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Abstract

Background: Obesity is heritable. It predisposes to many diseases. The objectives of this study were to create a
compendium of genes relevant to feeding behavior (FB) and/or body weight (BW) regulation; to construct and
to analyze networks formed by associations between genes/proteins; and to identify the most significant genes,
biological processes/pathways, and tissues/organs involved in BW regulation.

Results: The compendium of genes controlling FB or BW includes 578 human genes. Candidate genes were identified
from various sources, including previously published original research and review articles, GWAS meta-analyses, and
OMIM (Online Mendelian Inheritance in Man). All genes were ranked according to knowledge about their biological
role in body weight regulation and classified according to expression patterns or functional characteristics. Substantial
and overrepresented numbers of genes from the compendium encoded cell surface receptors, signaling molecules
(hormones, neuropeptides, cytokines), transcription factors, signal transduction proteins, cilium and BBSome components,
and lipid binding proteins or were present in the brain-specific list of tissue-enriched genes identified with TSEA tool. We
identified 27 pathways from KEGG, REACTOME and BIOCARTA whose genes were overrepresented in the compendium.
Networks formed by physical interactions or homological relationships between proteins or interactions between proteins
involved in biochemical/signaling pathways were reconstructed and analyzed. Subnetworks and clusters identified by
the MCODE tool included genes/proteins associated with cilium morphogenesis, signal transduction proteins (particularly,
G protein–coupled receptors, kinases or proteins involved in response to insulin stimulus) and transcription regulation
(particularly nuclear receptors). We ranked GWAS genes according to the number of neighbors in three networks and
revealed 22 GWAS genes involved in the brain-specific PPI network. On the base of the most reliable PPIs functioning in
the brain tissue, new regulatory schemes interpreting relevance to BW regulation are proposed for three GWAS genes
(ETV5, LRP1B, and NDUFS3).
(Continued on next page)
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Conclusions: A compendium comprising 578 human genes controlling FB or BW was designed, and the
most significant functional groups of genes, biological processes/pathways, and tissues/organs involved in
BW regulation were revealed. We ranked genes from the GWAS meta-analysis set according to the number
and quality of associations in the networks and then according to their involvement in the brain-specific PPI
network and proposed new regulatory schemes involving three GWAS genes (ETV5, LRP1B, and NDUFS3) in
BW regulation. The compendium is expected to be useful for pathology risk estimation and for design of
new pharmacological approaches in the treatment of human obesity.
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Background
The pathogenesis of obesity is apparently complex. It in-
volves multiple interactions among behavioral, environ-
mental, and genetic factors. According to twin studies,
40–70% of inter-individual variability in body mass index
(BMI), commonly used to assess obesity, is attributed to
genetic factors [1–3].
Monogenic forms of obesity account for approximately

5% of severe obesity cases [4]. For most of the mono-
genic forms of obesity in murine models, human coun-
terparts have been found. Eleven monogenic obesity
genes have been identified to date [5]. Monogenic obes-
ity results from mutations in genes involved in the hypo-
thalamic appetite regulation system. Loss-of-function
mutations causing deficiencies of appetite-regulating
hormones or their receptors, such as leptin [6], leptin
receptor [7], pro-opiomelanocortin (POMC) [8], and
melanocortin 4 receptor (MC4R) [9], are examples of
such monogenic syndromes. Furthermore, mutations in
the proprotein convertase subtilisin/kexin type 1
(PCSK1) gene, a key component in the proteolytic pro-
cessing of POMC, cause extreme childhood obesity and
abnormal glucose homeostasis [10]. In addition, patients
with chromosomal aberrations resulting in disruption or
deletion of the single-minded homologue 1 gene (SIM1),
which is essential for proper development of the para-
ventricular nucleus of hypothalamus, have early-onset
obesity [11, 12]. Monogenic obesity also results from
mutations in some other genes involved in eating behav-
ior and energy balance regulation: (1) brain-derived
neurotrophic factor (BDNF) [13]; (2) its receptor, tyro-
sine receptor kinase B (NTRK2) [14]; (3) SH2B adaptor
protein 1 (SH2B1), involved in the regulation of leptin
signaling [15, 16]; (4) KSR2, which encodes a scaffolding
protein kinase suppressor of Ras 2, participating in sig-
naling pathways relevant to glucose homoeostasis and
food intake control [17]; (5) TUB, encoding Tubby
bipartite transcription factor [18]. Although not formally
defined as a syndrome, the clinical features of TUB defi-
ciency in humans may be consistent with a novel cilio-
pathy [5]. Most monogenic obesity cases were
investigated only in individual families; thus, their true

contribution to “common” obesity in the general popula-
tion is poorly known and, probably, underestimated [4].
A number of syndromes have been identified in

addition to monogenic forms of obesity. The clinical fea-
tures of these syndromes include obesity and develop-
mental delay [5]. Examples are the Bardet–Biedl [19],
Prader–Willi [20], and Alström [21] syndromes. These
syndromes were earlier viewed as monogenic, but later
studies pointed to a heterogeneous genetic background
[4, 19, 20].
Genetic variants associated with “common polygenic

obesity” were extensively sought in the pre-GWAS era
using genome-wide linkage studies and candidate gene
approaches. Unfortunately, none of the SNP markers
discovered to have associations with common obesity
had meaningful predictive power [4]. Many of them
broadly varied across ethnic groups, and they were
found difficult to replicate [22].
The development of high-throughput genotyping tech-

niques in conjunction with the progress of statistical and
computational methods and the completion of the
HapMap and Human Genome Projects enable scientists
to carry out large-scale genome-wide association studies,
in which a large number of genetic variants are tested
for association with a trait of interest [22]. Genome-wide
association studies have identified multiple genetic vari-
ants associated with the risk of obesity or elevated BMI
[23]. However, replication efforts very often yield very
inconsistent results [24, 25]. It is important to determine
how genetic variants influence body weight, but most of
them are non-coding, and there is little understanding of
how these variants contribute to BW control.
Recent publications on GWAS meta-analysis present

current lists of lead SNPs (lead signals) and candidate genes
(secondary signals), which were mostly revealed according
to two main criteria: (1) the gene was the nearest to the
index SNP; or (2) the gene was found in the vicinity of the
lead SNP and was biologically related to obesity, a related
metabolic disorder, or energy expenditure according to the
results of manual literature mining [26–28]. In some other
advanced GWAS meta-analysis reports [29, 30], additional
and more sophisticated supportive data are considered,
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namely: (1) genes contain a cis-expression quantitative trait
locus (eQTL) in linkage disequilibrium (LD) with the index
SNP; (2) genes contain missense, or nonsense, or copy
number variants; (3) genes have been prioritized by connec-
tions in published GRAIL (Gene Relationships Across Im-
plicated Loci) abstracts; (4) genes have been prioritized by
integrative methods implemented in the DEPICT tool [31].
Thus, GWAS papers register candidate genes, but bio-
logical functions of many of them revealed so far (especially
for nearest genes or genes containing eQTL) remain
unknown or poorly understood. Therefore, the ex-
planation of biological functions of genes noted in
GWAS in the context of BW regulation is a separate
and essential task.
Thus, in spite of the huge body of information ob-

tained by various experimental approaches, including
genome-wide ones, the knowledge of the genetic prereq-
uisites of obesity is insufficient.
The creation of the compendium of genes presumably

involved in obesity can be based on the analysis of
physiologic systems controlling BW, including basal me-
tabolism, which is regulated by the nervous, endocrine,
and immune systems.
The system controlling feeding behavior (FB) is among

the most important ones, determining BW. It involves
proteins and genes expressed in the brain [32] and in
peripheral organs and tissues: the stomach, intestine,
pancreas, and fat tissue. The central core of the system
is formed by two types of neurons in the hypothalamic
arcuate nucleus. They secrete neuropeptide Y (NPY) and
the Agouti-related peptide (AgRP) (NPY/AgRP-express-
ing neurons) or α-melanocyte-stimulating hormone (α-
MSH), which is produced from proopiomelanocortin
(POMC) by proprotein convertases PCSK1 and PCSK2
(POMC-expressing neurons) [33]. The function of neu-
rons of the arcuate nucleus is controlled by hormones
(leptin, insulin, ghrelin, polypeptide YY (PYY), glucocor-
ticoids, adrenocorticotropin, and the corticotropin-
releasing hormone), as well as neurotransmitter systems
of the brain (serotonergic, dopaminergic, adrenergic, and
GABAergic), and neurotrophic factors (BDNF and
others) [33, 34].
The objectives of this study were: (1) to compile a

compendium of genes controlling human body weight
and feeding behavior; (2) to construct and analyze net-
works formed by associations between genes/proteins
from compendium; (3) to reveal tissues or organs,
signaling or biochemical pathways, biological processes
and physiological systems of the human body associated
with genes from compendium; (4) to examine associa-
tions between genes identified by GWAS meta-analysis
and other genes from compendium and to prioritize
GWAS genes according to the number and quality of
associations.

We compiled a compendium of 578 human genes
collected from: (1) research and review articles, (2)
OMIM, and (3) publications presenting GWAS meta-
analysis results. We ranked all genes according to our
knowledge about the biological roles of particular genes
in BW and/or FB regulation. We found that considerable
and overrepresented numbers of genes from the
compendium encoded cell surface receptors, signaling
molecules (hormones, neuropeptides, and cytokines),
transcription factors, signal transduction proteins, and
cilium and BBSome components or were present in the
brain-specific list of genes expressed in a tissue-enriched
manner. By using DAVID, we identified 27 pathways
enriched in genes from the compendium that might be
classified into the following categories: (1) signaling mol-
ecules and interaction; (2) signal transduction; (3) endo-
crine system; (4) excretory system; (5) development; (6)
endocrine and metabolic diseases; (7) tumors. Module
network analysis of the network involving homology or
physical interactions between genes/proteins from com-
pendium revealed notable clusters formed by G protein-
coupled receptors and nuclear receptors, as well as
clusters associated with cilium morphogenesis, tran-
scription regulation, and insulin signaling.
We prioritized genes collected from the GWAS meta-

analysis papers according to the number and quality of
associations in the networks. We selected three most re-
liable PPIs that involved GWAS genes and proved to be
functional in the brain tissue according to expression
data. These PPIs involved three GWAS genes (ETV5,
LRP1B, and NDUFS3) and four other proteins with
known biological roles in BW and/or FB regulation.
Then we manually reviewed literature related to these
genes/proteins and constructed putative regulatory path-
ways implicating three selected PPIs. We hypothesized
that physical interactions between ETV5 and AR, LRP1B
and SERPINE1, NDUFS3, and ADRB2 might be
regarded as potential mechanisms involving GWAS
genes (ETV5, LRP1B, and NDUFS3) in the central regu-
lation of body weight.

Methods
Extracting genes from diverse data sources. Scoring
schemes
Genes were extracted from three data sources: (a) scien-
tific publications (research papers and review articles),
(b) the OMIM database, and (c) GWAS meta-analysis
results presented in scientific papers (Table 1).
The first data source included research papers and re-

view articles describing genes that regulate FB in humans
or in other mammalian species (mice or rats). This data
source and the corresponding set of genes are designated
below as Publications. In case the publication described a
non-human mammalian gene, the homologous human
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gene was found and included into the compendium (pro-
vided with a special comment).
The second data source was An Online Catalog of

Human Genes and Genetic Disorders, OMIM [35]. Three
query terms (“obesity”, “hyperphagia”, or “anorexia”) were
used. A total of 336 genes were extracted from OMIM.
They were divided into two categories. The first category
included 73 genes for which at least one of the query terms
was found in the chapter dedicated to allelic variants. This
data source and the corresponding set of genes are desig-
nated below as OMIM_allelic_variants. The second cat-
egory included 263 genes for which at least one of query
terms was found in any other chapter (outside the chapter
on allelic variants). This data source and the corresponding
set of genes are designated below as OMIM_all_text.
Since genes from the OMIM_all_text set were revealed

in cases when query terms were sought through the
whole text present in an OMIM entry, we consider such
search process to be very similar to the text-mining
approach. So genes from OMIM_all_text lacked data
on allelic variants associated with pathological states,
and they may be characterized as potential regulators
of FB or BW.

OMIM was also used to extract genes implicated
in the Bardet-Biedl and other syndromes associated
with obesity. They are designated below as Syn-
dromes. The list of syndromes associated with obes-
ity and fitting genes was completed according to
review articles devoted to the genetics of obesity as
well [5, 36].
The third data source was scientific papers presenting

GWAS meta-analysis results. We extracted 164 loci with
genome-wide significant associations (p-value < 5 × 10−8)
with BMI from nine articles. This data source and the
corresponding set of genes are designated below as
GWAS meta-analysis.
According to GWAS meta-analysis papers, each locus

was characterized by a lead SNP and one or more genes
located in the vicinity of the lead SNP. Consequently, we
collected all genes mentioned in papers and provided
each gene with comments regarding its status or poten-
tial significance: (1) biological candidate; (2) gene
notable for biological relevance to obesity; (3) the BMI-
associated variant is in strong linkage disequilibrium
(LD; r2 ≥ 0.75) with a missense variant in the indicated
gene; (4) eQTL; (5) nearest gene; (6) other nearby gene;

Table 1 The sources of data for creating the compendium of genes controlling human body weight and feeding behavior and
characteristics of the corresponding gene sets

Source of data/description of the
gene set

Short name of the data source
and the gene set

Number
of genes

Number of publications or database query

Research papers and review articles on
FB-regulating genes

Publications
(Additional file 1: Table S1)

105 17 review articles, 45 research papers

OMIM/genes possessing allelic variants
associated with obesity, hyperphagia,
or anorexia

OMIM_allelic_variants
(Additional file 1: Table S2)

73 Command used in OMIM search: ‘hyperphagia’
OR ‘obesity’ OR ‘anorexia’ (Records with: gene
map locus; Prefixes: +, *; Search in: allelic variants)

OMIM/terms obesity, or hyperphagia,
or anorexia were found in text fields
(excluding the chapter devoted to
allelic variants).

OMIM_all_texta

(Additional file 1: Table S2)
263 Command used in OMIM search: ‘hyperphagia’

OR ‘obesity’ OR ‘anorexia’ (Records with: gene
map locus; Prefixes: +, *; Search in: all text) *

OMIM and research papers/Genes
whose mutant variants are implicated
in the Bardet-Biedl and other
syndromes associated with obesity.

Syndromes
(Additional file 1: Table S3)

37 OMIM entries:
1) #209900; BARDET-BIEDL SYNDROME 1 (Genetic
Heterogeneity of Bardet-Biedl Syndrome)
2) #176270; PRADER-WILLI SYNDROME
3) #203800; ALSTROM SYNDROME
4) #216550; COHEN SYNDROME
5) #103580; PSEUDOHYPOPARA-THYROIDISM,

TYPE IA
6) #201000; CARPENTER SYNDROME 1
7) #147920; KABUKI SYNDROME 1;
8) #300867; KABUKI SYNDROME 2;
9) #157980; MOMO SYNDROME
10) #301900; BORJESON-FORSSMAN-LEHMANN

SYNDROME
11) #182290; SMITH-MAGENIS SYNDROME
12) #180849; RUBINSTEIN-TAYBI SYNDROME 1
13) #612469; WAGRO SYNDROME;

3 review articles, 1 research paper

GWAS meta-analysis papers/genes
located in the vicinity of a lead SNP

GWAS meta-analysis
(Additional file 1: Table S4)

184 9 research articles

aThe set OMIM_all_text included genes for which at least one of query terms was found in any chapter other than that on allelic variants but the latter contained
none of the terms. If the query term was also found in the chapter on allelic variants, such gene was assigned to the set OMIM_allelic_variants and excluded
from OMIM_all_text
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etc. A total of 184 genes were obtained from the GWAS
meta-analysis papers.
The procedure of ranking was performed on the base

of our knowledge of the biological role of a gene in BW
regulation. At this step, we divided genes into two
groups. The first group (Rank_1: genes with biological
interpretation) included all genes from the following
data sources: (1) Publications, (2) OMIM-allelic variant,
(2) OMIM_all_text, (3) Syndromes. Rank_1 also included
some genes from the GWAS meta-analysis data source
for which the biological role in FB or BW regulation had
been described or explained in GWAS meta-analysis
papers. The second group of genes (Rank_2: genes with-
out biological interpretation) accumulated the rest of the
genes from the GWAS meta-analysis gene set, whose
biological functions had not been explained in the con-
text of FB or BW regulation.

Assignment of genes to functional categories and
pathway analysis
To reveal protein-coding genes we used Gene_info
table_2016_03_06 from EntrezGene (ftp://ftp.ncbi.nlm.-
nih.gov/gene/DATA/). To characterize the biological
roles of protein-coding genes from the compendium, we
divided them into nonoverlapping groups. Some groups
(transmembrane receptors, signaling molecules (i.e. hor-
mones, cytokines and neuropeptides), enzymes, etc.)
were created manually. To select genes encoding tran-
scription factors we used TFClass database [37]. To clas-
sify genes as a transcriptional regulators we used the list
of 167 genes encoding proteins with chromatin-modify-
ing activities that was compiled previously [38] from three
databases: EntrezGene (http://www.ncbi.nlm.nih.gov/
gene), CREMOFAC [39], and CR Cistrome [40]. To anno-
tate genes encoding proteins related to the cilium or
BBSome, we used genes extracted from EntrezGene utiliz-
ing the GO terms “BBSome” or “cilium” as a query. To
confirm that some functional groups of genes were over-
represented in the compendium, we applied the web-
based functional annotation tool known as the DAVID
(Database for Annotation, Visualization and Integrated
Discovery) tool [41]. The significance of GO terms was
estimated through the adjusted p-values based on the
Benjamini-Hochberg procedure (BH adjusted p-value),
presented in the functional annotation chart (a built-in
function of DAVID). The standard significance level 0.05
for BH adjusted p-value was applied.
Our second analysis was aimed at the identification of

canonical pathways enriched in genes belonging to the
compendium of genes regulating FB/BW. At this step, we
also applied the DAVID tool [41]. Pathway enrichment
analyses were undertaken for 459 genes from the list
Rank_1: genes with biological interpretation and for four
sets of genes — Publications, OMIM_allelic_variants,

OMIM_all-text, Syndromes, GWAS meta-analysis (Table 1) -
using DAVID against the ‘whole genome’ background.
The enriched biological pathways from KEGG Pathway,
Reactome and Biocarta databases are considered in
our study. The significance of biological pathways was
estimated through the BH adjusted p-value. Pathways with
fold enrichments 1.5 or more and the BH adjusted
p-values of at most 0.05 were considered interesting.

Gene expression analysis
We invoked freely available data from the Human Pro-
tein Atlas [42] version 14 (http://www.proteinatlas.org/
about/downloadrna_tissue.csv.zip) to classify genes from
the compendium according to the tissue specificity of
RNA and protein expression. This resource presents a
classification of 19,709 protein-coding genes according
to their tissue-specific expression into six categories
(Tissue enriched, Group enriched, Tissue enhanced,
Expressed in all, Mixed, Not detected), which are defined
on the base of transcript levels in 32 human tissues. Our
analysis included an additional category, “Tissue ele-
vated”, comprising all genes assigned to the first three
categories (Tissue enriched, Group enriched, and Tissue
enhanced). The statistical significance of differences be-
tween the observed fractions of genes from the compen-
dium classified into particular expression categories and
the expected fraction was estimated by the Chi-square
test. In each case, the expected fraction of genes cal-
culated for a certain expression category was the
same as the fraction of all protein-coding genes from
the human genome that were ascribed to this expres-
sion category by [42].
At the next step, we used the TSEA (Tissue Specific

Expression Analysis) tool (http://genetics.wustl.edu/
jdlab/tsea/) to evaluate the significance of the overlap
between genes from the compendium and the cell-
specific lists of transcripts expressed in a tissue-enriched
manner within a particular human organ or tissue. The
TSEA tool [43] employed pSI statistics to determine
tissue-enriched gene sets using publicly available RNA-
seq data across the healthy, adult human body [44].
Within this approach, each cell type profile was com-
pared to all other profiles and transcripts consistently
enriched in each cell type were identified. For each tran-
script, the enrichment score (SI) was calculated and a
pSI value was ascribed. Then cell-specific and enriched
transcript lists were derived for each cell type at a given
pSI threshold. The lower the pSI, the smaller, but more
stringently specific, transcript lists were obtained. The
TSEA tool accepts an input list of gene symbols and
returns the enrichment analysis of their expressions
across 25 tissues. As a result, candidate gene lists that
overlap cell-specific lists of transcripts expressed in
tissue-enriched manner in a particular tissue are
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identified by Fisher’s exact test with the Benjamini-
Hochberg correction. To identify overrepresented lists of
tissue-enriched genes and to reveal corresponding hu-
man organs or tissues, we set the pSI threshold to 0.05.

Network construction
We employed the GeneMANIA Cytoscape plugin and
STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) to identify pairwise relationships among
all genes/proteins from the compendium.
STRING [45] contains direct (physical) and indirect

(functional) associations derived from different sources,
including high-throughput experiments, co-expression,
and prior knowledge. The associations of the following
types were extracted from STRING in a tab-delimited
format: (1) Experimental: protein-protein interactions,
(2) Homology: homologous proteins, and (3) Knowledge:
functional partners from pathways from the Nature
Pathways Interaction Database (NCI) or KEGG. Pairwise
relationships of all three types were filtered to include
only high-confidence edges with STRING scores greater
than 0.4.
We also used the GeneMANIA Cytoscape plugin [46]

to identify pairwise physical relationships among genes
from the compilation. Data were extracted in a tab-
delimited format and filtered to include only edges with
GeneMANIA weights greater than 0.01. To obtain a net-
work of protein-protein interactions between objects
(Experimental), data on pairwise physical relationships
among genes extracted from STRING and GeneMANIA
were imported into Cytoscape as two separate networks.
Then the networks were merged, and duplicated edges
were removed.
The other two networks (Knowledge and Homology)

were obtained by importing into Cytoscape the associa-
tions of these two types extracted from STRING.
For each gene/protein the following additional data

were imported into Cytoscape as attributes of nodes and
used to arrange the visualization style: (1) the expression
category of the gene (Tissue enriched, Group enriched,
etc.); (2) the source of data (Publications, OMIM_alle-
lic_variants, OMIM_all_text, Syndromes, GWAS meta-
analysis); (3) knowledge on the biological role of the
gene/protein (Rank_1: genes with biological interpret-
ation or Rank_2: genes without biological interpretation).

Module network analysis
The Experimental network was clustered using the
‘Molecular Complex Detection’ (MCODE) algorithm
[47] with the default settings. MCODE is a Cytoscape
plugin available via the Cytoscape plugin manager [48].
MCODE identifies discrete subnetworks (or clusters)
from a larger network (e.g. STRING) and has the advan-
tage over other clustering methods, as it allows direct

fine tuning of clusters of interest without relying on the
rest of the network.
The top three modules (clusters) of the Experimental

network were screened under the conditions of mini-
mum size = 4 and minimum score = 3.3. Then we ex-
panded these three modules by adding the first
neighbors of all nodes involved in each module.
To investigate the Gene Ontology (GO) functional en-

richment for three expanded lists of genes we employed
the DAVID tool. The enriched GO terms from the bio-
logical processes vocabulary GOTERM_BP_5 were con-
sidered in our study.

Sublist of proteins expressed in brain
The list of genes important for central BW regulation
was created by combining two groups of genes from the
compendium. The first group included 93 genes revealed
by TSEA (see Gene expression analysis section) as brain-
specific at pSI threshold = 0.05. The second group in-
cluded 203 genes whose expression in hypothalamic
AGRP-expressing neurons or POMC-expressing neurons
differed (with abs[log2(fold-change)] > 1) between mice
fed ad libitum and deprived of food for 24 h (Suppl.
Table 1 from [49], columns adj.lfc.agrp, adj.lfc.pomc,
adj.lfc.AgPo). The two groups of genes were combined,
and the resulting sublist of genes (designated below as
Brain-specific) comprised 249 genes (Additional file 1:
Table S6).

Results
The compendium of genes controlling human body
weight and feeding behavior
We collected 578 genes from three sources (Table 1).
Among them, 105 genes (Publications) were collected from
scientific publications reporting the involvement of genes in
FB regulation in humans, mice, or rats. (Additional file 1:
Table S1). Association with monogenic non-syndromic
obesity was found in 11 genes of the 105 [5]. We extracted
336 genes from OMIM using the query “obesity” OR “hy-
perphagia” OR “anorexia” (Additional file 1: Table S2). Of
them, 73 genes (OMIM_allelic_variants) had OMIM-
annotated allelic variants associated with FB abnormalities
(hyperphagia, anorexia) or obesity. For the rest 263 genes
(OMIM_all_text), the query terms «obesity», «hyperpha-
gia», or «anorexia» were found in textual sections not
related to allelic variants. The fourth gene set (Syndromes)
was obtained from OMIM and scientific publications. It
included 37 genes implicated in syndromes (Bardet-Biedl,
Prader–Willi, Alstrom, etc.; 13 syndromes altogether) that
included obesity as one of the phenotypic characteristics
(Additional file 1: Table S3). The fifth gene set (GWAS
meta-analysis) was collected from GWAS meta-analysis
papers. It comprised 184 genes listed in articles and located
in regions around 164 lead SNPs. The majority of lead
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SNPs (141 of 164, or 85%) were identified in European
ancestry populations. The other 15% were found only in
African, East Asian, Australian, and North American popu-
lations (Additional file 1: Table S4).
To determine the total number of genes relevant to

BW regulation, we merged all gene sets: Publications,
OMIM_allelic_variants, OMIM_all_text, Syndromes, and
GWAS meta-analysis. With duplicates removed, a list
comprising 578 unique genes was obtained (Fig. 1,
Additional file 1: Table S5). We found that seven genes
(BDNF, MC4R, NTRK2, PCSK1, POMC, SH2B1, TUB)
were present in the following three gene sets: Publica-
tions, OMIM, GWAS meta-analysis. One gene (BBS4)
was found at the intersection of three gene sets:
Syndromes, OMIM, and GWAS meta-analysis. Thus,
these eight genes found at the intersection of at least
three gene sets may be considered the most significant
for BW regulation.

The ranking of genes according to the knowledge of their
biological role in body weight control
According to the ranking procedure described in
Extracting genes from diverse data sources. Scoring
schemes section, all genes were divided into two groups:
(1) Rank_1: genes with biological interpretation; (2)
Rank_2: genes without biological interpretation. The first
group (Rank_1) included all genes from the following
four sets/informational sources: (1) Publications, (2)
OMIM_allelic_variants, (3) OMIM_all_text, and (4) Syn-
dromes. Some genes from GWAS meta-analysis data
source were also included into Rank_1 if they were char-
acterized in papers as (1) genes notable for their bio-
logical relevance to obesity or (2) biological candidates.
Thus, 459 genes from the compendium (79% of the total
number) were classified to Rank_1: genes with biological
interpretation (Fig. 1). The other 21% of genes were

classified to Rank_2: genes without biological interpret-
ation. According to the ranking process, the second
group of genes was composed entirely of genes from the
GWAS meta-analysis data source.

Functional composition of genes from the compendium
First, we determined the fraction of protein-coding
genes in the compendium. It was 96.3% (Fig. 2a). The
other 21 genes (3.7% of the total number) were non-
protein-coding, with ncRNA (microRNA, antisense
RNA, etc.) being the largest category. Genes encoding
ncRNA comprised 2.5% of the total number of genes in
the compendium. The largest portion of non-protein-
coding genes were assigned previously to Rank_2: genes
without biological interpretation. However, some non-
protein-coding genes were categorized into Rank_1:
genes with biological interpretation. Among them were
MIR148A, H19, LINC00237, MIR103A1, MIR107, MT-
TK, NPY6R.
Next, we divided the list of protein-coding genes into

non-overlapping functional groups. We found that the
five largest groups were: (1) transmembrane receptors
(17% of genes from compendium); (2) signaling mole-
cules (hormones, neuropeptides, cytokines, etc.) (14%);
(3) transcription factors (12%); (4) and (5) metabolic and
regulatory enzymes (8% and 5%, respectively) (Fig. 2b).
The official symbols of all genes included into the

compendium, their data sources, molecular functions of
encoded proteins, and Ranks are presented in Additional
file 1: Table S5.
The hypothesis that the compendium was enriched in

some functional groups of genes used in our classifica-
tion (Fig. 2b) was tested with the DAVID tool. We
performed GO analysis for 578 genes from the com-
pendium and selected GO terms that characterized
functional groups presented in Fig. 2b. We found that

The total number of genes = 578
336 genes from OMIM

(OMIM_allelic_variants (73)
+ OMIM_all_text (263))

37 genes
implicated in

Syndromes

105 genes from 
Publications

184 genes from
GWAS - meta-analysis 

6336

13

21

270
11

1

0

0

0
0

0

1

7

340

0

0

1

1

119

Rank_1:
genes with biological 
interpretation
(459 genes, 79%)

Rank_2: genes without 
biological interpretation
(119 genes, 21%)

Fig. 1 Venn diagram representing the numbers of genes in all gene sets Publications, OMIM, Syndromes, and GWAS meta-analysis used for
creating the compendium of human genes controlling BW/FB. The red and blue dashed lines denote groups of genes obtained after ranking
genes according to the knowledge of their biological role in body weight control
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the compendium was enriched in genes associated with
GO terms characterizing most groups: transmembrane re-
ceptor activity, hormone activity, neuropeptide hormone
activity, cytokine activity, transcription factor activity, signal
transducer activity, lipid binding, cilium morphogenesis,
BBSome (Table 2). For these GO terms fold enrichments
exceeded 1.5, and BH adjusted p-values were less than
0.05. According to GO analysis performed with DAVID,
the other three of nine functional groups presented in
Fig. 2b (transcriptional coregulators, enzymes (regulatory),
and enzymes (metabolic)) were not enriched in the
compendium.

KEGG pathway analysis
To identify specific biological pathways that might be
implicated in FB or BW control, we selected pathways
overrepresented among genes from the compendium by
applying the DAVID tool. The tool allows detection of
enriched biological pathways or models for a variety of
biological processes presented in the KEGG, REAC-
TOME, BIOCARTA, and PANTHER databases. We sug-
gested that a substantial part of genes from the GWAS
meta-analysis set that had no interpretation (Rank_2:
genes without biological interpretation) were not

involved in the regulation of FB or BMI, so we excluded
these genes from the pathway analysis. Just for this rea-
son we analyzed the subset of 459 genes that had bio-
logical interpretations (Rank_1: genes with biological
interpretation) at the first step. We identified 27 signifi-
cantly enriched pathways or biological processes (Fig. 3).
In all cases, the fold enrichment exceeded 1.5, and BH
adjusted p-values were less than 0.05. We applied the
hierarchical scheme provided by the KEGG pathway
database to classify the enriched pathways into the fol-
lowing categories: (1) signaling molecules and inter-
action; (2) signal transduction; (3) endocrine system; (4)
excretory system; (5) development; (6) endocrine and
metabolic diseases; (7) tumors. The next hierarchical
level of classification included such processes and en-
tities as: (1) Environmental Information Processing, (2)
Organismal Systems, and (3) Human Diseases.
We also performed pathway analyses for five sets of

genes (Publication, OMIM_allelic variant, OMIM_all_-
text, Syndromes, GWAS meta-analysis) (Additional file
2: Figure S1). We found that the Publications set of
genes had only six enriched pathways but the fractions
of genes involved into two of them were very large (57%
for Signaling by GPCR and 39% for Neuroactive ligand-
receptor interaction). This observation points to a func-
tional homogeneity of the Publications set and is in
accordance with our previous observation that the com-
pendium is enriched with transmembrane receptors and
signaling molecules. Four enriched pathways were re-
vealed for the OMIM_allelic variants set. In contrast,
the OMIM_all_text set had 32 overrepresented path-
ways, and 12 of them (marked by plus signs in
Additional file 2: Figure S1) were not overrepresented in
the group of 459 genes that had biological interpreta-
tions (Rank_1: genes with biological interpretation). No
enriched pathway was revealed for the very small set
Syndromes (37 genes). The GWAS meta-analysis set also
had only one enriched pathway (Signalling by NGF),
comprising 9 genes (5% of the total number). The last
observation points to high functional heterogeneity of
genes from the GWAS meta-analysis set and confirms
our guess that some genes from the set may have no
relevance to FB or BW control.

Gene expression analysis
We used two approaches to characterize the expression
patterns of genes from the compendium.
First, we divided genes from the compendium into six

categories (Expressed in all, Mixed, Not detected, Tissue
enriched, Group enriched, Tissue enhanced) basing on
the classification of all human protein-coding genes pre-
sented in [42]. We observed differences in the distribu-
tions into categories between the whole genome set of
protein-coding genes and genes from the compendium.

Fig. 2 Distribution of functions of genes from the compendium.
Panel a The fractions of protein-coding genes and other genes.
Panel b Fractions of major functional groups of genes in the list of
protein-coding genes
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The fraction of genes classified as Expressed in all
decreased significantly (p-value < 0.001) in the compen-
dium (Fig. 4a) as compared to the whole genome level
(37.1% vs. 43.6%). In a good agreement with this obser-
vation, the compendium had an elevated (p-value <
0.001) fraction of genes from the Tissue enhanced
category. The fraction of genes classified as Tissue
elevated in the compendium was also higher (p-value <
0.001) than in the whole genome set (Fig. 4b). The
enrichment in Tissue elevated genes was also found in
sets of genes Publications, OMIM_allelic_variants, and
OMIM_all_text. On the contrary, the set Syndromes was
depleted of genes from the Tissue elevated category (p-
value < 0.01). The most pronounced differences in
expression patterns were observed between the whole
genome set of protein coding genes and the Publications
set. This set was depleted of genes classified as Expressed
in all tissues at the significance level of 0.001 (Fig. 4a)
and enriched (p-value < 0.001) in genes classified as
Tissue elevated (Fig. 4b).
At the next step, we utilized the TSEA tool to identify

overrepresented tissue-specific genes and to reveal cor-
responding tissues and organs. The same analysis was
performed for the list of all 578 genes from the compen-
dium (designated as 578_all_Compendium) and seven
subsets of genes (Rank_1: genes with biological interpret-
ation, Rank_2: genes without biological interpretation,
Publications, OMIM_allelic_variants, OMIM_all_text,
GWAS meta-analysis, and Syndromes).

We found that genes from the 578_all_Compendium
list were overrepresented in tissue-enriched (pSI < 0.05)
TSEA lists of genes expressed in seven tissues or organs
(Fig. 5). The following tissues and organs were found: (1)
adipose tissue and breast, two related tissues that store
lipids; (2) the adrenal gland, pituitary gland, and pan-
creas, endocrine glands controlling metabolism via
humoral signals; (3) the liver, central organ in lipogen-
esis, gluconeogenesis and cholesterol metabolism; (4) the
whole brain, which performs the central regulation of
feeding behavior - processing sensory signals (taste,
olfactory, and food texture) and correlates them with
other information. The highest number of genes from
the set 578_all_Compendium (93 genes) were found
for the overlap with the brain list of tissue-enriched
(pSI < 0.05) genes (Fig. 6).
The genes from seven gene sets had different numbers

of tissues identified by TSEA (Fig. 5). Six tissues were
identified for genes from the Publications set. The high-
est number of tissues (ten tissues) was identified by
TSEA for the group of genes Rank_1: genes with bio-
logical interpretation. The group of genes Rank_2: genes
without biological interpretation, which, in our opinion,
contained a large portion of genes unrelated to BW
regulation, had no tissues identified by TSEA. Seven,
three, eight, and two tissues were found for sets Publica-
tions, OMIM_allelic_variants, OMIM_all_text, and
GWAS meta-analysis, respectively. No tissue was identi-
fied by TSEA for the set Syndromes at any pSI threshold.

Table 2 Overrepresented (BH adjusted p-value < 0.05) GO terms (biological processes, molecular functions, cellular compartments)
that characterize functional groups of genes presented in Fig. 2b.

Functional group GO category GO class Number of genes
from the compendium
annotated by the category

Fold Enrichment BH adjusted
p-value

Transmembrane receptors GO:0004888 ~transmembrane
receptor activity

Molecular function 89 2.09 1.6E-09

Transcription factors GO:0003700 ~ transcription factor
activity

Molecular function 52 1.63 1.1E-02

Signaling molecules
(hormones, neuropeptides,
cytokines, etc.)

GO:0005179 ~ hormone activity Molecular function 37 10.48 1.5E-24

GO:0005184 ~ neuropeptide
hormone activity

Molecular function 15 19.95 7.6E-14

GO:0005125 ~ cytokine activity Molecular function 16 2.51 3.2E-02

Signal transduction GO:0004871 ~ signal transducer
activity

Molecular function 139 1.87 3.2E-12

Cilium or BBSome GO:0060271 ~ cilium
morphogenesis

Biological process 10 8.77 1.5E-05

GO:0034464 ~ BBSome Cellular component 7 31.56 1.8E-07

Lipid localization GO:0008289 ~ lipid binding Molecular function 34 2.31 3.9E-04

Transcriptional coregulators Nonea

Enzymes (regulatory) None

Enzymes (metabolic) None

The list of 578 genes from the compendium was analyzed with the DAVID-tool. The significance level for the BH adjusted p-value was 0.05
aNone – No overrepresented GO terms were found
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Thus, TSEA identified at least two tissues for five out
of seven sets examined (Fig. 5). We found that for
three of these five sets of genes (Rank_1: genes with
biological interpretation, Publications, and GWAS
meta-analysis) the highest numbers of genes were
found at the overlaps with the brain list of tissue-
enriched genes compiled by TSEA tool at the pSI
threshold = 0.05 (Fig. 6).

Networks formed by associations between genes/proteins
To obtain more characteristics of functional systems
involved in the regulation of body weight, we recon-
structed networks presenting pairwise interactions be-
tween genes/proteins. Data on pairwise interactions
were obtained from STRING [45] and GeneMANIA [46]

(see Network construction section) and uploaded into
Cytoscape [48]. Thus, three networks comprising interac-
tions of three different types (Experimental, Knowledge,
and Homology) were constructed and analyzed with
Cytoscape and its plugin MCODE.
The maximal number of edges and the maximal aver-

age number of neighbors were found in the Knowledge
network (Table 3). The maximal number of nodes was
found in the Experimental network. None of the three
networks involved all the 578 genes from the compen-
dium (Fig. 7a, Table 3. We found that the PPI network
(Experimental) involved the maximal portion of all genes
from the compendium (62%). The Knowledge and Hom-
ology networks contained 53% and 25% of the total num-
ber of genes, respectively. Altogether, all the three
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Fig. 3 Association of genes from the compendium with major KEGG, REACTOME and BIOCARTA pathways. Pathways with fold enrichment > 1.5
and BH adjusted p-value < 5*10−2 are presented. Only genes from Rank_1: genes with biological interpretation were involved in analysis
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networks included 71% of the total number of genes in
the compendium (408 out of 578) (Fig. 7a).
Genes involved in each network were ranked accord-

ing to the number of neighbors, and the lists of 20 top
genes were formed (Additional file 1: Table S7). The first
genes were ESR1 in the network Experimental (43

neighbors), AGT (77 neighbors) and NMUR2 (36 neigh-
bors) in the Knowledge and Homology networks respect-
ively. The intersections between three lists containing
top 20 genes that had the maximal numbers of links in
each network were analyzed (Fig. 7b). The portion of
shared genes was very low. We found only five shared

Fig. 4 The fractions of genes classified according to tissue expression patterns and calculated for all protein-coding genes (Genome) or for
all genes from the compendium (578_all_Compendium) and gene sets Publications, OMIM_allelic_variants, OMIM_all_text, GWAS meta-analysis, Syndromes.
Panel a presents the fractions of genes classified into all six expression categories described in [42] and the category Not found. Panel b presents the
fractions of genes belonging to three consolidated groups: (1) Expressed in all +Mixed; (2) Not detected +Not found; (3) Tissue elevated. The significances
of the Chi-square test comparing the fractions of genes in test groups with the fractions in the whole-genome dataset are indicated with one (p-value <
0.05), two (p-value < 0.01), or three (p-value < 0.001) asterisks. The red and blue dotted lines in panel a and the orange dotted line in panel b denote the
levels observed in the whole genome set of protein-coding genes

Fig. 5 The heat map depicts the results of tissue-specific expression analysis performed with TSEA. Only tissues with overrepresented (p-value
<0.05) cell-specific lists of tissue-enriched genes identified at the overlap with genes from the compendium or seven sets (Rank_1: genes with
biological interpretation, Rank_2: genes without biological interpretation, Publications, OMIM_allelic_variants, OMIM_all_text, GWAS meta-analysis,
and Syndromes) are shown. P-values derived by Fisher’s exact test with the Benjamini-Hochberg correction were obtained from the TSEA tool
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genes at the intersection of the Knowledge and Homology
lists of top 20 genes.
We found that three lists of top 20 genes were differ-

ent with respect to their expression patterns, data
sources, and functions (Additional file 1: Table S7):

– In the network Experimental, most of the top
genes (15 genes out of 20) were classified
according to data from the Human Protein
Atlas [42] as Expressed in all. Sixteen of the
twenty genes belonged to the OMIM_all_text
gene set.

– In the network Knowledge, a considerable portion
of genes (13 out of 20) belonged to the tissue-
elevated category (see Gene expression analysis
section). The genes were included into the
compendium mostly on the base of Publications
(12 genes) and OMIM_all_text (9 genes) data
sources.

– In the network Homology, 13 out of 20
genes were from the tissue-elevated category
(see Gene expression analysis section) and six
genes were classified as Not detected. Eighteen
of twenty genes were from the set Publications.
All twenty genes encoded G protein–coupled
receptors.

We found that the lists of genes involved in three re-
constructed nets (Experimental, Knowledge and Hom-
ology) overlapped to a certain extent (Fig. 7a). The
merged list of genes involved in all three networks ex-
amined contained 408 genes (71% of the total number),
which was more than the amounts of genes in each of
the three separate networks (Table 3). This fact and the
very small fraction of shared genes for three lists of 20
top genes (Fig. 7b) motivated us to consider networks of
all three types in our further analysis.

Rank_1:
with biol_interpr

578_All_Compendium

Publications

Rank_2:
without biol_interpr

OMIM_allelic_variants

OMIM_all_text

Syndromes

GWAS
meta-analysis

Fig. 6 The number of genes from the compendium found with TSEA tool at the overlap with the cell-specific lists of transcripts expressed in a
tissue-enriched manner. The lists of tissue-enriched transcripts were identified at pSI threshold = 0.05. Organs or tissues with Benjamini-Hochberg
corrected p-values < 0.05 are presented

Table 3 Characterization of three networks formed by associations between genes/proteins from the compendium

Network/Association type Number of nodes (genes/proteins)/
Number of genes as a percentage
of all genes from the compendium

Number of edges Average number
of neighbors

Genes with the highest numbers
of neighbors

Experimental 355 (62%) 1254 4.3 ESR1, SIRT1, AR, NFKB1, STAT3, MAPK3,
HDAC3, UBB, PTPN11

Knowledge 304 (53%) 2403 15.9 AGT, KNG1, MCHR1, PMCH, NMUR2,
NMUR1, NMS, NMU, MCHR2, POMC

Homology 142 (25%) 522 7.4 NMUR2, NMUR1, MCHR1, MCHR2,
OPRD1, NPY1R

All three types The total number of genes involved in all three networks = 408 (71%)
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Module network analysis
To explore groups of homologous proteins, a network
formed by associations between homologous proteins ex-
tracted from STRING database was examined. This net-
work included several unconnected subnetworks (Fig. 8).
Two subnetworks (Subnetwork 1, 44 genes, and Subnet-
work 4, 6 genes) contained G protein–coupled receptors.
Subnetwork 2 (17 genes) was formed by signal transduc-
tion proteins (Mitogen-activated protein kinases, other ki-
nases, and some other proteins, such as INSR or IKBKB).

Subnetwork 3 (14 genes) included transcription factors
from the nuclear receptor superfamily. Each of the next
five subnetworks (from fifth to ninth) involved three pro-
teins. Other 24 unconnected subnetworks contained two
proteins each (Additional file 1: Table S8).
To characterize the functional domains of the network

formed by physical interactions between proteins, we
explored clusters identified by the MCODE tool (see Mod-
ule network analysis section). Three clusters with node
numbers exceeding 3 and scores exceeding 3.3 were found.

20

1515
5

Homology

Experimental

Knowledge

NMUR2,
NMUR1,
MCHR1,
MCHR2,
OPRM1

a
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1
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114
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The total number 
of genes involved 
in three networks 

= 408

b

Fig. 7 Venn diagrams representing the numbers of genes involved in three networks Experimental, Knowledge, and Homology. Panel a shows the
total number of genes in each network. Panel b the lists of 20 genes that had the highest numbers of neighbors in each network
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Fig. 8 Unconnected subnetworks from the network formed by associations between homologous proteins (Homology). The colors of nodes
indicate expression categories of genes (see legend) assigned according to data from the Human Protein Atlas [42] (see Gene expression
analysis section). Thicker lines represent the stronger associations. Names of genes/proteins from the GWAS meta analysis set are shown in
blue. Subnetworks with three or more nodes are outlined by dotted line. TFs – transcription factors
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As the numbers of nodes in each of these clusters were not
large (10, 4, and 4 nodes), we identified the first neighbors
for all genes from the clusters and included them into ex-
tended groups of genes. By this means, we obtained three
extended clusters comprising 15, 33, and 31 nodes (Fig. 9).
Taking into account the classification of protein-

coding genes according to their tissue-specific expres-
sion available from the Human Protein Atlas [42], we
observed the expression patterns of genes involved in all
three extended clusters. We found that the largest frac-
tions of genes involved in the three extended clusters
(100, 79, and 61%, respectively) were classified as
expressed in all or mixed.
Then three extended groups/lists of genes were sub-

jected to Gene Ontology (GO) functional enrichment
analysis (see Module network analysis section), and it
was found that (1) extended group 1 (extended cluster
1) was enriched in genes involved in cilium morphogenesis;
(2) 85% of genes from extended group 2 (extended cluster
2) were related to the regulation of transcription; (3) ten
proteins from extended group 3 (extended cluster 3),
including two of four proteins from initial cluster 3 (IRS2,
INSR), were involved in response to insulin stimulus (Fig. 9,
and Additional file 1: Table S9).

The ranking of genes from the GWAS meta-analysis set
on the base of their weights (numbers of neighbors) in
the networks
To obtain additional characteristics for genes from the
GWAS meta-analysis set, we considered their links in
three networks that were described previously. In the
Experimental network we found 74 genes/proteins from
the GWAS meta-analysis set that had at least one neigh-
bor. The greatest numbers of the first neighbors were
possessed by MAPK3 (22 neighbors), IRS1 (17 neigh-
bors), and NCOA1 (16 neighbors) (Additional file 1:
Table S10). In the Knowledge and Homology networks,
we found, respectively, 50 and 27 genes/proteins from
the GWAS meta-analysis set that had at least one neigh-
bor. The highest numbers of the first neighbors in the
Knowledge network were found for POMC (66 neigh-
bors), ADCY3 (65 neighbors) and ADCY9 (64 neigh-
bors). In the Homology network, the three top genes/
proteins — HNF4G, MAPK3, RARB — had 12, 11, and
11 first neighbors, respectively. Eighty-five genes/pro-
teins from the GWAS meta-analysis set (~46% of the
total number) had at least one first neighbor in at least
one of the three networks examined (Fig. 10). Forty of
them were from the group Rank_2: genes without

Fig. 9 Three extended clusters revealed in the network Experimental formed by physical interactions between proteins from the compendium.
Dashed lines denote the initial three clusters comprising 10, 4, and 4 proteins, which were identified with the MCODE tool. For Cluster 1: red
check marks denote nine proteins annotated by GO term cilium morphogenesis; four genes marked by blue check marks are localized in primary
cilia according to [56]. For Cluster 3: blue lozenges mark proteins associated with GO term response to insulin stimulus. Thicker lines represent
stronger associations. The color legend and other designations follow Fig. 8
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biological interpretation. In Fig. 10 (and in all figures
below), genes from the group Rank_2: genes without
biological interpretation are enclosed in lozenges.

Detection of GWAS genes in the Brain-specific sublist
First, we included the annotation of two new characteris-
tics of genes from the compendium into Additional file 1:
Table S5: (1) Brain-specific gene according to TSEA for 93
genes that, according to TSEA, belonged to the cell-
specific list of transcripts enriched in brain at the pSI
threshold = 0.05; (2) differentially expressed gene (DEG)
according to [49] for 203 genes found to be differently
expressed in hypothalamic AGRP- or POMC-expressing
neurons of mice either fed ad libitum or deprived of food.
We found that 45 of all 578 genes in the compendium
belonged to both categories, and among them 13 genes
were from the GWAS meta-analysis set (Fig. 11). Nine of
these 13 GWAS genes were from Rank_2: genes without
interpretation: CBLN1, PCDH9, DOC2A, STXBP6, LRP1B,
LRFN2, RALYL, LINGO2, and HS6ST3. A total of 71
GWAS genes were found to be differentially expressed
according to [49] or to be in the TSEA cell-specific list of

transcripts enriched in brain at pSI threshold = 0.05.
Among these 71 GWAS genes, 34 genes were annotated
as Brain-specific gene according to TSEA and 50 genes
were annotated as DEGs according to [49] (see Additional
file 1: Table S5).

Subnetwork involving proteins expressed in brain:
revealing GWAS genes
At the next step of our study, we reconstructed a
network formed by physical interactions between pro-
teins/genes annotated in the Additional file 1: Table
S5 as Brain-specific gene according to TSEA or DEG ac-
cording to [49] (see also Brain-specific sublist, Additional
file 1: Table S6). This network was designated Experimen-
tal_brain-specific. It included 117 proteins and 172 associ-
ations between them (Fig. 12). All nodes in the network
were ranked according to their degree (number of neigh-
bors). The highest degree (20 neighbors) was found for es-
trogen receptor 1 (ESR1). This protein was assigned
rank one (Additional file 1: Table S11). Rank two was
assigned to PPARG, which had 11 neighbors, and
rank three was shared by AR and STAT3, each having

The total number of genes from the GWAS_meta-analysis set 
 involved in three networks = 85 
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Fig. 10 Genes from the GWAS meta-analysis set that are involved in three networks (Experimental, Knowledge and Homology). Red numerals
indicate the numbers of genes that were found in three, two, or one networks. The colors of nodes correspond to RNA expression categories
according to data obtained from the Human Protein Atlas [42] (see Gene expression analysis section). An edge width is proportional to the
number of neighbors for the corresponding individual gene/protein in each network
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10 neighbors. The Experimental_brain-specific net-
work involved 22 genes from the GWAS meta-
analysis set, and six of them were from Rank_2: genes
without biological interpretation. Two of these six
proteins (NDUFS3, SNRPC) had two neighbors and

other four proteins (ERBB4, ETV5, PRKD1, LRP1B)
were found to have one neighbor each (Table 4). The
numbers of first neighbors ranged from high for AR
and STAT3 (both had 10 neighbors) to medium for
PARK2 and ADRB2 (8 and 7 neighbors) and low for

Brain-specific genes 
according to TSEA
(93 genes)

GWAS_meta-analysis 
set  (184 genes) 

DEG according to [49]
(202 genes) 

CBLN1, PCDH9, 
DOC2A, STXBP6, 
LRP1B, LRFN2, 
RALYL, LINGO2, 
HS6ST3, CALCR, 
GRP, PCSK1, 
HHIP

ETV5, FHIT, GNAT2, KCNQ1, NDUFS3, PRKD1, 
SNRPC, NFE2L3, TRIM66, DNAJC27, PGPEP1, 
TMEM160, FIGN, IQCH, STK33, SEC16B, 
SFXN2, IQCK, BCDIN3D, NLRC3, CCDC171, 
ATP2A1, BDNF, FOXO3, HMGA1, IRS1, PARK2, 
POMC, RARB, TCF7L2, TOMM40, BAIAP2, 
HSD17B12, ASB4, GALNT10, PLCD4, NEGR1

ERBB4, NRXN3, FAIM2, FRRS1L, 
GPRC5B, FAM57B, AGBL4, STX1B, 
KLHL32, C1QTNF4, CADM2, SBK1, 
APOC1, APOE, ELAVL4, GABRG1, 
GRID1, MC4R, NTRK2, RIT2, SCG3

13 33

37

21

Brain-specific sublist
135

10

113

Fig. 11 Venn diagram representing intersections between the GWAS meta-analysis set and two groups of genes Brain-specific gene according to
TSEA and DEG according to [49] that gave rise to the Brain-specific sublist of genes from the compendium (see Sublist of proteins expressed in brain
section). Callout rectangles show genes that were found at the intersections of the gene set and two gene groups. Genes belonging to the
group Rank_2: genes without interpretation are underlined

Fig. 12 The Experimental_brain-specific network formed by physical interactions between genes/proteins from the sublist Brain-specific (see
Sublist of proteins expressed in brain section). Ellipses denote proteins/genes from the Rank_1: genes with biological interpretation group,
lozenges denote proteins/genes from Rank_2: genes without biological interpretation. Names of genes/proteins from the GWAS meta
analysis set are shown in blue. Dashed rectangles denote associations that involve genes/proteins from the group Rank_2: genes without
biological interpretation. Blue numerals denote the ranks of nodes calculated according to their weight (the number of first neighbors).
The color legend and other designations are the same as in Figs. 8, 9, and 10
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MAPK9, TOMM40, SERPINE1, and SNRPN (4, 2, 1,
and 1 neighbors respectively).
We also found that 132 genes from the compendium

were present in the Brain-specific sublist (Additional file
1: Table S6), but these genes/proteins were not associ-
ated with any other nodes (genes/proteins) in the
Experimental_brain-specific network (In Additional file
1: Table S11, these genes are presented in part (B) and
are denoted as isolated (single) nodes. We found that 49
genes denoted as isolated nodes were from the GWAS
meta-analysis set. Among them, 36 genes were from
Rank_2: genes without biological interpretation.
Using the PubMed links presented by STRING and

GeneMANIA, we checked pieces of evidence confirming
associations between proteins and found that three asso-
ciations (between ETV5 and AR, LRP1B and SERPINE1,
NDUFS3 and ADRB2) were of very good quality. In
Table 4, the quality of proofs for these three associations
is denoted as Very high. Other associations were con-
firmed by interactions between homologous proteins in
other species (SNRPC and SNRPN) or interactions with
paralogous protein in humans or other species (ERBB4
and STAT3, PRKD1 and MAPK9), or even interactions
through one intermediate protein (between NDUFS3
and PARK2). In Table 4, the qualities of these proofs are
denoted as High or Medium.

Discussion
A compendium of human genes regulating FB and BW
To obtain a systematic overview of genes controlling
human body weight and feeding behavior, which may
serve as therapeutic targets, we created a compendium
of genes relevant to the impairment of feeding behavior
and elevated body mass index. At present, the compen-
dium contains information about 578 genes, for which
there are indications of their direct or indirect relevance
to FB or BW regulation (Fig. 1). We did not find any
analogs for such a comprehensive gene catalog in publi-
cations. A catalog of eleven monogenic obesity genes
identified to date and 227 genetic variants associated
with polygenic obesity was presented in [5]. Ninety-
seven GWS loci associated with BMI obtained from
meta-analysis of nearly 340,000 individuals were de-
scribed in [29]. A list of 38 genes used in commercially
available nutrigenomic tests was compiled in [50]. Thir-
teen of these 38 genes (HMGCR, APOE, APOB, AGT,
CRP, ADRB1, TNF, APOA5, LPL, ADRB3, ADRB2,
COMT, and UCP2) are present in the compendium
described in the current study. The results of nutrige-
nomics research studies of the 38 genes were subse-
quently meta-analyzed in [50] to identify possible
associations between the genes of interest and dietary
intake and/or nutrient-related pathologies. No specific or
statistically significant association were identified for any

of the 38 genes of interest. The authors made a conclu-
sion that the need for thorough and continuous nutri-
genomics research was evident as it would be a highly
promising tool in precision medicine. The application
of genomic information in the context of nutritional
choice requires the continuing education of healthcare
professionals [51] and creation of new evidence evalu-
ation by test providers [52]. Therefore, we consider
studies presenting compilations of genes and their ana-
lysis useful in this context.

Classification and functional analysis
On the base of our knowledge of the biological role of
genes in BW regulation we classified all genes from
compendium into two groups: (1) Rank_1: genes with
biological interpretation, which included 79% of genes in
compendium; and (2) Rank_2: genes without biological
interpretation, which included the remaining 21% genes
(Fig. 1). At the final steps of our study, we analyzed PPIs
involving some genes from the group Rank_2 and hy-
pothesized their potential role in BW regulation (The
ranking of genes from the GWAS meta-analysis set on
the base of their weights (numbers of neighbors) in the
networks and Detection of GWAS genes in the Brain-
specific sublist sections).
Protein-coding genes constituted 96.3%, the over-

whelming majority of genes in the compendium (Fig. 2a).
Among them, six major overrepresented functional
groups were found: (1) transmembrane receptors; (2)
transcription factors; (3) signaling molecules (hormones,
neuropeptides, cytokines); (4) signal transducers; (5)
cilium and BBSome components; (6) lipid binding pro-
teins (Table 2). Thus, we obtained an updated list of mo-
lecular functions important for BW regulation. The
significance of these molecular functions for FB and BW
regulation is obvious. The key role in regulation of FB
and energy balance belongs to the central nervous sys-
tem, being implemented through a complex interplay
among neurons. This interplay is supported by neuro-
transmitters (neuromediators, neuropeptides, and releas-
ing factors), which modulate neuronal activity via
interactions with cellular transmembrane receptors [33,
53, 54]. In turn, receptors activate signal transducers,
which effect transcription factor activity [55]. Cilia trans-
duce intracellular signaling activated in response to
various homeostatic neuropeptides, neurotransmitters,
and hormones (such as neuropeptide Y, melanin-
concentrating hormone, insulin, leptin, etc.) [56, 57].
Lipid binding proteins are involved in lipid transport
and metabolism [58–60].
To evaluate the degree to what specific biochemical/

signaling pathways or biological processes might be
involved in FB or BW regulation, we attempted to define
overrepresented pathways from the KEGG, REACTOME,
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and BIOCARTA databases with the DAVID tool. The ben-
efits of using the ontological and pathway analyses for
functional annotation of group of genes revealed by differ-
ent criteria have been considered in numerous publica-
tions [38, 61, 62]
We identified a broad variety of enriched pathways/pro-

cesses. Twenty-seven overrepresented pathways were
found for the group Rank_1: genes with biological inter-
pretation (Fig. 3), and the total number of overrepresented
pathways found after analysis (Additional file 2: Figure S1)
performed for additional five gene sets (Publications,
OMIM_allelic_variants, OMIM_all_text, Syndromes and
GWAS meta-analysis) was 44. This result is in good agree-
ment with the notion that the process of body weight
regulation is very complex [29, 63–65]. Pathway analysis
provided evidence that elevated BMI might result from
abnormalities in a large number of particular cellular or
organismal processes (signaling molecules and interaction,
signal transduction, or development) and organismal sys-
tems (endocrine or excretory system).
It is also important to keep in mind that most pathway

models are not exclusive, i.e., they show considerable over-
laps, reflecting the frequently observed synergy in signal-
ing [66]. Such overlaps are most frequently observed for
(1) signal transduction pathways, which often share a set
of protein kinases, and (2) specific types of cancers sharing
signal transducers like STAT3, VEGFB, NFKB1, IKBKB,
TGFB1, PIK3CA, MAP2K1, MAPK3, MAPK8, MAPK9,
etc. We think that it was a redundancy of signal transduc-
tion pathways annotated in any of the three database used
(KEGG, REACTOME BIOCARTA) and a redundancy of
pathways involved in specific types of cancer in KEGG
pathway database that predetermined a considerable
abundance of enriched pathways related to signal trans-
duction and cancers revealed by DAVID.
Nevertheless, we propose that all enriched pathways be

kept in mind as models of biological processes relevant to
body weight regulation. We think that in any case their
consideration may be useful for designing new pharmaco-
logical approaches for the treatment of BW abnormalities.

Gene expression analysis
Tools such as DAVID, PANTER, REVIGO, and others
[65, 67, 68] are a rich source of functional data, but they
are static resources that rely on manually curated informa-
tion from GO, KEGG PATHWAY, Reactome Pathway,
Biocarta databases, etc. That is why we think that the re-
sults of pathway analysis performed with DAVID (or other
similar tools) are not completely objective or unbiased.
For this reason, in order to obtain additional functional
characteristics of genes from the compendium, we utilized
another approach, based on a dynamic source of informa-
tion, such as gene expression across tissues.

We used the classification of 19,709 human protein-
coding genes according to their tissue-specific expression
presented in the Human Protein Atlas [42]. We found
that the compendium was enriched in genes belonging to
the tissue-elevated category, which comprised all genes
assigned to the tissue enriched, group enriched, and tissue
enhanced categories (Fig. 4). To identify tissues or organs
important for FB/BW regulation, we utilized the TSEA
tool [43]. It evaluates the significance of overlaps between
genes from the compendium and cell-specific lists of
transcripts enriched in a particular human organ or tissue
(see Module network analysis section).
We found a significant (p-value < 0.05) overlap be-

tween genes from compendium and the TSEA lists of
tissue-enriched transcripts from seven tissues and organs
(adipose tissue, adrenal gland, breast, pituitary gland,
pancreas, liver, and brain) (Fig. 5). The same analysis
was performed for two gene groups (Rank_1: genes with
biological interpretation and Rank_2: genes without bio-
logical interpretation) and five gene sets (Publications,
OMIM_allelic_variants, OMIM_all_text, GWAS meta-
analysis, Syndromes). It revealed six more tissues/organs.
In the great majority of cases (in the analyses of three
gene sets and of the entire compendium), the highest
numbers of genes were found in the overlaps with the
cell-specific list of genes enriched (pSI < 0.05) in the
brain (Fig. 6). This observation confirms the idea that
the nervous system plays a critical role in body weight
regulation. First, a large portion of genes responsible for
body weight regulation are involved in central mecha-
nisms controlling appetite and food intake [22, 29, 32].
Second, a clear enrichment of expression in the brain
was found for genes controlling BMI according to
GWAS studies [43, 69, 70].

Networks formed by associations between genes/proteins
and module network analysis
At the next step, we reconstructed networks presenting
pairwise interactions between genes/proteins of three
types: (1) Experimental; (2) Knowledge; (3) Homology
(see Networks formed by associations between genes/pro-
teins section). Each network involved a unique set of
genes (Fig. 7a) and had a unique set of top genes (Fig. 7b,
Table 3). That is why we decided to consider networks
of all three types in our further analysis.
We recognized clusters (highly interconnected re-

gions) in the networks. Clusters may be of different sorts
in different types of networks: (1) Clusters in a protein-
protein interaction network (Experimental) are often
protein complexes and parts of pathways, whereas (2)
clusters in a protein similarity network (Homology) rep-
resent protein families. It was found that Homology net-
work included several unconnected subnetworks (Fig. 8)
One-third of all proteins involved in this network (50
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genes/proteins) were involved into two subnetworks
comprising G protein–coupled receptors (Subnetwork 1
and Subnetwork 4) (Additional file 1: Table S8). Thus,
module network analysis confirmed our finding obtained
from functional annotation (Fig. 2b) that a substantial
part of the compendium (nearly one-sixth, or 17%) com-
prised genes encoding receptors, and G-protein-coupled
receptors among them.
One of unconnected subnetworks (Subnetwork 2) in the

network Homology consisted of 17 signal transduction
molecules (protein kinases, etc.). In addition: (1) Func-
tional analysis (Fig. 2) showed that 9% of genes from the
compendium encoded proteins involved in signal trans-
duction. (2) Sixteen overrepresented signal transduction
pathways from KEGG, REACTOME and BIOCARTA
were revealed by DAVID for the list of genes Rank_1:
genes with biological interpretation (Fig. 3). (3) Analysis of
PPI network with the MCODE tool revealed a highly
scored cluster (and then, extended cluster 3) involving
proteins associated with insulin signaling (Fig. 9), a
key energy balance signaling pathway [71, 72]. Thus,
module network analysis together with functional ana-
lysis showed that (1) genes encoding signal transduction
molecules constituted a substantial portion of genes in the
compendium and (2) signaling molecules formed a
dense network of physical and functional associations.
According to the pathway analysis performed with
DAVID, genes/proteins from overrepresented signaling
pathways are involved in BW regulation, supporting
the cellular response to well-known regulators of en-
ergy homeostasis, such as insulin [72], leptin [73],
neurotrophins (BDNF, NGF) [74], adiponectin [75],
PPARs [76], POMC [77], NPY [78], ghrelin [79], etc.
A little more than one-fifth of all proteins (22.7%) in

the Homology network were involved in the subnetworks
comprising transcription factors and coregulatory pro-
teins (Additional file 1: Table S8: Subnetwork 3, Subnet-
work 5, Subnetwork 7, Subnetwork 13, Subnetwork 14,
Subnetwork 18, Subnetwork 29, and Subnetwork 30). The
extended Cluster 2 obtained in the MCODE analysis of
the PPI network was also enriched in transcription fac-
tors and coregulatory proteins. From the functional ana-
lysis (Fig. 2b), we found that transcription factors and
coregulatory proteins constituted, respectively, 12% and
2% of all genes in the compendium. Taken together,
these observations are indicative of an important role of
transcription factors and transcriptional coregulators in
BW control. This finding is in a good agreement with
our knowledge on the cooperative interactions between
transcription factors and other coregulatory proteins
that form complicated mechanisms of transcription
complex assembly [38, 80–82].
Module network analysis performed with the MCODE

tool showed that the largest and the highest-scored

cluster in the PPI network included proteins associated
with cilium morphogenesis. Primary cilia are
microtubule-based cellular organelles protruding 1–
50 μm from the apical surface of cell membrane; they
perceive sensory cues and process extracellular signaling,
important for cell functions [83]. Primary cilia have been
recognized as the signaling center for processing a large
number of homeostasis and developmental signaling
pathways (PDGFRalpha, mTOR, Notch, Hedgehog, Wnt,
etc.) [84]. Several recent lines of indirect evidence sug-
gest a possible crosstalk between energy balance signal-
ing and ciliary signaling [56]. Receptors for energy
homeostatic neuropeptides, neurotransmitters, and
growth factors, for example, NPYR (neuropeptide Y re-
ceptor), MCHR (melanin-concentrating hormone recep-
tor), and IGFR (insulin growth factor receptor), are
located in the cilium, and they employ the ciliogenesis
machinery to transduce signals properly [57]. During
adipocyte differentiation of human adipose stem cells,
the primary cilium goes through dynamic size modifica-
tions. This suggests that the cilium has various functions
during adipogenesis [85]. A recent study by Seo S. et al.
[86] has shown that proteins distorted in the human cil-
iary disorder Bardet-Biedl syndrome (BBS proteins) are
required for leptin receptor (LepR) signaling in the hypo-
thalamus: (1) Bbs2(−/−), Bbs4(−/−) and Bbs6(−/−) mice
are resistant to the action of leptin to reduce food intake
and body weight; (2) BBS1 protein physically interacts
with the leptin receptor (LepR). In our study, LepR
was also found to be involved into the network
formed by PPIs between proteins responsible for
cilium morphogenesis (Fig. 9, extended cluster 1).
These observations prove the key role of primary cilia
in energy balance and indicate that they may be involved
in energy balance as a signaling center for processing nu-
merous homeostasis and developmental signaling path-
ways, including the LepR signaling pathway.
We found that genes involved in clusters identified with

the MCODE tool and their first neighbors (three extended
clusters, Fig. 9) were enriched in genes that were classified
to the Expressed in all and Mixed categories. This obser-
vation is in a good agreement with the fact that 17 of 20
top genes that have maximal numbers of neighbors in the
Experimental network (Additional file 1: Table S7) also
belong to the Expressed in all and Mixed categories. It also
indicates that physical interactions between proteins from
all three extended clusters revealed in our study (Fig. 9)
may be functionally significant and important in a broad
range of human tissues and organs.

The ranking of genes from the GWAS meta-analysis set
according to the number of neighbors
Meta-analysis of genome-wide association studies
(GWAS) resulted in the identification of hundreds of
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genetic variants associated with elevated body weight.
The compendium presented in this report incorporates
164 lead SNPs and 184 genes mentioned in the GWAS
meta-analysis papers (Fig. 1, Additional file 1: Tables S4
and S5). However, in most cases it is not easy to find out
how these genetic variants influence body weight. In the
current study, 119 genes from the GWAS meta-analysis
set (or ~65% of all GWAS genes) were classified to the
group Rank_2: genes without biological interpretation. That
is why we concentrated on the exploration of putative
mechanisms involving GWAS genes into BW regulation.
With this task in mind, we examined three networks

(Experimental, Knowledge, Homology) and ranked
GWAS genes according to the number of neighbors in
these three networks (Fig. 10, and Additional file 1:
Table S10). In our opinion, associations revealed for
some GWAS genes from the group Rank_2: genes
without biological interpretation may serve as an add-
itional proof of their relevance to the system of BW
regulation.

Identification of GWAS genes in the brain-specific sublist
Expression analysis confirmed the idea that the central
nervous system played a critical role in BW regulation:
Employment of the TSEA tool showed that the highest
number of genes from the compendium overlapped the
tissue-enriched list of genes compiled for the brain
(Fig. 6). Therefore, at the next step we created a brain-
specific sublist comprising 249 genes (see Sublist of pro-
teins expressed in brain section, and Additional file 1:
Table S6). We used this sublist for two tasks: (1) analysis
of the intersection between the brain-specific sublist and
genes from the GWAS meta-analysis set and (2) con-
struction of the network Experimental_brain-specific
and its further analysis.
We revealed 71 genes from the GWAS meta-analysis

set that were found among 249 genes from the sublist
brain-specific (Fig. 11). That meant that these 71 GWAS
genes were either differently expressed in hypothalamic
POMC- or AGRP-expressing neurons of mice fed ad
libitum and deprived of food [49] (21 genes), or were de-
termined by TSEA as specific to brain at the pSI thresh-
old = 0.05 (see Gene expression analysis section) (37
genes), or were found within both categories (13 genes).
As shown in Fig. 11, more than a half of GWAS genes
found in the intersection between GWAS genes and the
brain-specific sublist belonged to the group Rank_2:
genes without interpretation. Moreover, nine genes
(CBLN1, PCDH9, DOC2A, STXBP6, LRP1B, LRFN2,
RALYL, LINGO2, and HS6ST3) that belonged to Rank_2:
genes without interpretation were found in the intersec-
tion of groups Brain-specific gene according to TSEA
and DEG according to [49]. Thus, we conclude that
these nine GWAS genes are good candidates for further

functional analysis. We found that one of these nine
genes (LRP1B) belonged to the network Experimental_-
Brain-specific, (Fig. 12), and its presumed functional
relevance to BW regulation will be discussed below.

The subnetwork involving proteins expressed in brain:
search for GWAS genes
At the final step, we examined the brain-specific net-
work of genes/proteins. This network encompassed
physical interactions between proteins from the brain-
specific sublist (Additional file 1: Table S6). The Experi-
mental_brain-specific network involved 117 genes from
the compendium. Among them, 22 genes were from the
GWAS meta-analysis set (Additional file 1: Table S11).
Six GWAS genes (ETV5, LRP1B, NDUFS3, SNRPC,
ERBB4, and PRKD1) of these 22 belonged to the group
Rank_2: genes without biological interpretation. For three
PPIs (between ETV5 and AR, LRP1B and SERPINE1,
NDUFS3 and ADRB2), the quality of evidence for direct
physical interactions was very high (Table 4). Therefore,
it is highly likely that ETV5, LRP1B, NDUFS3 are
involved in the brain-specific network. Associations
involving three other genes (SNRPC, ERBB4, PRKD1)
may also take place, as follows from the evidence for
PPIs found in other species. In addition, SNRPC had
two PPIs (with TOMM40 and SNRPN), confirming the
idea that this gene/protein was involved in the Experi-
mental brain-specific network.
Thus, we suppose that these six GWAS genes

(NDUFS3 SNRPC ERBB4, ETV5, PRKD1, and LRP1B)
participate in BW regulation via PPIs with proteins
whose biological roles in BW regulation are already
known. On the base of the most confident PPIs, we
propose three putative regulatory schemes:

The first regulatory scheme (Fig. 13a)

The androgen receptor (AR) belongs to the superclass
of nuclear receptors. It serves as a negative regulator of
adipose tissue development in adult males: an increase
in the wet weights of white adipose tissues was found in
30-week-old male androgen receptor knockout mice
[87]. In the brain, particularly, in the hypothalamus,
ARs appear to participate in the regulation of insulin
sensitivity and glucose homeostasis [88]. Experiments
with AR-deficient mice demonstrated that the loss of
neuronal AR led to increased activation of hypothalamic
nuclear factor κB (NF-κB), which induces the expression
of protein-tyrosine phosphatase 1B (PTP1B) [89]. In turn,
PTP1B interferes with hypothalamic insulin signaling via
insulin receptor (INSR) dephosphorylation [90].
ETV5 was found to be one of the top 30 genes differ-

entially expressed in POMC-expressing neurons of mice
fed ad libitum and deprived of food [49]. According to
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[91], ARs may negatively regulate the transcriptional
activity of target genes through protein-protein interac-
tions with the other transcription factor, ETV5, rather
than through direct specific interaction with promoter
DNA. Thus, ETV5 may participate in the regulatory
mechanism involving NF-κB downregulation and subse-
quent decline in PTP1B activity. In turn, decreased
PTP1B activity may affect the rate of insulin receptor
dephosphorylation and thereby impair insulin signaling
in hypothalamic neurons (Fig. 13a).

The second regulatory scheme (Fig. 13b)

The SERPINE1 gene encodes serpin family E mem-
ber 1, also known as endothelial plasminogen activa-
tor inhibitor-1 (PAI1). PAI1/SERPINE1 is an
adipokine, a member of the serine protease inhibitor
family. Adipocytes are the main contributor to the
elevated levels of PAI-1/SERPINE1 seen in obesity.
However, PAI1/SERPINE1 is also produced within the
brain by neurons, astrocytes and microglia, and it
may regulate migration of microglia, survival of neur-
ites, and apoptosis [92]. PAI1/SERPINE1 was found to
be differentially expressed in mouse hypothalamic
neurons according to [41] (Sublist Brain-specific,
Sublist of proteins expressed in brain section, and
Additional file 1: Table S6). With regard to the func-
tion of PAI1/SERPINE1 in a non-obese hypothal-
amus, it is pertinent to mention that transgenic mice
overexpressing urokinase-type plasminogen activator
(uPA) in the paraventricular nucleus of the hypothal-
amus and some other brain regions also exhibit
reduced body weight and energy intake [93]. PAI1/

SERPINE1 is considered the primary inhibitor of
uPA. Thus, overexpression of PAI1/SERPINE1 within
the hypothalamus can attenuate expression of uPA
and, as a result of thereof, increase energy intake
and body weight, which are the main parameters in
obesity [92]. PAI1/SERPINE1 prevents the disintegra-
tion of formed neuronal networks by promoting or main-
taining neuroprotective signaling through the
MAPK(ERK) pathway [94]. PAI1/SERPINE1 activates
microglial cells through the LRP1/JAK/STAT1 axis and
promotes migration of microglial cells in culture [95].
LDL receptor related protein 1B (LRP1B) is a member

of the low-density lipoprotein receptor gene family. It
has been shown that PAI1/SERPINE1 is a ligand for
LRP1B [96]. On the cell surface, LRP1B binds and inter-
nalizes PAI1/SERPINE1, mediating the function of the
urokinase plasminogen activator/receptor [96]. LRP1B is
expressed in the whole brain specifically according to
TSEA and is a DEG in murine POMC- or AGRP-
expressing hypothalamic neurons [49] as well (Fig. 11,
and Additional file 1: Table S6). Therefore, we
hypothesize that LRP1B mediates the effect of PAI1/
SERPINE1 on hypothalamic neurons, promoting cell
survival and leading to increased energy intake (Fig. 13b).
This regulatory loop may involve: (1) PAI1/SERPINE1
produced by adipocytes, and (2) PAI1/SERPINE1 pro-
duced within the brain by neurons, astrocytes and
microglia as well, where it mediates paracrine and auto-
crine signaling between hypothalamic cells. In such a
way, the interaction between LRP1B and PAI1/SER-
PINE1 may contribute to the crosstalk between central
and peripheral signals produced within the brain and by
adipocytes respectively.

PTP1B

Dephosphorylation

Insulin 
signaling in 

hypothalamic 
neurons 

+

AR

Cell
survival

Adipocytes

Hypothalamus

LRP1B

ETV5

Parkinson's 
disease

Obesity

Catecholamines

Antioxidative
defense

Food intake

NDUFS3
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PARK2
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NF-
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Fig. 13 Putative regulatory pathways involving physical interactions revealed within the network Experimental_brain-specific: Panel a. Interactions
between ETV5 and AR. Panel b. Interactions between LRP1B and SERPINE1. Panel c. The regulatory scheme involving NDUFS3, PARK2, and ADRB2.
Ellipses indicate proteins/genes from the group Rank_1: genes with biological interpretation. Lozenges indicate proteins/genes from the group
Rank_2: genes without biological interpretation. Genes/proteins from the GWAS meta-analysis set are shown in blue
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The third regulatory scheme (Fig. 13c).

ADRB2 encodes beta-2 adrenoceptor, which is a major
lipolytic receptor in human fat cells [97]. ADRB2 is in-
volved in the regulation of the catecholamine function,
and it may be of particular importance for human
obesity because of the central role of catecholamines
in energy expenditure. Loss of noradrenergic termi-
nals in ventral bundle termination areas, e.g., the
hypothalamus, may lead to hyperphagia in mice [98].
OMIM contains convincing proofs of associations be-
tween ADRB2 allelic variants and obesity. In mice,
ADRB2 is differentially expressed in hypothalamic
neurons, which confirms its involvement in the
central regulation of feeding behavior. Also in mice,
ADRB2 demonstrates more than tenfold difference in
expression level between AGRP- and POMC-
expressing neurons in the fed group [49].
NADH:ubiquinone oxidoreductase core subunit S3

(NDUFS3) encodes one of the iron-sulfur protein compo-
nents of mitochondrial NADH:ubiquinone oxidoreductase
(complex I). At present, we have no idea concerning poten-
tial molecular mechanisms effecting the central regulation
of energy homeostasis (or BW) and involving physical inter-
actions between ADRB2 and NDUFS3. A small piece of
evidence indirectly confirming the idea that NDUFS3 af-
fects FB was found in the KEGG pathways database. Ac-
cording to KEGG, NDUFS3 is involved in molecular
events associated with Parkinson disease (KEGG Pathway
ID = hsa05012 - Parkinson’s disease - Homo sapiens).
NDUFS3 is a component of the first enzyme complex in
the electron transport chain of mitochondria. Cleavage of
NDUFS3 disrupts mitochondrial metabolism and gen-
erates reactive oxygen species (ROS), which trigger
the programmed cell death pathway [99]. On the
other hand, weight loss has also been reported in ad-
vanced stages of Parkinson’s disease. These weight
changes are multifactorial. They involve changes in
energy expenditure, perturbation of homeostatic con-
trol, and feeding behavior. [100]. Thus, we assume
that interactions between NDUFS3 and ADRB2 may
participate in the crosstalk between catecholamine sig-
naling and antioxidative defense mechanisms that provide
neuronal longevity and activity (Fig. 13c).
Parkin RBR E3 ubiquitin protein ligase, also known as

PARK2, was the second protein found to be the first neigh-
bor for NDUFS3 in the Experimental_brain-specific net-
work (Fig. 12). The enzyme is a component of the
multiprotein E3 ubiquitin ligase complex that mediates the
targeting of substrate proteins for proteasomal degradation.
PARK2 regulates cell proliferation or cell survival [101]. In
mice, E3 ligase Park2 is upregulated in AGRP-expressing
neurons during food deprivation [49]. The quality of evi-
dence confirming interactions between NDUFS3 and

PARK2 was not high (Table 4). Nevertheless, PARK2
involvement in autosomal recessive juvenile Parkinson
disease [102] confirms the regulatory scheme presented in
Fig. 13c.

Conclusions
Obesity is a complex disorder, involving multiple genes
and multiple biological processes and physiological sys-
tems in the human body. The main objectives of the
present study were: (1) to collect as full as possible list of
genes involved in FB and BW regulation and to formalize
it as a compendium; (2) to obtain functional characteris-
tics of genes by using different theoretical approaches and
to create a catalog of biological processes, biochemical/
signaling pathways, and organs/tissues important for the
regulation of BW and FB; and (3) to rank GWAS genes.
At present, the compendium contains 578 human

genes for which there are indications of their direct or
indirect relevance to the regulation of feeding behavior
or body weight.
Here we present functional characteristics of genes

regulating FB and BW that were revealed based on the
compendium by using several complementary theoretical
approaches. We admit that none of them can objectively
define the most important feature of genes. Nevertheless,
we found that the integration of approaches was useful be-
cause the combined result demonstrated the complexity
and hierarchy of FB and BW regulation.
On the results of our complex analysis, we revealed

and catalogued molecular functions of encoded proteins,
biological processes, and biochemical or signaling path-
ways enriched in genes from the compendium. We out-
lined a group of tissues and organs important for FB and
BW control (Fig. 14). We analyzed networks formed by
associations between genes/proteins from the compen-
dium and revealed notable clusters formed by G
protein-coupled receptors and nuclear receptors, as well
as extended clusters of genes involved in the following
basic intracellular processes: cilium morphogenesis,
transcription regulation, and insulin signaling. We ana-
lyzed expression data from the Human Protein Atlas
[42] and concluded that physical interactions between
proteins involved in extended clusters associated with
basic intracellular processes may be functionally sig-
nificant in a broad range of human tissues and or-
gans. Thus, on the base of module network analysis
we organized data on functional groups of genes from
compendium that orchestrate the biological activities
of different cell types from different tissues and or-
gans according to the demands of the whole human
body (Additional file 1: Tables S5, S8, S9).
The expression analysis demonstrated that the highest

number of genes from the compendium belonged to the
brain list of tissue-enriched genes. Thus, our result
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confirms the widespread opinion that the central nervous
system plays a critical role in body weight regulation. In
view of this fact, we reconstructed the brain-specific net-
work formed by physical interactions among genes/proteins
from the compendium. Resting on the analysis of the

brain-specific network, we proposed potential mechanisms
involving three GWAS genes (ETV5, LRP1B, and NDUFS3)
in body weight regulation.
The assortment of genes in the compendium provided

us with the possibility to prioritize genes from the

Fig. 14 A catalog of functional characteristics of genes regulating BW and FB revealed in the current study. Here we present only the most important
molecular functions, biochemical/signaling pathways, organs/tissues, and biological processes: (1) non-overlapping functional groups of genes that
were overrepresented in the compendium; (2) the classification of enriched pathways performed using the hierarchical scheme provided by the KEGG
pathway database (the full list of pathways is presented in Fig. 3 and Additional file 2: Figure S1); (3) TSEA organs and tissues with the cell-specific lists
of tissue-enriched transcripts/genes that were overrepresented with genes from the group Rank_1: genes with biological interpretation; (4) homologous
groups of proteins including more than three proteins; (5) extended clusters with scores of initial clusters exceeding 3.3
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Fig. 15 Ranking and classification of GWAS genes from the compendium according to various criteria. For ranking based on the number of
neighbors in three networks, we present three top genes for each network. For GWAS genes involved in the brain-specific network, three top
genes (selected according to the number of neighbors) are presented
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GWAS meta-analysis set. Prioritization of the GWAS
genes is a distinct and important problem due to the
lack of information on the biological roles of many
GWAS genes in BW control. We performed five ranking
procedures (Fig. 15) taking into account: (1) knowledge
on the biological role in FB/BW regulation; (2) the num-
bers of neighbors in three networks; (3) the involvement
in the brain-specific sublist of genes; (4) the numbers of
physical interactions within the brain-specific network;
and (5) the confidence of PPIs in the brain-specific net-
work (this procedure was performed for GWAS genes
from the group Rank_2: genes without interpretation).
Here we present the most comprehensive catalog of

functional characteristics of genes controlling body
weight than those published before in the most recent
studies [5, 29]. Use of different sources of data (Publica-
tions, OMIM, and GWAS) allowed us to select and
analyze more than five hundred genes. As a result, we
(1) formed a more complete list of tissues and organs
important in body weight control (aside from the brain
or parts of the central nervous system) and (2) distin-
guished a unique combination of functional characteris-
tics of proteins notable for body weight regulation. The
framework formed by these proteins (G protein-coupled
receptors, cilium and BBSome components, transcrip-
tion factors, and proteins involved in insulin signal-
ing) regulates the biological activities of particular
cells in accordance with the energy state at the
whole-body level.
Our analyses can be regarded as a new step towards

a comprehensive list of genes, tissues/organs, bio-
logical processes, and pathways involved in FB and
BW regulation. It may provide grounds for the devel-
opment of more holistic disease models and new
therapeutics, which is one of the major concerns of
obesity research.
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