

336 Cogn Neurodyn (2017) 11:327–353

123

This code is enhanced with macro definitions in order to

improve its readability. Some of these language extensions

(e.g., loop, interrupt, if then else, etc.) have an

intuitive meaning and won’t be developed here. The others

do represent an implementation of the formal notions of a

context and of contextual deduction.

Implementing a context as a dynamic set of elements We

start with the implementation of a context defined as a

dynamic set of elements associated with the following

operations, where each instance plays the role of a non-

logical axiom in a logical theory:

These operations also constitute our implementation of a

content addressable memory as well as that of a queue,

both being considered here as data buffers whose values

can be accessed in any order.

Setting the value of a register in context On this basis, a

register holding one value at a time can be implemented by

a single set operation:

Contextual deduction Given a context, the ist predicate

standing for ‘‘is true in this context’’ is defined as follows:

Compiling virtual code implications The compilation of

virtual code implications follows from a recursive descent

into an instruction tree. According to its signature, the

corresponding function can be implemented as a compile

procedure with one input argument and one output argu-

ment standing for an instruction tree and compiled code,

respectively:

new(C) :- retractall(instance(C,_)). clear context C
insert(C,P) :- assert(instance(C,P)). insert item P in context C
remove(C,P) :- retractall(instance(C,P)). remove item P from context C

set(C,F(|X)) :- remove(C,F(|_)), remove value from register F in context C
 insert(C,F(|X)). set value |X to register F in context C

ist(C,true). true is true in any context

ist(C,P) :- instance(C,P); P is true in context C if P is an instance in C
 instance(C,Q=>P), or if Q=>P is an instance in C
 ist(C,Q). and Q is true in C

ist(C,(P,Q)) :- ist(C,P), a conjunction of two propositions is true in context C

 ist(C,Q). if both propositions are true in context C

Cogn Neurodyn (2017) 11:327–353 337

123

Loading a model Instead of defining a load procedure

whose arguments reflect the functional signature given

above, let us extend the definition of a model (as intro-

duced in ‘‘Top down construction of a virtual machine’’,

where Model designates a state e L) in order to come up

with a single argument, with Model designating now a state

e S 9 L. Let us then consider a set of fiber assertions as

introduced in ‘‘Representing circuits by symbolic expres-

sions’’ section i.e., expressions of the form

threads(Model(Fiber)):[thread(Thread1,Tree1),..thread

(Threadn,Treen)].

together with global assertions for basic threads imple-

menting synaptic plasticity and memory (see their defini-

tion at the end of the ‘‘Appendix’’), as well as assertions for

initial weights and accept elements. A combined load can

be defined as follows:

compile(Tree,Code) :- compile tree
 compileTree(Tree,true,1,Code).

compileTree([],Guard,T,[Guard => T:end]). compile tree leaf

compileTree(Sequence,Guard,T,Code) :- compile tree sequence
 compileSequence(Sequence,Guard,T,Code).

compileTree([Alternative],Guard,T,Code) :- compile tree alternative
 compileAlternative(Alternative,Guard,T,Code).

compileSequence([Instruction|Tree],Guard,T,Code) :- compile sequence
 T1 is T+1,
 compileInstruction(Instruction,Guard,T,P1),
 compileTree(Tree,Guard,T1,P2),
 append(P1,P2,Code).

compileAlternative(Branch,Guard,T,Code) :- compile simple alternative
 compileBranch(Branch,Guard,T,Code).

compileAlternative((Branch;Alternative),Guard,T,Code) :- compile embedded alternative
 compileBranch(Branch,Guard,T,P1),
 compileAlternative(Alternative,Guard,T,P2),
 append(P1,P2,Code).

compileBranch((Guard1|Tree),Guard2,T,Code) :- compile branch
 (Guard2=true -> Guard=Guard1; Guard=(Guard1,Guard2)),
 compileTree(Tree,Guard,T,Code).

compileInstruction(P(|X),Guard,T,[Guard => T:P(|X)]) :- compile instruction
 instruction(P).

338 Cogn Neurodyn (2017) 11:327–353

123

Running a model Let Interrupt, the input sentence cap-

tured by sensors at successive run cycles, be represented by

a list of the form

[sensor(|X1),..sensor(|Xn)] .

The run function is then defined as follows:

The formal specification of the set of virtual machine

instructions is given in the ‘‘Appendix’’.

Examples of mesoscale circuits

We present operational models of simple animal behaviors

that were executed on the experimental platform described

in the previous section. These models offer simulations of

the first three level of animal awareness according to

Pepperberg and Lynn (2000). More complex models

showing how a simple form of meta-cognition, namely

memory awareness (Fleming et al. 2012; Templer and

Hampton 2012), can be reduced to successive layers of

associative memories implementing retrospective revalua-

tion, on one hand, and another model implementing the

learning of transitive relations via analogical inferences

(Hummel and Holyoak 2005), on the other, will be found in

a companion paper.

A model of the first level of animal awareness

Let us consider an example of operant conditioning that

involves a choice between two alternatives. In an experi-

ment (see e.g., Zentall et al. 1981), pigeons are first con-

fronted with a lit sample that can be either red or green, and

clear machine

for each instruction tree
))), contained in model fibers

compile and load
hread),P))))), virtual code

compile and load
d),P))))), basic threads

load weights
|X)))),

load accepts

load(Model):-
new(_),

for_each(thread(Thread,Tree),
from(threads(Model(Fiber

do((compile(Tree,Code),
forall(member(P,Code),insert(Model(Fiber)(T

for_each(thread(Thread,Tree),
from(threads(Model)),

do((compile(Tree,Code),
forall(member(P,Code),insert(Model(_)(Threa

for_each(Weight(Thread1,Thread2)(|X),
from(weights(Model(Fiber))),
do(insert(Model(Fiber),Weight(Thread1,Thread2)(

for_each(Accept(|X),
from(accepts(Model(Fiber))),
do(insert(Model(Fiber),Accept(|X)))).

run(Model) :- loop((sense(Model),react(Model))). loop sense and react

sense(Model):- if(interrupt(Stream(Interrupt)), input interrupt
 then((remove(Model(Stream)(_),clock(|_)), clear stream
 remove(Model(Stream)(_),fetch(|_)),
 remove(Model(Stream)(_),catch(|_)),
 remove(Model(Stream)(_),excite(|_)),
 remove(Model(Stream)(_),inhibit(|_)),
 remove(Model(Stream)(_),signal(|_)),
 for_each(sensor(|X), for each sensor
 such_that(member(sensor(|X),Interrupt)),
 do(set(Model(Stream)(sense(|X)),clock(1))))))). fire sense thread

react(Model):- for_each((Stream(Thread),T:Instruction), for each parallel thread
 such_that(ist(Model(Stream)(Thread),
 (clock(T),T:Instruction))), deduce an instruction
 do(Model(Stream)(Thread).(T:Instruction))). execute an instruction

Cogn Neurodyn (2017) 11:327–353 339

123

then must peck one of two lit buttons (say, one left and one

right button). The color of the sample and of each button

varies randomly from one trial to the next, but there is

always one green button and one red button. In order to get

a reward, a pigeon must peck the button that does have (or

doesn’t have, according to the type of the experiment) the

same color as the sample.

According to Wright (2001), there are two different

ways that pigeons can learn matching to sample. Their first

strategy is to associate each configuration (e.g., each

combination of external stimuli) with the corresponding

correct choice. This can be implemented by the circuit

given in Fig. 9 that looks like a simple extension of the

Fig. 2 implementing simple operant conditioning, where

positive feedbacks only are taken into account (in order to

simplify the presentation, the preliminary step involving

the presentation of the sample alone is omitted):

Visual stimuli captured by sensors are represented by

three expressions a(I), b(J), c(K), where a, b, c

correspond to the left button, the right button and the

sample, respectively, and the parameters I, J, K take the

values green or red. In addition to these external

stimuli, two internal stimuli i.e., fetch(a),ex-

cite(peck(a(I),c(K))) and fetch(b),ex-

cite(peck(b(J),c(K))) first command the choice

made by the pigeon (i.e., either ‘‘left’’ or ‘‘right’’, resulting

from a random selection) and then provide a positive

feedback when the choice was correct (i.e., the pigeon got

rewarded). As an example, if the input configuration is

a([green]),b([red]),c([green]) then the cor-

rect choice is fetch(a) leading to peck(a).

Another pigeon strategy to learn this task is as follows:

while first randomly pecking either one of the two buttons,

it does compare them in turn with the sample and learn to

match colors. After a training period, it then stops pecking

randomly and selects the button that does match the

sample. In other words, pigeons do not learn to choose a

color in a given arrangement of colors, but to match and

then choose the match. According to Pepperberg and Lynn

(2000), the first level of animal awareness, corresponds to

the ability to follow a simple rule involving the perception

of a specific item or event and either its acceptation or its

rejection. The second strategy that was just described,

which can be characterized as learning matching/oddity to

sample, does actually constitute an instance of the first

level of awareness. This can be represented by a three layer

circuit (Fig. 10). The middle layer implements the random

pecking of a button. The two outer layers implement

learning to match a button with the sample and eventually

select the match. This overall circuit functions as an

learning automaton that is being trained to accept one of

two objects a and b whose color I and J does match the

color K of the sample c. Note that the pathways to

peck(a) and peck(b) are opened by an ltp thread

initiated by the middle layer whenever a trial ends with a

reward.

A model of the second level of animal awareness

In a nut shell, whereas the first level of animal con-

sciousness does not allow for an immediate transfer to a

similar task, an organism with the second level is aware

enough of a rule to transfer it across situations (Pepperberg

and Lynn 2000). In an experiment reported by (Cole et al.

1982), hummingbirds face the choice of visiting one of two

locations potentially containing food. In order to solve this

dilemma, they are trained to adopt a strategy that effec-

tively relies on remembering the location they visited last.

Along the same lines, it is known that rats do use spe-

cialized neuronal cells (which include head direction,

place and grid cells) to create internal cognitive maps of

their environment, direct themselves and remember places

 ---*->=>-peck(a)
| /|\
| ltp
| |
| +--
| | |
| ltd |
| \|/ |fetch(a)|excite(peck(a(I),c(K)))-

sense(a(I),b(J),c(K))-+---*->=>-learn(peck(a(I),b(J),c(K)))|
| /|\ |fetch(b)|excite(peck(b(J),c(K)))-
| ltd |
| | |
| +--
| |
| ltp
| \|/
---*->=>-peck(b)

Fig. 9 Circuit implementing operant conditioning with a choice

340 Cogn Neurodyn (2017) 11:327–353

123

they have been visiting (see e.g., O’Keefe and Nadel 1978;

Moser et al. 2008). Moreover, recent research indicates that

these capabilities are innate (Langston et al. 2010; Wills

et al. 2010). Let us extrapolate these results to humming-

birds. Each trial in this experiment consists of two separate

stages. In the first (information) stage, an artificial flower

containing food is presented in one of two possible loca-

tions i.e., in a cage left or right corner. After the bird is fed,

the flower is removed. In the second (choice) stage, a

flower is presented in each corner, one flower containing

food and the other one empty. Birds are then allowed to

visit one flower only. If the flower containing food con-

sistently stands in the same corner as in the information

stage, birds are thus required to return to the location they

have just visited with success, which corresponds to adopt

a win/stay lose/shift rule (or strategy).

This experiment gives rise to the following model in

Fig. 11.

This model has the following characteristics:

• an information stage can be initiated by one of two

threads sense(A(I),B([])) and sen-

se(A([]),B(J)), where the parameters A, B denote

for example the left and right corner, the parameters I

and J are the expression flower(food)signaling a

flower with food, and ‘‘[]’’ signals a location without a

flower

• the choice stage is initiated by a thread sen-

se(A(I),B(J)), where I and J can be either one of

two expressions flower(food)and flower([])cor-

responding to the location of a flower with food and

without food, respectively

• these two stages are interconnected via a new interac-

tion protocol denoted by -\A[- or -\B[- allowing

for the short term cache memory (or stm) of location A

or B.

When discussing this experiment, (Pepperberg and Lynn

2000) first note that an organism having a second level of

awareness ‘‘is aware enough of the rule to transfer it across

situations’’ (e.g., across inflorescences). This is reflected in

the above model by parameters A and B allowing for the

representation of various environments. They then add: ‘‘If,

however, the organism were truly aware of using the rule, it

would, when transferred to a win/shift lose/stay paradigm,

readjust after only a few trials’’, which actually they do not.

This is reflected in the model by the fact that implementing

the converse win/shift lose/stay strategy requires to

 ---*->=>-learn(match(a(I),c(K))|excite(match(a(I),c(K)))-
| /|\ |
| ltd |
| | |

(K))-------+ +---
| |
| ltp
| \|/
---*->=>-match(a(K),c(K))-*->=>-peck(a)

 /|\
ltd
|

--------------------------+---------------------------------------
| |
ltd |
\|/ |fetch(a)|excite(peck(a(I),c(K)))-

(J),c(K))--*->=>-learn(peck(a(I),b(J),c(K)))|
/|\ |fetch(b)|excite(peck(b(J),c(K)))-
ltp |
| |
--------------------------+---------------------------------------

|
ltp

 \|/
---*->=>-match(b(K),c(K))-*->=>-peck(b)

| /|\
| ltp
| |

sense(a(I),c

sense(a(I),b

sense(b(J),c(K))-------+ +--
| | |
| ltd |
| \|/ |
---*->=>-learn(match(b(J),c(K)))|excite(match(b(J),c(K)))-

Fig. 10 Circuit implementing the first level of animal consciousness

Cogn Neurodyn (2017) 11:327–353 341

123

consider negative inhibit feedbacks instead of the positive

excite used above.

A model of the third level of animal awareness

The third level of animal awareness provides an organism

with the additional capacity to integrate two different sets

of stored information. In order for example to make a

categorical judgment (e.g., to sort items), an organism has

to recall properties of actual objects. This implies in turn

some kind of associative long term memory. This can be

illustrated through an experiment reported in (Savage-

Rumbaugh et al. 1980). In the first phase of this experi-

ment, chimpanzees were familiarized with a set of objects

(such as a cake and an orange, on one hand, and a key and a

stick, on the other) belonging to two categories i.e., edible

and inedible. In a second phase, they were trained to sort a

subset of objects of each kind by placing them in two

different bins. The question that did then arise was to

determine in which of two possible ways they learned this

task i.e., by memorizing an association between each item

and the appropriate bin, or by devising the rule ‘‘this bin is

for items that I eat and the other bin is for items that I do

not eat’’. If such a rule had been be used, then the chim-

panzees could sort more familiar objects of each kind

without additional training. A subsequent test showed that

this was indeed the case.

The two phases of this experiment can be imple-

mented by two independent circuits, possibly active at

different times. These two circuits are linked together by

a double communication protocol depicted by -{P}-

implementing an associative long term memory (or ltm).

This protocol involves two complementary long term

storage/retrieval (lts/ltr) processes that allow for the

building of a thread storage trace and a later retrieval

from this trace. The first phase (Fig. 12), which starts

with the categorization of each variable object X into

edible and inedible items, will end up memorizing

familiar objects as an association {food(X)} or

{toy(X)}.

The second phase (Fig. 13), which leads to sorting

objects into one of two bins denoted A and B, starts with a

recall from familiar objects. As a result of remembering the

category of object X, the sorting process applies to all

familiar objects without additional training.

Running a simulation A simulation run for learning the

category of objects gives rise to the following log, where

inputs from sensors and effector outputs are preceded by a

prompt |: and �[, respectively:

sense(A(I),B([]))--<A>-----*-recall(A)->=>-peck(A)
 |

---*->=>-
 | /|\
 | ltp
 | |
 | +--
 | | |
 | ltd |
 | \|/ |fetch(A)|excite(peck(A(I)))-

 sense(A(I),B(J))-+---*->=>-learn(peck(A(I),B(J)))|
 | /|\ |fetch(B)|excite(peck(B(J)))-
 | ltd |
 | | |
 | +--
 | |
 | ltp
 | \|/

---*->=>-
 |

 sense(A([]),B(J))-------*-recall(B)->=>-peck(B)

Fig. 11 Circuit implementing the second level of animal consciousness

342 Cogn Neurodyn (2017) 11:327–353

123

|:see([sensor(cake)]). sensor input
excite(food(cake)) positive feedback
decrement(weight(sense(cake),learn(food(cake)))):0 adjust weight
increment(weight(sense(cake),food(cake))):1 adjust weight
increment(weight(food(cake),ltm(food(cake)))):1 adjust weight
>>>ltm(food(cake)) memorize

|:see([sensor(orange)]). sensor input
excite(food(orange)) positive feedback
decrement(weight(sense(orange),learn(food(orange)))):0 adjust weight
increment(weight(sense(orange),food(orange))):1 adjust weight
increment(weight(food(orange),ltm(food(orange)))):1 adjust weight
>>>ltm(food(orange)) memorize

|:see([sensor(stick)]). sensor input
inhibit(food(stick)) negative feedback
decrement(weight(sense(stick),learn(food((stick)):0 adjust weight
increment(weight(sense(stick),toy(stick))):1 adjust weight
increment(weight(toy(stick),ltm(toy(stick)))):1 adjust weight
>>>ltm(toy(stick)) memorize

|:see([sensor(key)]). sensor input
inhibit(food(key)) negative feedback
decrement(weight(sense(key),learn(food(key)))):0 adjust weight
increment(weight(sense(key),toy(key))):1 adjust weight
increment(weight(toy(key),ltm(toy(key)))):1 adjust weight
>>>ltm(toy(key)) memorize

Cogn Neurodyn (2017) 11:327–353 343

123

 ---*->=>-food(X)-+---*-{food(X)}
 | /|\ | /|\
 | ltp | lts
 | | | |
 | | ---
 | +-------------------------------------
 | | |
 | ltd |
 | \|/ |excite(food(X))--

sense(X)-+---*->=>-learn(food(X))|
 | /|\ |inhibit(food(X))-
 | ltd |
 | | |
 | +-------------------------------------
 | | ---
 | | | |
 | ltp | lts
 | \|/ | \|/
 ---*->=>-toy(X)--+---*-{toy(X)}

Fig. 12 Circuit for memorizing

a category

 --*->=>-put(food,A)
 | /|\
 | ltp
 | |

{food(X)}-----*-- | +---
| | | | |
| ltr | ltd |
| \|/ | \|/ |fetch(A)|excite(put(food,A))-
+--*->=>-recall(food,A,B)-+--*->=>-learn(put(food,A,B))|
| | /|\ |fetch(B)|excite(put(food,B))-
| | ltd |
| | | |
| | +---
| | |
| | ltp
| | \|/
| --*->=>-put(food,A)

sense(X,A,B)-+
| --*->=>-put(toy,B)
| | /|\
| | ltp
| | |
| | +---
| | | |
| | ltd |
| | \|/ |fetch(a)|excite(put(toy,A))-
+--*->=>-recall(toy,A,B)--+--*->=>-learn(put(toy,A,B))|
| /|\ | /|\ |fetch(b)|excite(put(toy,B))-
| ltr | ltd |
| | | | |

{toy(X)}------*-- | +---
 | |
 | ltp
 | \|/
 --*->=>-put(toy,B)

Fig. 13 Circuit for sorting familiar object

344 Cogn Neurodyn (2017) 11:327–353

123

The log of a simulation run for sorting objects is as follows:

Discussion

Comparative approach

A study of some large scale projects (de Garis et al. 2010)

reveals a profound disagreement of how to possibly pro-

gress towards the goal of reverse engineering a brain in

action. While some authors (Markram et al. 2015) report-

ing about the reconstruction and simulation of a neuro-

logical circuitry describe ‘‘the emergence of spontaneous

spatio-temporal patterns’’, some others (Modha et al. 2011)

more cautiously believe that ‘‘the realistic expectation is

not that cognitive function will spontaneously emerge’’

from such simulations, and rather insist that a simulator

supplies a substrate within which we can formulate theories

of neural computation.

As a first example, the Blue Brain project (Markram

2006) proclaimed objective was ‘‘ultimately, to study the

steps involved in the emergence of biological intelli-

gence’’. Towards this end, they did collect vast amounts of

in vitro measurements, and on this basis managed to sim-

ulate the current induced by ion channels. By assembling

individual neurons, they then reconstructed in silico a

neocortical column, i.e., a slice of a rat brain. The inter-

action of interconnected neurons was then expected to

emerge spontaneously, and it did so to a certain extend.

This simulated experiment however had no inputs from

sensory organs, nor any outputs to other parts of the brain,

and as such was not related to any behavior.

SAL, or Synthesis for Leabra and ACT-R (Jilk et al.

2008) was conceived as a merging of two well-established

constituents i.e., ACT-R (Anderson et al. 2004), a symbolic

|:sort(left,right)([sensor(cake,left,right)]). sensor input
increment(weight(sense(cake,left,right),recall(food,left,right))):1 adjust weight
recall(food,left,right) remember
fetch(left) random choice
excite(put(food,left)) positive feedback
decrement(weight(recall(food,left,right),learn(put(food,left,right))):0 adjust weight
increment(weight(recall(food,left,right),put(food,left))):1 adjust weight
>>>put(food,left) effector output
subject has been trained in one round to sort familiar object cake according to its category

|:sort(left,right)([sensor(orange,left,right)]). sensor input
increment(weight(sense(orange,left,right),recall(food,left,right))):1 adjust weight
recall(food,left,right) remember
>>>put(food,left) effector output
familiar object orange has been sorted according to its category without additional training

|:sort(left,right)([sensor(stick,left,right)]). sensor input
increment(weight(sense(stick,left,right),recall(toy,left,right))):1 adjust weight
recall(toy,left,right) remember
fetch(left) random choice
inhibit(put(toy,left)) negative feedback
|:sort(left,right)([sensor(stick,left,right)]. sensor input
recall(toy,left,right) remember
fetch(right) random choice
excite(put(toy,right) positive feedback
decrement(weight(recall(toy,left,right),learn(put(toy,left,right))):0 adjust weight
increment(weight(recall(toy,left,right),put(toy,right))):1 adjust weight
>>>put(toy,right) effector output
subject has been trained in two rounds to sort familiar object stick according to its category
|:sort(left,right)([sensor(key,left,right)]). sensor input
increment(weight(sense(key,left,right),recall(toy,left,right))):1 adjust weight
recall(toy,left,right) remember
>>>put(toy,right) effector output
familiar object key has been sorted according to its category without additional training

|:sort(left,right)([sensor(money)]). sensor input
unfamiliar object was not sorted

Cogn Neurodyn (2017) 11:327–353 345

123

production-rule based architecture, and Leabra (O’Reilly

and Munakata 2000), a neural modeling system. According

to the developers themselves, this integration ‘‘is of the

simplest form, whereby the visual module in an existing

ACT-R model of navigation is replaced with a Leabra

vision model, which is capable of processing raw bitmap

images in a way that the ACT-R visual module was not

capable of doing. Similarly, extant Leabra models are not

capable of organizing problem solving behavior’’. In ACT-

R, operations are purely syntactical without any reference

to the semantic content of their representation. Still, it is at

this level that learning, memory, and action planning take

place. Furthermore, and in accordance with a tradition

going back to the theory of the General Problem Solver

(Newell and Simon 1976), task representation is also

encoded at this level and drives the overall behavior of the

model. As a consequence, the resulting integration cannot

address the issue of how symbolic representations and/or

cognitive functions arise in the brain. This situation is

highly illustrative of the inherent shortcomings of present

symbolic cognitive models and will be confronted below

with our own approach. It is interesting to note here at once

that while Jilk et al. (2008) still hope to map the theories

either mathematically or in simulated form, they readily

add (p. 211) that ‘‘the incommensurable categories at the

various levels of description will remain necessary to

explain the full range of phenomena’’.

Somehow at the other end of the wide spectrum of

possible integrations, the work of Eliasmith (2013) sys-

tematically relates to the semantic content i.e., the infor-

mation that is contained in groups of spiking neurons.

Formally, a set of mathematical methods called NEF (for

Neural Engineering Framework) was designed to allow for

building spiking neural networks that approximate any

nonlinear dynamical system (Eliasmith et al. 2012). The

central idea behind the NEF is that a group of spiking

neurons can represent a vector space over time and that

connections between groups of neurons can compute

functions on those vectors. Semantic pointers that some-

how correspond to an associative memory do realize a

mapping between concept vectors and various known

tasks. But as the authors acknowledge themselves, they do

not provide a mechanism for how brains learn to represent

internal and external states. It is thus unclear how this

approach can end up representing cognitive functions. On

the positive side however, by providing a normalized

interface between this formalism and underlying simulated

physiological processes, they have been able to implement

the principles of the NEF on both the Neurogrid chip

(Choudhary et al. 2012) and the SpiNNaker system (Furber

et al. 2014).

From single neurons to neural assemblies

Since the pioneering work of Hodgkin and Huxley (1952),

the usual approach for simulating neural dynamics starts

with current flows represented by differential equations.

Various proposals have been made to close the gap

between the level of individual neurons and higher levels

supporting behavior. A possible solution is to consider

group of neurons, or neural assemblies. Following a tra-

dition going back to D. Hebb (1949) and further illustrated

by numerous authors (see e.g., Palm 1982; Edelman 1987;

Bienenstock 1994; Knoblauch and Palm 2002; Izhikevich

2006), neural (or Hebbian cell) assemblies can be described

informally as groups of strongly interconnected neurons

that support specific functions (for a review, see Huyck and

Passmore 2013; Pulvermüller et al. 2014). This approach

has already led to the design of artifacts relating behaviors

and brain processes by mapping neural assemblies onto the

topology of brain regions (Seth et al. 2004; Knoblauch

et al. 2005). Their existence is generally viewed as

resulting from Hebbian learning (Gerstner and Kistler

2002). In their simplest form represented by auto-associa-

tive networks, this can lead for example to the creation of

local memories (Palm 1980; Knoblauch et al. 2010). In

latest models, so-called operational cell assemblies allow

for the representation of syntactic patterns which are

implemented in terms of hetero-associative transition

graphs in attractor networks which cause a directed flow of

activity through the neural state space (Wennekers and

Palm 2009). These assemblies are grounded in, and thus

dependent on specific artificial neural network models

defining a particular neural state space. This could become

critical when confronted with new experimental results

(Branco et al. 2010) that have provided a demonstration of

the power of dendrites for solving computational problems

in the brain. More precisely, it has been found that single

346 Cogn Neurodyn (2017) 11:327–353

123

dendrites of cortical pyramidal neurons exhibit sensitivity

to the sequence of synaptic activation, and thus can encode

the temporal sequence of synaptic input. Furthermore,

simulation results (Legenstein ad Maass 2011) have con-

firmed that the branch strength could store a reference to an

input pattern, and that a subsequent pattern presentation

will elicit reliable spiking of the neuron, resulting in the

entire dendritic tree behaving like a network by itself

(Costa and Sjöström 2011).

As an alternative, it is proposed here to model neural

assemblies in a simulation framework driven by a virtual

machine acting as an interface between neural dynamics

and symbolic information defining behaviors. As a conse-

quence, there will be no reference to any specific neural

network model. Whereas in some simulations threads are

equated with individual neurons, in others they do repre-

sent multiple interconnected neurons whose coordinated

activity achieves an aggregated result. Threads thus con-

stitute a general and versatile tool for simulating various

levels of structures and/or processes e.g., Hebbian cell

assemblies.

Proposal characteristics

A common way of characterizing cognitive models is given

by the two competing paradigms of artificial cognitive

architectures (Brooks 1991) i.e., the traditional ‘‘sense-

think-act’’ cycle of cognitivist systems, on one side, and the

simplified ‘‘sense-act’’ cycle of embodied and/or emergent

cognition, on the other. Clearly, as explicit in ‘‘Top down

construction of a virtual machine’’ section, our proposed

model falls into the second category, but it does so by

resorting to a kind of symbolic computational framework

generally associated with the first approach. This can be

related to the hypothesis originally proposed by Newell and

Simon (1976) according to which human intelligence can

be approximated by a physical symbol system (PSS).

According to this hypothesis (see also Nilsson 2007), ‘‘A

physical symbol system is a machine that produces through

time an evolving collection of symbol structures. (..) An

expression designates an object if, given the expression, the

system can either affect the object itself or behave in ways

dependent on the object’’. Concretely, this means that

symbols have to be linked to real objects in two ways i.e.,

through sensors (the objects providing input to the system)

and through effectors (the system acting in return on the

objects). Our proposal somehow achieves this. More pre-

cisely, it is the concatenation of the pathways leading to the

firing of a given thread that allow for the symbols to be

connected to the objects. What distinguishes it however

from previous implementations (e.g., Newell et al. 1989) is

its use of a virtual machine, which constitutes an interface

between the physiological and the psychological levels that

are associated with both sensing and acting.

Coming back to the analysis of Poggio (2012) alluded to

in our Introduction, it is interesting to further confront his

views with the models presented in ‘‘Examples of mesos-

cale circuits’’ section. For instance, he asks ‘‘did intelli-

gence, as the ability to learn, evolve from associative,

Pavlov-like reflexes and memories, with the addition of

(neurally simple) primitive operations such as composition

of different memories?’’ A detailed look at our models

readily reveals that their mesoscale circuits do actually

operate just along the lines imagined by this author, with

iterated applications of an associative long term memory

(ltm) based on long term storage and retrieval (lts/

ltr), as introduced in ‘‘Associative long term memory

(ltm) based on long term storage and retrieval (lts/ltr)’’

section, playing a key role. This whole approach relies on

the direct mapping of perceived invariant structures. This

mechanism reflects in particular the prime importance of

vision as a means of first carving the brain to reflect the

reality of the world, and then act on it in return (Barret

2008).

Potential benefits

Generative models bridging the gap between the physio-

logical and cognitive levels could at the end lead to the

discovery of the learning processes involved in the devel-

opment of cognition. As illustrated in our development of

models of animal awareness, our formalism offers a prin-

cipled guidance towards this goal. More precisely, this is

achieved through a two steps process consisting in

• first inducing plausible mesoscale circuits that represent

the application of rules such as matching/oddity to

sample, win/stay loose/shift, recall/sort, corresponding

to the solution of elementary cognitive tasks such as of

association, cross-modal integration, etc.

• embedding then these circuits in order to solve higher

level tasks such meta-cognition.

Cogn Neurodyn (2017) 11:327–353 347

123

The successful application of this methodology could

lead to a reconsideration of the whole concept of a ‘‘neural

code’’ allowing for relating perception and behavior. Such

a neural code may well reside in the spatial arrangement of

mesoscale circuit patterns (i.e., a kind of population or

sparse coding, as opposed to the more traditional rate or

temporal coding associated with spike trains). One might

then even consider that there is actually no code at all (in

the sense of a specific arrangement always associating the

same response to a given stimulus), and that ‘‘the code is

the overall structure itself’’. More precisely, perception

might be related to behaviors through the paths found by

evolution via iterated hebbian learning.

Another potential benefit of this formalism resides in the

insight it offers in support of the recent suggestion that ‘‘the

operations of the brain are massively asynchronous with

respect to each other’’. (Zeki 2015). More precisely, as

introduced in ‘‘Top down construction of a virtual

machine’’ section and formalized in ‘‘Computational

architecture formal specifications’’ section, the basic idea

here is that there is no central clock in the brain that syn-

chronizes parallel processing systems (i.e., they do have

their own local clock), with the activity in each of these

systems being reset independently, thus ‘‘making of the

brain a massively asynchronous organ’’.

These assumptions bear strong analogies with the

SpiNNaker project (Furber et al. 2014), whose massively

parallel computer architecture is inspired by the connec-

tivity of the brain. Indeed, similarly to the tree structure of

threads that can be interpreted sequentially and determin-

istically, the SpiNNaker system can impose deterministic

operations in order to match a conventional sequential

model under certain condition. More specifically, whereas

threads maintain parallel asynchronous communications

whose incoming signals are processed individually, the

SpiNNaker architecture allows for the transmission of a

large number of small data packets obeying a communi-

cation protocol according to which

• neurons communicate through action potentials, or

‘‘spikes’’ i.e., asynchronous impulses whose height and

width are largely invariant; consequently, information

is conveyed only in the identity of the neuron that

spiked and the time at which it spiked

• the information flow in a network can be represented as

a time series of neural identifiers; this allows for the

encoding of neural activity through the so-called

address event representation (AER) information proto-

col (Boahen 2000).

As a result of these common assumptions, virtual

machines interpreting threads could function as an inter-

face allowing for spatio-temporal sequences of spiking

neurons to be related to behaviors. In other words, this

means that this new simulation tool could be used to

simulate both the interface between cell assemblies and the

neural level, on one hand, and that between cell assemblies

and cognition, on the other.

Open perspectives

Although our simulation framework must be clearly dis-

tinguished from a real brain, it readily offers a macroscopic

picture of how brain processes may lead to cognition.

Among the many theories we could confront this frame-

work with, we shall concentrate on Edelman’s theory of

neural Darwinism (Edelman 1987). The main concept

underlying its developments is the so-called group selec-

tion of population. A first selection process occurring epi-

genetically during prenatal development leads to a primary

repertoire representing the diversity of anatomical con-

nectivity. A subsequent selective process coupled with the

subject’s activity results in a second repertoire based on

modifications in the strength of synaptic connections

reflecting their correlation with signals arising from

behavior. Finally, reentrant processes ‘‘based on the exis-

tence of reciprocally neural maps’’ help to ‘‘maintain spa-

tiotemporal continuity in response to real-world

interactions’’. Although statistical aspects associated with

the idea of reentrant processes have led to the development

of various artifacts or robots, this highly abstract concept

has proved to be difficult to map into more traditional ideas

and experimental results. The neurobiological phenomena

accounting for them have thus never been observed. It is

interesting to note that, in the mind of the author, their

existence ‘‘obviates the need for explicit exchange of time

and place markers of the kind required in parallel com-

puting systems’’. In other words, they appear to be a sub-

stitution for, or play the role of, the explicit concurrent

communicative processes we did strive for in the present

article. While the modification of synaptic efficiency

associated with the creation of secondary repertoires pre-

sumably relies on ltp/ltd processes, we put forward the

hypothesis that our proposed complementary lts/ltr

348 Cogn Neurodyn (2017) 11:327–353

123

processes play a similar role for reentry. In support of this

thesis, let us simply confront Edelman (1987) own words:

‘‘One of the fundamental tasks of the nervous system is to

carry on adaptive perceptual categorization (..). A neces-

sary condition for such perceptual categorization is

assumed to be reentry’’ with the very fact that lts/ltr

associative processes were introduced in ‘‘Results’’ in order

to implement the concept of a category.

To touch on another, more focused domain of research

i.e., that of the origin and nature of consciousness, let us

quote Dehaene and Naccache (2001) assessment of the

fundamental issues at stake there: ‘‘A complete theory of

consciousness should explain (..) what is the range of

possible conscious contents, how they map into specific

neural circuits, and whether a generic neural mechanism

underlies all of them.’’ Although our work does not

specifically address these questions, our implementation of

the third level of animal awareness could still provide some

hints about the corresponding sequence of operations:

• potential conscious contents P might have first to be

memorized (or directly produced) in {P} via an lts or

some other equivalent process.

• a triggering event Q might then be required in order to

elicit the retrieval of {P}.

• the association of {P} and Q could finally be made

‘‘conscious’’ in R via an ltr or another equivalent,

possibly amplifying process.

The origin of consciousness could thus be found at the

level of processing that is shared with ‘‘representations of the

immediate external environment’’ (Morsella et al. 2015).

Furthermore, in accordance with empirical evidences

describing conscious information as being available in a

‘‘global workspace’’ (Baars 2005; Dehaene and Naccache

2001), our protocols associated with higher levels of animal

awareness require the broadcast of paths. This could lead to a

modeling of this global workspace through a serial stream of

consciousness (James 1890), whose synchronization with the

parallel streams relating perception and behaviors could fol-

low from the introduction of a global clock.

Conclusion

In summary, as suggested in the introduction, the analytical

methods that are used today in computational neuroscience

could be complemented with discrete processes aggregating

lower level continuous processes in order to relate perception

and behavior. Whereas it seems reasonable to consider that at

the lower levels there may be valid physical theories, the

interaction between higher levels could be described using

computer science and/or information systems methods and

thus benefit from the results obtained in these domains.

With regard now to a possible ‘‘what next?’’ question, it

would be interesting to find out which new constructs, if any,

should be added to the present formalism in order to go

beyond perceptual categorization e.g., to implement the fourth

and fifth levels of animal awareness depicted in (Pepperberg

and Lynn 2000). If indeed, as speculated in (Carew 2002;

Poggio 2012) and supported by the models presented above,

‘‘classical and operand conditioning have in common, an

exciting principle might emerge: evolution may have come

up with a neural ‘associative cassette’ that can be used in

either type of conditioning, depending of the neural circuit in

which it is embedded’’. In other terms, the lts/ltr pair

might be a candidate for the role of the canonical microcircuit

looked for in (Modha et al. 2011). Finally yet, if ltp/ltd

threads have been explained at the light of the so-called spike-

time dependent plasticity, or STDP (Markram et al. 1997;

Brette et al. 2007), their extension into hypothetical lts/

ltr threads raises the issue of their possible grounding into

actual biological processes.

Acknowledgements The author wishes to express his gratitude to Dr.

A. Savioz for his help in the decryption of neuroscience, and to

acknowledge the very helpful comments provided by the two

anonymous reviewers.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

Cogn Neurodyn (2017) 11:327–353 349

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Appendix: Virtual machine instructions

Model(Stream)(P(|X)).(T:fire(Q(|Y))):- thread P(|X) fires thread Q(|Y)
 T1 is T+1,
 set(Model(Stream)(Q(|Y)),clock(1)), set Q(|Y) clock
 set(Model(Stream)(P(|X)),clock(T1)). set P(|X) clock

Model(Stream)(P(|X)).(T:end):- thread P(|X) ends
 remove(Model(Stream)(P(|X)),clock(T)). remove clock

Model(Stream)(P(|X)).(T:send(Q(|Y))):- thread P(|X) sends signal to thread Q(|Y)
 T1 is T+1,
 if_not(ist(Model(Stream)(Q(|Y)),clock(_)), receiver not active
 then((set(Model(Stream)(Q(|Y)),clock(1))))), set receiver clock
 if_not(ist(Model(Stream),weight(P(|X),Q(|Y))(W)), no attached weight
 then(if(ist(Model(Stream),initial(P(|X),Q(|Y))(W)), declared weight
 then(set(Model(Stream),weight(P(|X),Q(|Y))(W))), set declared weight
 else(set(Model(Stream),weight(P(|X),Q(|Y))(0)))))), set inhibit weight
 if_not(ist(Model(Stream)(P(|X)),signal(send(Q(|Y)))), no send signal
 then(insert(Model(Stream)(P(|X)),signal(send(Q(|Y)))))), queue send signal
 set(Model(Stream)(P(|X)),clock(T1)). set sender clock

Model(Stream)(Q(|Y)).(T:receive(P(|X))):- thread Q(|Y) receives signal from thread P(|X)
 T1 is T+1,
 if(ist(Model(Stream)(P(|X)),signal(send(Q(|Y)))), sender signal
 then(if((ist(Model(Stream),weight(P(|X),Q(|Y))(K)),K>0), excite level
 then(set(Model(Stream)(Q(|Y)),clock(T1)))))). set receiver clock

Model(Stream)(P(|X)).(T:merge(Q(|Y))):- thread P(|X) merges with thread Q(|Y)
 T1 is T+1,
 if_not(ist(Model(Stream)(P(|X)),signal(merge(Q(|Y)))) no merge signal
 then(insert(Model(Stream)(P(|X)),signal(merge(Q(|Y)))))), queue merge signal
 set(Model(Stream)(P(|X)),clock(T1)). set clock

Model(Stream)(Q(|Y)).(T:join(P(|X))):- thread Q(|Y) joins thread P(|X)
 T1 is T+1,
 if(ist(Model(Stream)(P(|X)),signal(merge(Q(|Y)))), merge signal
 then(set(Model(Stream)(Q(|Y)),clock(T1)))). set clock

Model(Stream)(P(|X)).(T:push(Q)):- push stm record Q
 T1 is T+1,
 remove(Model(Stream)(stm(_)),path), remove path to stm
 remove(Model(Stream)(stm(_)),clock(_)), remove stm clock
 set(Model(Stream)(stm(Q)),clock(1)), set stm clock
 set(Model(Stream),weight(Q,stm(Q))(1)), set excite weight
 set(Model(Stream)(P(|X)),clock(T1)) . set clock

Model(Stream)(P(|X)).(T:pull(Q)) :- pull stm record Q
 T1 is T+1,
 if(ist(Model(_)(stm(Q)),path), global path to stm
 then(set(Model(Stream)(P(|X)),clock(T1)))). set clock

Model(Stream)(lts(P(|X))).(T:store(P(|X))) :- store ltm record P(|X)
 T1 is T+1,
 if_not(ist(Model(Stream)(ltm(P(|X))),clock(_)), ltm(P|X) not active
 then((set(Model(Stream)(ltm(P(|X))),clock(1)), set ltm clock
 if_not(ist(Model(Stream),weight(P(|X),ltm(P(|X)))(W)), set inhibit weight
 then(set(Model(Stream),weight(P(|X),ltm(P(|X)))(0))))))),
 set(Model(Stream)(lts(P(|X))),clock(T1)). set lts clock
Model(Stream)(ltr(P(|X),Q(|Y),R(|Z))).(T:retrieve(P(|X))) :- retrieve from ltm
 T1 is T+1,
 if(ist(Model(_)(ltm(P(|X))),path), global path to ltm
 then(set(Model(Stream)(ltr(P(|X),Q(|Y),R(|Z))),clock(T1)))). set ltr clock

350 Cogn Neurodyn (2017) 11:327–353

123

Model(Stream)(P(Q)).(T:feed(_)) :- feed path to P(Q)
 T1 is T+1,
 if((ist(Model(Stream),weight(Q,P(Q))(K)),K>0), excite weight
 then((if_not(ist(Model(Stream)(P(Q)),path), no path
 then(insert(Model(Stream)(P(Q)),path))), queue path
 set(Model(Stream)(P(Q)),clock(T1))))). set clock

Model(Stream)(Thread).(T:increment(weight(P(|X),Q(|Y)))) :- increment weight
 T1 is T+1,
 if((ist(Model(Stream),weight(P(|X),Q(|Y))(W)),W<1), weight below threshold
 then((W1 is W+1, increment weight
 set(Model(Stream),weight(P(|X),Q(|Y))(W1))))), set weight
 set(Model(Stream)(Thread),clock(T1)). set clock

Model(Stream)(Thread).(T:decrement(weight(P(|X),Q(|Y)))) :- decrement weight
 T1 is T+1,
 if((ist(Model(Stream),weight(P(|X),Q(|Y))(W)),W>0), weight above threshold
 then((W1 is W-1, decrement weight
 set(Model(Stream),weight(P(|X),Q(|Y))(W1))))), set weight
 set(Model(Stream)(Thread),clock(T1)). set clock

Model(Stream)(Thread).(T:choice(X)):- random selection in list X
 T1 is T+1,
 random(R,X), random choice R
 set(Model(Stream)(Thread),fetch(R)), set fetch stimulus
 set(Model(Stream)(Thread),clock(T1)). set clock

Model(Stream)(Thread).(T:test(Accept(|X))):- test accept element
 T1 is T+1,
 if(setof(Y,ist(Model(Stream),Accept(|Y)),List), list of accepted elements
 then(if(member(X,List), element X in list
 then(set(Model(Stream)(Thread),excite(Accept(|X)))), set excite stimulus
 else(set(Model(Stream)(Thread),inhibit(Accept(|X)))))) set inhibit stimulus
 set(Model(Stream)(Thread),clock(T1)). set clock

Model(Stream)(Thread).(T:transmit(X|Y)):- noisy transmission of X conditional to Y
 T1 is T+1,
 random(R,[X,Y]), weighted random choice
 set(Model(Stream)(Thread),catch(R)), set catch stimulus
 set(Model(Stream)(Thread),clock(T1)). set clock

Model(Stream)(Thread).(T:effector(P)):- virtual effector
 T1 is T+1,
 nl,write('>>'),write(effector(P)),nl,
 set(Model(Stream)(Thread),clock(T1)). set clock

Basic threads implementing synaptic plasticity and memory
threads(Model):

[thread(ltp(Q,R), long term potentiation
 [join(Q),
 increment(weight(Q,R))]),

 thread(ltd(Q,R), long term depression
 [join(Q),
 decrement(weight(Q,R))]),

 thread(lts(P), long term storage
 [store(P),
 increment(weight(P,ltm(P)))]),

 thread(ltr(P,Q,R),), long term retrieval
 [retrieve(P),
 increment(weight(Q,R))]),

 thread(ltm(P),), long term memory
 [feed(_)]),

 thread(stm(P),), short term memory
 [feed(_)])].

Cogn Neurodyn (2017) 11:327–353 351

123

References

Anderson JA (1995) An introduction to neural networks. MIT Press,

Cambridge

Anderson JR et al (2004) An integrated theory of the mind. Psychol

Rev 111(4):1036–1060

Antonov I, Antonova I, Kandel ER, Hawkins RD (2003) Activity-

dependent presynaptic facilitation and hebbian LTP are both

required and interact during classical conditioning in Aplysia.

Neuron 37(1):135–147

Ashby FG, Helie S (2011) A tutorial on computational cognitive

neuroscience, modeling the neurodynamics of cognition. J Math

Psychol 55:273–289

Baars B (2005) Global workspace theory of consciousness: toward a

cognitive neuroscience of human experience. Prog Brain Res

150:45–53

Badre D, Frank MJ, Moore C (2015) Interactionist neuroscience.

Neuron 88(5):855–860

Barret L (2008) Out of their heads: turning relational reinterpretation

inside out. Commentary to Penn et al.: Darwin’s mistake:

explaining the discontinuity between human and nonhuman

minds. Behav Brain Sci 31:130–131

Bienenstock E (1994) A model of neocortex. Netw Comput Neural

Syst 6:179–224

Boahen K (2000) Point-to-point connectivity between neuromorphic

chips using address events. IEEE Trans Circ Syst 47:5

Bonzon P, Cavalcanti M, Nossum R (eds) (2000) Formal aspects of

context. Applied logic series 20. Kluwer, Amsterdam

Branco T, Clark B, Häusser M (2010) Dendritic discrimination of

temporal input sequences in cortical neuron. Science

329:1671–1675

Brette R et al (2007) Simulation of networks of spiking neurons: a

review of tools and strategies. J Comput Neurosci 23:349–398

Brooks R (1991) Intelligence without representation. Artif Intell

47:139–159

Carew TJ (2002) Neurology, understanding the consequences. Nat

New Views 407:803–806

Carew TJ, Walters ET, Kandel ER (1981) Classical conditioning in a

simple withdrawal reflex in Aplysia californica. The Journal of

neuroscience 1(12):1426–1437

Choudhary S et al (2012) Silicon neurons that compute. International

conference on artificial neural networks and machine learning

Cole S et al (1982) Spatial learning as an adaptation in hummingbirds.

Science 217:655–657

Costa R, Sjöström P (2011) One cell to rule them all, and in the

dendrites bind them. Front Synaptic Neurosci 3:5. doi:10.3389/

fnsyn.2011.00005

de Garis H, Shuo C, Goertzel B, Ruiting L (2010) A world survey of

artificial brain projects. Part I: large-scale brain simulations.

Neurocomputing 74:3–29

Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of

consciousness: basic evidence and a workspace framework.

Cognition 79:1–37

Doumas L, Hummel J, Sandhofer C (2008) A theory of the discovery

and predication of relational concepts. Psychol Rev 115:1–43

Edelman G (1987) Neural darwinism. Basic Book, New York

Eliasmith C (2013) How to build a brain: a neurological architecture

for biological cognition. Oxford University Press, Oxford

Eliasmith C et al (2012) A large-scale model of the functioning brain.

Science 338(6111):1202–1205

Feldman J (2013) The neural binding problem(s). Cogn Neurodyn

7(1):11

Fleming S, Dolan R, Frith C (2012) Metacognition: computation,

biology and function. PhilosTrans R Soc B Biol Sci

367:1280–1286

Forstmann B, Wagenmakers E (2015) Model-based cognitive neuro-

science, a conceptual introduction. In: Forstmann B, Wagen-

makers E-J (eds) An introduction to model-based cognitive

neuroscience. Springer, Berlin

Frank MJ (2015) Linking across levels of computation in model-

based cognitive neuroscience. In: Forstmann B, Wagenmakers

E-J (eds) An introduction to model-based cognitive neuro-

science. Springer, Berlin

Frank MJ, Badre D (2015) How cognitive theory guides neuroscience.

Cognition 135:14–20

Frégnac Y, Bathellier B (2015) Cortical correlates of low-level

perception: from neural circuits to percepts. Neuron 88:110–126

Furber S, Galluppi F, Temple S, Plana L (2014) The SpiNNaker

project. Proc IEEE 102:5

Gentner D, Forbus K (2011) Computational models of analogy. Cogn

Sci 2(3):266–276

Gerstner W, Kistler W (2002) Mathematical formulations of Hebbian

learning. Biol Cybern 87:404–415

Glanzman DL (1995) The cellular basis of classical conditioning in

Aplysia californica—it’s less simple than you think. Trends

Neurosci 18:30–36

He K et al (2015) Distinct eligibility traces for LTP and LTD in

cortical synapses. Neuron 88(3):528–538

Hebb DO (1949) The organization of behavior. A neuropsychological

theory. Wiley, London

Herd S, Krueger K, Kriete T, Huang TR, Hazy T, O’Reilly RC (2013)

Strategic cognitive sequencing: a computational cognitive neu-

roscience approach. Comput Intell Neurosci. doi:10.1155/2013/

149329

Hodgkin AL, Huxley AF (1952) A quantitative description of

membrane current and its application to conduction and exci-

tation in nerve. J Physiol 17(4):500–544

Hopfield JJ (1982) Neural networks and physical systems with

emergent collective computational abilities’’. Proceedings of the

National Academy of Sciences of the USA 79(8):2554–2558

Huertas M, Schwettmann S, Kirkwood A, Shouval H (2014)

Stable reinforcement learning via temporal competition between

LTP and LTD traces. BMC Neurosci 15(Suppl 1):O12

Hummel JE, Holyoak KJ (2005) Relational reasoning in a neurally

plausible cognitive architecture. Curr Dir Psychol Sci

14:153–157

Huyck C, Passmore P (2013) A review of cell assemblies. Biol

Cybern 107(3):263–288

Izhikevich E (2006) Polychronization: computation with Spikes.

Neural Comput 18:245–282

James W (1890) The principles of psychology. MacMillan, London

Jilk D, Lebiere C, O’Reilly R, Anderson JR (2008) SAL: an explicitly

pluralistic cognitive architecture. J Exp Theor Artif Intell

20(3):197–218

Kandel ER, Tauc L (1965) Heterosynaptic facilitation in neurones of

the abdominal ganglion of Aplysia depilans. J Physiol (Lond)

181:1–27

Knoblauch A, Palm G (2002) Scene segmentation by spike synchro-

nization in reciprocally connected visual areas. II. Global

assemblies and synchronization on larger space and time scales.

Biol Cybern 87(3):168–184

Knoblauch A, Markert H, Palm G (2005) An associative cortical

model of language understanding and action planning. In: Mira

J, Alvarez JR (eds) Artificial intelligence and knowledge

engineering applications: a bioinspired approach, LNCS, 3562.

Springer, Berlin

Knoblauch A, Palm G, Sommer F (2010) Memory capacities for

synaptic and structural plasticity. Neural Comput 22(2):289–341

Kohonen T (1982) Self-organized formation of topologically correct

feature maps. Biol Cybern 43:59–69

352 Cogn Neurodyn (2017) 11:327–353

123

http://dx.doi.org/10.3389/fnsyn.2011.00005
http://dx.doi.org/10.3389/fnsyn.2011.00005
http://dx.doi.org/10.1155/2013/149329
http://dx.doi.org/10.1155/2013/149329

Langston R et al (2010) Space and direction are already represented in

specific neurons when rat pups navigate a location for the first

time. Science 328:1437–1598

Legenstein R, Maass W (2011) Branch-specific plasticity enables

self-organization of nonlinear computation in single neurons.

J Neurosci 31(30):10787–10802

Letzkus J, Wolff S, Lüthi A (2015) Disinhibition, a circuit mechanism

for associative learning and memory. Neuron 88(3):264–276

Ma W, Pouget A (2008) Linking neurons to behavior in multisensory

perception: a computational review. Brain Res 1242:4–12

Markram H (2006) The blue brain project. Nat Rev Neurosci

7:153–160

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

Science 275:213–215

Markram H et al (2015) Reconstruction and simulation of neocortical

microcircuitry. Cell 163:456–492

Marr D (1982) Vision: a computational investigation into the human

representation and processing of visual information. Freeman,

Dallas

McCulloch W, Pitts W (1943) A logical calculus of the ideas

immanent in nervous activity. Bull Math Biophys 7:115–133

Modha DS et al (2011) Cognitive computing. Commun ACM

54(8):62–71

Morsella E, Godwin C, Jantz T, Krieger S, Gazzaley A (2015).

Homing in on consciousness in the nervous system: an action-

based synthesis. Behav Brain Sci 39:1–17

Moser EI, Kropff E, Moser M-B (2008) Place cells, grid cells, and the

brain’s spatial representation system. Annual. Review Neuro-

science. 31:69–89

Mulder MJ, van Maanen L, Forstmann BJ (2014) Perceptual decision

neurosciences—amodel-based review. Neuroscience 277:872–884

Newell A, Simon H (1976) Computer science as empirical inquiry:

symbols and search. Commun ACM 19:3

Newell A, Rosenbloom P, Laird J (1989) Symbolic architectures for

cognition. In: Posner M (ed) Foundations of cognitive sciences.

MIT Press, Cambridge

Nilsson N (2007) The physical symbol system hypothesis: status and

perspective. In: Lungarella M et al (eds) Lectures notes in

artificial intelligence, vol 4850. Springer, Berlin

O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map.

Clarendon, Oxford

O’Reilly R, Munakata Y (2000) Computational explorations in

cognitive neuroscience. MIT Press, Cambridge

Palm G (1980) On associative memories. Biol Cybern 36:19–31

Palm G (1982) Neural assemblies. An alternative approach to

artificial intelligence. Springer, Berlin

Pepperberg I, Lynn S (2000) Possible levels of animal consciousness

with reference to grey parrots (Psittaccus erithacus). Am Zool

40:893–901

Perin R, Berger T, Markram H (2011) A synaptic organizing principle

for cortical neuronal groups. Proc Natl Acad Sci USA

108(12):5419–5424

Poggio T (2012) The level of understandings framework. Perception

41:1007–1023

Powers D (2015) A critical time in computational cognitive science.

Comput Cogn Sci 1:1–5

Pulvermüller F, Garagnani M, Wennekers T (2014) Thinking in

circuits: toward neurobiological explanation in cognitive neuro-

science. Biol Cybern 108(5):573–593

Rall W (1964) Theoretical significance of dendritic trees for neuronal

input-output relations. In: Reiss R (ed) Neural theory and

modeling. Stanford University Press, Palo Alto

Rubin D, Fusi S (2007) Long memory lifetimes require complex

synapses and limited sparseness. Front Comput Neurosci 1:7

Rumelhart DE, McClelland JL (1986) Parallel distributed processing:

explorations in the microstructure of cognition. Volume 1:

foundations. MIT Press, Cambridge

Savage-Rumbaugh ES, Rumbaugh DM, Smith S, Lawson J (1980)

Reference, the linguistic essential. Nature 210:922–925

Seth A, McKinstry J, Edelman G, Krichmar J (2004) Visual binding

through reentrant connectivity and dynamic synchronization in a

brain-based device. Cereb Cortex 14:1185–1199

Singer W (1993) Synchronization of cortical activity and its putative

role in information processing and learning. Annu Rev Physiol

55:349–374

Skinner BF (1950) Are theories of learning necessary? Psychol Rev

57:193–207

Templer V, Hampton R (2012) Rhesus monkeys (Macaca mulatta)

show robust evidence for memory awareness across multiple

generalization tests. Anim Cogn 15(3):409–419

Treisman A (1996) The binding problem. Curr Opin Neurobiol

1996(6):171–178

van der Velde F, de Kamps M (2015) The necessity of connection

structures in neural models of variable binding. Cogn Neurodyn

9:359–370

Vernon D (2014) Artificial cognitive systems: a primer. The MIT

Press, Cambridge

Wennekers T, Palm G (2009) Syntactic sequencing in Hebbian cell

assemblies. Cogn Neurodyn 3(4):429–441

Wills T et al (2010) Development of the hippocampal cognitive map

in preweanling rats. Science 328:1573–1576

Wright, AA (2001). Learning strategies in matching to sample. In:

Cook RG (ed) Avian visual display. Tufts University. http://

www.pigeon.psy.tufts.edu/avc

Wright JJ, Bourke PD (2013) On the dynamics of cortical develop-

ment: synchrony and synaptic self-organization. Front Comput

Neurosci 7:4. doi:10.3389/fncom.2013.00004

Zagha E, Ge X, McCormick G (2015) Competing neural ensembles in

motor cortex gate goal-directed motor output. Neuron

88(3):565–577

Zeki S (2015) A massively asynchronous, parallel brain. Phil Trans R

Soc B 370:20140174

Zentall T, Edwards C, Moore B, Hogan D (1981) Identity: the basis

for both matching and oddity learning in pigeons. J Exp Psychol

Animal Behav Process 7:70–86

Cogn Neurodyn (2017) 11:327–353 353

123

http://www.pigeon.psy.tufts.edu/avc
http://www.pigeon.psy.tufts.edu/avc
http://dx.doi.org/10.3389/fncom.2013.00004

	Towards neuro-inspired symbolic models of cognition: linking neural dynamics to behaviors through asynchronous communications
	Abstract
	Introduction
	Necessity of a multilevel approach to cognition
	Roadmap towards a ‘‘middle-out’’ approach
	Potential benefits

	Materials and methods
	Bottom up design of virtual circuits
	A case of classical conditioning
	A simple case of operant conditioning
	Representing circuits by symbolic expressions
	Compiling instruction trees into virtual code implications

	Top down construction of a virtual machine

	Results
	Microcircuits implementing synaptic plasticity
	Synaptic transmission
	Long term potentiation/depression (ltp/ltd)
	Short term cache memory (stm)
	Associative long term memory (ltm) based on long term storage and retrieval (lts/ltr)

	Computational architecture formal specifications
	Functional signatures
	Formal specifications
	Implementing a context as a dynamic set of elements
	Setting the value of a register in context
	Contextual deduction
	Compiling virtual code implications
	Loading a model
	Running a model

	Examples of mesoscale circuits
	A model of the first level of animal awareness
	A model of the second level of animal awareness
	A model of the third level of animal awareness
	Running a simulation

	Discussion
	Comparative approach
	From single neurons to neural assemblies
	Proposal characteristics
	Potential benefits
	Open perspectives

	Conclusion
	Acknowledgements
	Appendix: Virtual machine instructions
	References

