
 International Journal of 

Molecular Sciences

Article

Adsorption and Release of Sulfamethizole from Mesoporous
Silica Nanoparticles Functionalised with Triethylenetetramine

Cristina Carucci 1,2 , Nicola Scalas 1, Andrea Porcheddu 1 , Marco Piludu 2,3, Maura Monduzzi 1,2 and
Andrea Salis 1,2,*

����������
�������

Citation: Carucci, C.; Scalas, N.;

Porcheddu, A.; Piludu, M.; Monduzzi,

M.; Salis, A. Adsorption and Release

of Sulfamethizole from Mesoporous

Silica Nanoparticles Functionalised

with Triethylenetetramine. Int. J. Mol.

Sci. 2021, 22, 7665. https://doi.org/

10.3390/ijms22147665

Academic Editor: Bice Conti

Received: 12 May 2021

Accepted: 14 July 2021

Published: 17 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, SS 554 Bivio
Sestu, 09042 Monserrato, CA, Italy; cristina.carucci@unica.it (C.C.); nicola.scalas@tiscali.it (N.S.);
porcheddu@unica.it (A.P.); monduzzi@unica.it (M.M.)

2 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via Della Lastruccia 3,
50019 Sesto Fiorentino, FI, Italy; mpiludu@unica.it

3 Dipartimento di Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu,
09042 Monserrato, CA, Italy

* Correspondence: asalis@unica.it; Tel.: +39-070-675-4362

Abstract: Mesoporous silica nanoparticles (MSN) were synthesised and functionalised with tri-
ethylenetetramine (MSN-TETA). The samples were fully characterised (transmission electron mi-
croscopy, small angle X-ray scattering, Fourier transform infrared spectroscopy, thermogravimetric
analysis, zeta potential and nitrogen adsorption/desorption isotherms) and used as carriers for the
adsorption of the antimicrobial drug sulphamethizole (SMZ). SMZ loading, quantified by UV–Vis
spectroscopy, was higher on MSN-TETA (345.8 mg g−1) compared with bare MSN (215.4 mg g−1)
even in the presence of a lower surface area (671 vs. 942 m2 g−1). The kinetics of SMZ adsorption on
MSN and MSN-TETA followed a pseudo-second-order model. The adsorption isotherm is described
better by a Langmuir model rather than a Temkin or Freundlich model. Release kinetics showed a
burst release of SMZ from bare MSN samples (k1 = 136 h−1) in contrast to a slower release found with
MSN-TETA (k1 = 3.04 h−1), suggesting attractive intermolecular interactions slow down SMZ release
from MSN-TETA. In summary, the MSN surface area did not influence SMZ adsorption and release.
On the contrary, the design of an effective drug delivery system must consider the intermolecular
interactions between the adsorbent and the adsorbate.

Keywords: MSN; antimicrobial drug; adsorption; kinetics; isotherms; release

1. Introduction

The goal of an efficient drug delivery system (DDS) is to directly transport the correct
amount of therapeutic molecules to the target with a tailored and controlled release [1].
Among nanocarriers for in situ drug delivery, mesoporous silica nanoparticles (MSNs) are
likely one of the most promising [2,3]. MSNs have a regular highly reproducible, ordered,
mesoporous structure constituted by cylindrical pores (pore size 2–5 nm), with a high sur-
face area (~700–1000 m2 g−1) that provides high drug loadings [4]. MSN surface functional-
isation plays more than one important role, increasing their biocompatibility [5], inserting
targeting molecules [6] as well as hosting stimuli-responsive moieties [7,8]. Among various
types of MSN, MCM-41 (Mobile Composition of Matter No. 41) has been widely studied in
biomedicine [9], thanks to their ordered parallel pore channels that facilitate drug diffu-
sion [10–13]. For all these reasons, many studies have explored the use of functionalised
MSNs (with MCM-41 matrix) as drug delivery systems for a wide range of applications
such as anticancer [14], antiviral [15] antituberculosis [16], anti-inflammatory [17], antihy-
pertensive [18], and antibacterial treatments [19–26]. For example, Lu et al. reported high
tumour suppression effect in vivo of camptotecin loaded on MSN for cancer cells target [27].
To develop an antiviral DDS, Lee and co-workers modified MSNs with glycosaminoglycan
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to inhibit the viral entry of herpes simplex virus [28]. In vitro release of Rifampim, an
anti-tuberculosis drug, was tested from bare MSN achieving up to 95% drug release in
24 h [16]. In another work, Gounani et al. loaded polymyxin B on MSNs obtaining a high
antibacterial efficiency and an improved biocompatibility of the DDS [29].

Nowadays, antibiotic resistance is one of the biggest health threats [30]. Infections
caused by bacteria resistant to common antibiotics have become a global healthcare prob-
lem in the 21st century. By 2050, the development of antibiotic-resistant bacteria will
cause severe infections difficult to diagnose and treat [31,32]. Common health treatments
are at risk due to superbugs (multi-drug resistant bacteria) that persist in hospitals (i.e.,
methicillin-resistant Staphylococcus aureus) [33].

Among other antimicrobial drugs of high and very high importance such as gly-
copeptides, lipopeptides, penicillins, quinolones [34], sulphonamides have been studied
as bacteriostatic drugs, particularly against the hard-to-treat resistant bacteria resulting in
nosocomial infections [35]. Sulphonamides inhibit the enzymatic synthesis of folic acid by
competing with the natural substrate p-aminobenzoic acid of dihydropteroate synthase,
thus reducing the effective enzyme activity [36]. Folic acid is an essential nutrient necessary
for protein and nucleic acid synthesis (DNA and RNA) in bacteria cells. As a result of folic
acid biosynthesis inhibition, bacterial cells stop growing, preventing their reproduction
and infectivity [37,38]. Sulphonamide drugs are also used as topical ointment for burn
wounds [39]. Among them sulphamethizole (SMZ) is a drug used in the treatment of
urinary tract infections [40].

Several research papers investigated the drug delivery of sulphonamides. Ghedini
et al. studied a DDS for the controlled release of silver sulphadiazine for topical adminis-
tration from hybrid gels using chitosan and silica as precursors [41]. Recently, Rosas et al.
studied the release of the same compound from MIL-53(Al) MOFs reaching up to 80%
release in physiological conditions [42]. Suman et al. reported the impregnation of silver
sulphadiazine on SBA-15 mesoporous silica reaching a 95% release in simulated body fluid
after 48 h [43].

According to Vallet-Regì and co-workers, tailored functionalisation of silica nanoparti-
cles is fundamental in developing the third generation DDS [21,44–46]. Owing to the strong
presence of peptidoglycan and phosphate groups, most bacterial cell walls are negatively
charged. Hence, positively charged nanoparticles may interact with bacteria cell walls
through electrostatic forces. Casey et al. analysed the bacterial viability with three differ-
ent types of functionalised MSNs, amine (positive), carboxylic (negative) and aromatic
(neutral) finding that the positively charged functionalisation resulted in a reduction of
Staphylococcus aureus biofilms [47]. Similarly, Zaharudin et al. analysed the loading and
release of quercetin and gemcitabine from functionalised MSN-NH2, MSN-SH and MSN-
COOH [48]. Through the same antibacterial mechanism, Niu et al. coated silver core MSN
with a cationic polymer QPEI (quaternary ammonium polyethyleneimine). Owing to the
high positive charge of the so-constructed Ag@MSN-QPEI, the DDS showed antibacterial
effect against Gram negative Pseudomonas syringae [49]. Dendrimers of third generation
(G3), composed of high concentration of positively charged amino groups, were also used
as external MSN functionalisation resulting in exceptional disruption of E.Coli biofilm [19].
Mas et al. decorated MSN with n-[(3-trimethoxysilyl)propyl]ethy-lendiamine triacetic
acid trisodium salt and with the cationic polymer ε-poly-l-lysine. The obtained positively
charged DDS was loaded with rhodamine or vancomycin resulting in an antimicrobial
nanodevice with high toxicity towards Gram negative E.Coli [50]. All those studies point
out the importance of positively charged groups grafted on the external surface of MSNs.

The triethylenetetramine (TETA) molecule possess four amino groups that are easily
protonated at physiological pH [51,52]. Rotello et al. showed that gold nanoparticles
functionalised with TETA become positively charged and can efficiently load siRNA,
serving as an antiviral DDS [53]. Unlike long-chain functionalisation moieties, which
might clog MSN mesopores and thus negatively affect the drug adsorption and release,
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short-chained TETA might be a promising candidate as a positively charged functionalising
agent for new DDS.

This work aims to prepare TETA functionalised-MSNs as carriers for the delivery of
antimicrobial drugs (Scheme 1) [54]. To this purpose, a model drug, SMZ, was adsorbed on
MSN-TETA and for comparison on bare MSNs. The samples were characterised through
TEM, SAXS, FTIR, TGA, ELS and N2 adsorption/desorption isotherms. The kinetics and
thermodynamics of SMZ adsorption were studied. Finally, the release of SMZ from MSN
and MSN-TETA samples was investigated in a simulated body fluid (pH = 7.4, ionic
strength = 150 mM) at T = 37 ◦C.
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Scheme 1. Schematic of MSN-TETA-SMZ as a possible antimicrobial nano-drug.

2. Results
2.1. MSN Structural Characterisation

As described in Section 3.2, MSNs were synthesised using a CTAB template following
a method applied in previous work [52]. Subsequently, a Cl-propyl moiety was introduced
on the MSN surface to prepare MSN-Cl, which was further treated with TETA to obtain
the functionalised MSN-TETA hybrid system. TEM images in Figure 1 show that most
MSNs have a spherical or ellipsoidal shape with sizes around 100 nm. The cylindrical
channels and the typical hexagonal array of pores (e.g., Figure 1B) can be seen for all
porous nanoparticles.
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SAXS patterns of MSN, MSN-Cl and MSN-TETA samples showed a strong peak due
to the (100) plane and other two weak peaks due to the (110) and (200) planes (Figure 2A).
SAXS and TEM analyses confirm the characteristic MSN pattern (based on MCM-41 matrix),
which corresponds to an ordered 2D hexagonal structure and p6mm space group [55]. The
lattice parameter a is about 47 Å for MSN and the functionalised samples, confirming that
the hexagonal array of pores is not affected by surface functionalisation.
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Figure 2. (A) SAXS patterns and (B) Adsorption/desorption N2 of MSN, MSN−Cl, MSN−TETA samples.

Figure 2B shows the N2 adsorption/desorption isotherms of MSN, MSN-Cl and MSN-
TETA samples. All curves show a sharp increase of N2 volume adsorption at a relative
pressure P/P0 = 0.2–0.3, due to small-sized pores filled by relatively small volumes of N2.
MSN had a BET surface area of 942 m2 g−1 that decreased after functionalisation, becoming
744 m2 g−1 and 671 m2 g−1 for MSN-Cl and MSN-TETA, respectively. The pore volume
decreased consistently with TETA functionalisation (Table 1).

Table 1. Surface area (SBET), pore volume (Vp), lattice spacing (a), zeta potential (ζ) and functional-
ization loadings (L) of MSN, MSN-Cl and MSN-TETA samples.

Sample
a SBET

(m2g−1)

b Vp
(cm3g−1)

c dp (Å) d a (Å) e ζ (mV) f L (µmol g−1)

MSN 942 0.78 25 48 −23 -
MSN-Cl 744 0.77 25 47 −8 770

MSN-TETA 671 0.62 24 46 +27 469
a Specific surface area calculated by the BET equation. b Pore volume from the desorption branch calculated
at P/P0 = 0.99 by BJH method. c Pore diameter calculated by BJH method using desorption branch isotherm.
d Lattice parameter obtained by SAXS patterns. e Zeta potential obtained in suspending particles in distilled
water. f Functionalisation of propyl-Cl and propyl-TETA loadings calculated by TGA.

The FTIR spectrum of MSN (Figure 3A) shows an intense broad peak at 1060 cm−1

and a less intense peak at 800 cm−1. These typical signals are assigned to the asymmetric
and symmetric stretching vibrations of the Si-O-Si bond. Cl-propyl functionalisation is
confirmed by the loss of the silanol peak at 976 cm−1, whereas MSN-TETA shows an
additional peak at 1642 cm−1 which might be attributed to -NH2 bending.

The functionalisation of MSN samples was confirmed by thermogravimetric analysis
(Figure 3B). Mass losses at T < 100 ◦C are attributed to the loss of humidity. Between 100
and 200 ◦C, no significant changes in mass are observed for all samples. However, above
200◦C MSN-Cl loses a mass of 8.4% while MSN-TETA loses a mass of 17.3%. This difference
(8.9%) is likely due to the TETA moiety. The functionalisation loadings calculated using TG
analysis are listed in Table 1.
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In addition, the functionalisation of MSN is also confirmed by zeta potential measure-
ments carried out suspending the different samples in milli-Q water without background
salt (Table 1). MSN sample has a negative zeta potential (ζ = −23 mV) due to the dissocia-
tion of the silanol groups at pH > 2–3 [56]. The sample MSN-Cl has a less negative zeta
potential (ζ = −8 mV) likely since replacement of most silanols with Cl-PTES has occurred.
MSN-TETA system displays a positive zeta potential (ζ = +27 mV) due to the functionalisa-
tion with triethylenetetramine groups, which are protonated in aqueous solution.

2.2. SMZ Adsorption on MSN and MSN-TETA

SMZ drug was then adsorbed on MSN and MSN-TETA samples. SMZ presence on
MSN is qualitatively confirmed by FTIR spectra (Figure 4A). The bands at 3447 e 3343 cm−1

are assigned to the symmetric and asymmetric stretching of aromatic -NH2 [57], while that
at 3220 cm−1 is assigned to stretching of the S-N bond in SO2NH. The other two peaks, as-
sociated with O=S=O stretching (1450 e 1556 cm−1), and O=S=O bending (568 a 487 cm−1),
confirm the loading of the drug on both MSN and MSN-TETA samples, respectively. A
mass loss at T > 200 ◦C is observed for MSN-SMZ (12.3%) and MSN-TETA-SMZ (33.7%).
Mass loss is entirely assigned to SMZ for MSN, while in the case of MSN-TETA, the loss
of 33.7% can be only in part due to SMZ, since the decomposition of propyl-TETA moiety
(17.3%) occurs in the same temperature range. These mass loss data, considered the contri-
bution of the TETA moiety, correspond to a SMZ loading of 163 mg g−1 and 123 mg g−1

for MSN-TETA and MSN, respectively.
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2.3. Adsorption Kinetics of Sulphamethizole on MCM-41 and MCM-41-TETA

The adsorption kinetics of SMZ on MSN and MSN-TETA was then studied. The
adsorbed amount (qt, mg g−1) of SMZ drug as a function of the contact time is shown
in Figure 5A. Both samples show a rapid qt increase within the first phase of adsorption
reaching equilibrium after approximately 5 h. Data were analysed with pseudo-first-order
(Figure 5B) and pseudo-second-order (Figure 5C) kinetic models [52,58]. The low R2 of
the pseudo-first order model suggests that this model is not suitable to describe SMZ
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adsorption. On the contrary, the pseudo-second order model fits the experimental data
quite well (R2 = 0.99 for both samples). This is also confirmed by the adsorbed amounts
at equilibrium (qeq) of the experimental data compared against the data calculated by the
pseudo-second order model. Indeed, calculated qeq were 216.2 and 332.2 mg g−1 for MSN
and MSN-TETA, respectively, with the experimental values being 232.9 and 389.1 mg g−1

for MSN and MSN-TETA, respectively (see Table 2). This finding agrees with Fukahori
et al. who studied the adsorption kinetics of SMZ on zeolites at pH 3.8 [59].
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Table 2. Kinetic parameters for SMZ adsorption on MSN and MSN-TETA.

Pseudo-First Order Pseudo-Second Order

Sample qeq exp
(mg g−1)

k’
(min−1)

qeq calc
(mg g−1) R2

k”
(g mg−1

min−1)

qeq calc
(mg g−1) R2

MSN-SMZ 232.9 4.8 × 10−4 81.3 0.17 6.4 × 10−4 216.2 0.99
MSN-TETA-SMZ 389.1 1.4 × 10−4 40.2 0.005 2.9 × 10−4 332.2 0.99

2.4. Adsorption Isotherms of Sulphamethizole on MCM-41 and MCM-41-TETA

The adsorption isotherms of SMZ on MSN and MSN-TETA samples at 298 K were
then determined. Figure 6 shows the SMZ adsorbed amount (qeq, mgSMZ/gMSN/MSN-TETA)
vs. its equilibrium concentration in the adsorbing solution (Ceq, mgSMZ/mL). The high-
est SMZ loadings were obtained with the functionalised MSN-TETA, corroborating the
figures reported above from TGA (Figure 4). The experimental data were analysed using
Freundlich, Temkin and Langmuir models as described in the experimental section [60,61].
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Temkin (Figure 6A) and Freundlich (Figure 6B) models show a low correlation coeffi-
cient for MSN samples (R2 = 0.85 and R2 = 0.88, respectively). Langmuir (Figure 6C) model
shows the best correlation coefficient for both MSN and MSN-TETA samples (R2 = 0.90 and
0.95, respectively) (Table 3). This suggests the formation of SMZ monolayer on both MSN
and MSN-TETA, although a clear plateau is not reached within the explored concentration
range. However, higher SMZ concentrations in the adsorbing solution could not be used be-
cause of solubility limitations. Jia et al. studied the adsorption behaviour of sulphadiazine
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(SDZ), sulphamethoxazole (SMX), and sulphadoxine (SDX) on a MIL-101(Cr)@GO metal
organic framework [62]. They found a maximum loading capacity of 135.1 mg g−1 for SDZ,
101.0 mg g−1 for SMX and 119.1 mg g−1 for SDX. The estimated maximum monolayer
coverage of SMZ found in our work is higher for MSN-TETA (465.3 mg g−1) than for MSN
(442.0 mg g−1). In our experimental conditions, the highest adsorbed amount of SMZ is
345.8 mg g−1 for MSN-TETA and 215.4 mg g−1 for MSN samples (Figure 6). Interestingly,
a significant higher loading is found for MSN-TETA system compared with MSN although
functionalisation decreases the surface area available for SMZ adsorption, as demonstrated
by N2-isotherms experiments. The higher SMZ adsorption obtained with MSN-TETA
carrier might be due to the establishment of favourable interactions between the adsorbent
and the adsorbate. Indeed, SMZ molecules are in anionic form already at pH > 5.3 (pI
~ 4 due to pKa1 = 2.1 ± 0.2 and pKa2 = 5.3 ± 0.2) [63]. It may be suggested that TETA
groups, which make MSN-TETA surface positively charged, attract the negatively charged
SMZ molecules, thus favouring a higher loading than that of bare MSN, as a result of
electrostatic interactions. Similar behaviour was previously observed for ampicillin [64],
sulphasalazine [65] and nucleic acids [66].

Table 3. Adsorption isotherm parameters for SMZ on MSN and MSN-TETA.

Sample Temkin Freundlich Langmuir

qexp
(mg g−1)

bt
(J mol−1)

AT
(mL mg−1) R2 KF

(L mg−1) n R2 KL
(L mg−1)

qmax
(mg g−1) R2

MSN-SMZ 215.4 37.5 1.1 0.85 33.5 1.4 0.88 0.08 442.0 0.90
MSN-TETA-

SMZ 345.8 25.7 2.1 0.95 83.7 1.8 0.94 0.18 465.3 0.95

2.5. In Vitro Release of SMZ

In vitro release of SMZ from MSN and MSN-TETA carriers was then studied. The
maximal released amount (Amax%) of SMZ was 69.8% and 42.7% for MSN and MSN-TETA,
respectively (Table 4). The kinetic release constant k1 has a very high value for bare MSN
consistent with a burst release of the drug. In contrast, SMZ is released more slowly from
MSN-TETA (k = 3.04 h−1), thus indicating that TETA functionalisation slows down drug
release (Figure 7). The same attractive interactions that promote a higher loading of SMZ
on MSN-TETA surface are likely responsible of the lower and slower drug release. The
maximal amounts of released drug correspond to an SMZ concentration in the release
solution of 171 µg mL−1 and 102 µg mL−1 for MSN and MSN-TETA, respectively. It is
interesting to compare these concentrations with the dose of SMZ, or other similar drugs,
in biological fluids. Sulfamethoxazole has a chemical structure similar to that of SMZ (an
oxazole substitutes the thiadiazole moiety) and is also used in urinary tract infections as
bacteriostatic in combination with trimethoprim [67]. After 8 h of oral administration,
sulphamethoxazole reaches in an adult (24–34 years old) a blood concentration that varies
from 98 to 128 µg mL−1 [68]. The active therapeutical sulfamethoxazole is counted in
serum rather than in blood, with an optimal peak concentration of 100–150 µg/mL [69,70].
These values are comparable with the maximum SMZ concentration released by MSN and
MSN-TETA found in the present work.

Table 4. Kinetic parameters for SMZ release from MSN and MSN-TETA.

Samples k1 (h−1) Amax (%) Amax (µg mL−1) R2

MSN-SMZ 136 69.8 171 0.98
MSN-TETA-SMZ 3.04 42.7 102 0.96
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3. Materials and Methods
3.1. Materials

Hexadecyltrimethylammonium bromide CTAB (>99%), tetraethoxysilane TEOS (98%),
anhydrous toluene (99.8%), triethylenetetramine TETA (≥97%), NaH2PO4 (99%), Na2HPO4
(99%), NaCl, NaOH, 3-chloropropyltrimethoxysilane CPTMS (≥97%), toluene, ammonium
nitrate NH4NO3, sulphamethizole (99%) and dimethylformamide (DMF ≥ 99.9%), were
purchased from Sigma Aldrich (Milano, Italy). Ethanol (99.8%) was provided by Honeywell.

3.2. Synthesis and Functionalisation of MSNs

MSN samples were synthesised as described elsewhere [64]. Briefly, 3.5 mL of NaOH
(2 M) was added under stirring to 480 mL of H2O with 1 g of CTAB avoiding bubbles
formation. The mixture was immersed in an oil bath at 80 ◦C with mild stirring. Before
slowly adding 5 mL of TEOS with a syringe, stirring was increased up to 400 rpm. The
reaction mixture was then kept at 80 ◦C for 2 h. The product was then collected, filtered
and washed with water and ethanol. CTAB extraction was carried out by suspending 3 g of
product in 1 L of a EtOH/H2O (95:5 v/v) solution containing NH4NO3 10 g L−1, kept for
2 h at 80 ◦C. TETA functionalisation was conducted by a method similar to that reported in
the literature for other silica materials [71]. Briefly, 0.7 mL of CPTMS was added to 1 g of
MSN suspended in 25 mL of anhydrous toluene. The reaction mixture was left overnight
under reflux at 110 ◦C. The obtained MSN-Cl was filtered, washed with toluene, ethanol
and water and dried at 40 ◦C. A mass of 1.12 g of TETA were solubilised in 2 mL of DMF
under heating for 1 or 2 min at ~30 ◦C. A mass of 1 g of MSN-Cl was then suspended in
the TETA solution in DMF and left under stirring for 25 h at 110 ◦C.

3.3. Physico-Chemical Characterisations

MSN samples were characterised through transmission electron microscopy (TEM),
small-angle X-rays scattering (SAXS), N2 adsorption–desorption isotherms, Fourier-transform
infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and electrophoretic light
scattering (ELS, zeta potential). TEM images were obtained on a JEOL 100S microscope.
Small-angle X-ray scattering (SAXS) patterns were recorded with a S3-MICRO SWAXS camera
system (HECUS X-ray Systems, Graz, Austria). The scattering patterns were recorded for
1 h. Textural analysis was carried out on an ASAP 2020 instrument, by determining the N2
adsorption/desorption isotherms at 77 K. Before analysis, MSN samples were heated at 250 ◦C
at a rate of 1 ◦C/min under vacuum for 12 h. MSN-Cl, MSN-TETA and MSN-TETA-SMZ were
heated at 25 ◦C at the rate of 1 ◦C/min under vacuum for 12 h. The Brunauer–Emmett–Teller
(BET) [72] and Barrett–Joyner–Halenda (BJH) [73] methods were used to calculate surface
area, pore volume and pore size distribution (from the desorption branch of N2 isotherm).
FTIR studies were conducted with a Brüker Tensor 27 FTIR spectrometer equipped with
a diamond-ATR accessory in the 4000–400 cm−1 range with a number of 128 scans at a
resolution of 2 cm−1. TGA measurements were carried out in the T range 25–850 ◦C (heating
rate = 10 ◦C/min), and under oxygen flow by means of a Perkin Elmer TGA7/DSC7.
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3.4. Adsorption Kinetic Models

Kinetics of SMZ adsorption on MSN and MSN-TETA was determined [60] by suspend-
ing 10 mg of MSN or MSN-TETA in 1 mL of a SMZ solution (10 mg mL−1) in a mixture
of EtOH/H2O 60:40, and left under rotation for 60, 100, 300, 360, 1320 and 1440 min at
25 ◦C. The supernatant was then assayed in a quartz cuvette taking 3 µL of solution and
diluting it in 3 mL of a EtOH/H2O 60:40 solution. At different times, the supernatant
of each sample was analysed through an Agilent Cary 60 UV–Vis spectrophotometer at
280 nm. The concentration of SMZ in the adsorption solution was calculated through a
calibration curve (concentration range 0.5–20 mg mL−1). The residual SMZ concentration
evaluated by UV–Vis and the corresponding adsorbed amount qt (mg g−1) was plotted vs.
time. Kinetics measurements were analysed by different kinetic models named as:

Pseudo-first-order (differential form) [74]

dqt

dt
= k′

(
qeq − qt

)
(1)

for which the linearised form is expressed as:

ln
(
qeq − qt

)
= lnqeq − k′ (2)

qeq is the adsorbed quantity of adsorbate at the equilibrium and qt the adsorbed
quantity (mg g−1) at time t (min), k′ is the pseudo first order kinetic constant expressed
in min−1.

Alternatively, the pseudo-second-order model was used [75]:

dqt

dt
= k′(qeq − qt

)
(3)

for which the linearised form is expressed as:

t
qt

=
1(

k′′qeq2
) +

t
qeq

(4)

where k” is the pseudo-second-order kinetic constant (g mg−1 min−1).

3.5. Adsorption Isotherms

Adsorption isotherm studies were carried out by suspending 10 mg of MSN or MSN-
TETA in 1 mL of a solution of SMZ dissolved in a EtOH/H2O 60:40 mixture at different
concentrations (from 1.1 to 16.7 mg mL−1) under constant rotation for 24 h at 25 ◦C. The
SMZ equilibrium concentration in the supernatant, obtained by centrifugation for 2 min at
1500 rpm, was then assayed by UV–Vis spectroscopy. A volume of 3 µL of the supernatant
was diluted in 3 mL of a solution EtOH/H2O 60:40 in a quartz cuvette. The absorbance
of SMZ solutions was measured through an Agilent Cary 60 UV–Vis spectrophotometer
at 280 nm, and the concentration of SMZ in the adsorption solution was calculated with
the appropriate calibration curve (concentration range 0.5–20 mg mL−1). Adsorption data
were fitted through Freundlich, Temkin, and Langmuir models.

Freundlich model describes the adsorption isotherm as [76]:

qeq = KFC1/n
eq (5)

In which, qeq is the adsorbed amount (mg of adsorbate/g of adsorbent), Ceq (mg mL−1)
is the equilibrium concentration, KF (support capacity, L mg−1) is Freundlich constant and
n (heterogeneity factor) is a dimensionless parameter that describes the heterogeneous
adsorbent surface. Both empirical parameters are specific for adsorbent–adsorbate inter-
actions at a specific temperature. With heterogeneous adsorption sites, a formation of
multilayer is to be expected.
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The Langmuir model [77]:

qeq =
qmaxKLCeq

1 + KLCeq
(6)

where, qeq is the adsorbed amount at the equilibrium (mg g−1), qmax is the maximum cover
capacity (mg g−1), KL is Langmuir constant (L mg−1) and Ceq (mg mL−1) is the equilibrium
concentration. Langmuir model assumes that the adsorbent is homogeneous, and all the
sites are equivalent, and only a monolayer of molecules is permitted.

Temkin model [78]:

qeq =
RT
bT

ln
(

AtCeq
)

(7)

where, bT is the Temkin constant (J mol−1), R is ideal gas constant (J mol−1 K−1), T is the
absolute temperature (K), AT is the isotherm equilibrium binding constant (mL mg−1) and
Ceq (mg mL−1) is the equilibrium concentration. According to Temkin model, the indirect
effect of adsorbent–adsorbate interactions matters. It assumes that the adsorption enthalpy
of adsorbed drug is due to an increase in surface covering.

3.6. Kinetics of SMZ Release

SMZ release kinetic studies were carried out suspending 50 mg of MSN-SMZ or MSN-
TETA-SMZ samples in different vessels containing 50 mL of 100 mM phosphate buffer pH
7.4 NaCl 150 mM (PBS) at 37 ◦C. To analyse the SMZ release, other withdrawals were made
at different times within 25 h. Each withdrawal was made of 2 mL, and the same amount of
liquid was reconstituted with PBS buffer in each vessel to maintain “sink conditions” [79].
Results were analysed with an appropriate calibration curve and reported in percentage by
the equation [80]:

Mt

M0
(%) = Amax

(
1− e−kt

)
(8)

where Mt (mg) is drug mass at time of the withdrawal t, M0 (mg) is the mass of drug
loaded, Amax is the maximum drug release and k1 (h−1) is the release constant rate.

4. Conclusions

Herein, a new DDS based on SMZ loaded on MSN and MSN-TETA is reported.
TEM and SAXS structural characterisations confirmed the successful synthesis of MSN
having the typical hexagonal structure. N2-isotherms of MSN showed a surface area of
942 m2 g−1 that, as expected, and decreased because of material functionalisation. TGA
and FTIR techniques were used to characterise functionalised and post-adsorption samples,
highlighting a higher drug loading with MSN-TETA (up to 345 mg g−1), despite its lower
surface area value (671 m2 g−1), with respect to that of MSN (up to 215.4 mg g−1). SMZ
adsorption kinetics on both MSN and MSN-TETA was consistent with a pseudo-second-
order model, whereas the adsorption isotherms were consistent with the Langmuir model.
The SMZ release of both materials was studied achieving up to 69.8% (171 µg mL−1) for
MSN and 42.7% for MSN-TETA (102 µg mL−1). The latter concentration is very similar to
the concentration of similar drugs measured in the blood. Interestingly, SMZ release was
slower from MSN-TETA (k1 = 3.04 h−1) compared with MSN (k1 = 136 h−1). These findings
highlight the importance of the establishment of suitable drug–carrier interactions. Indeed,
as observed here, the positive charged functionalisation with TETA moieties may favour
the interactions with the negatively charged SMZ rather than the negatively charged MSN
surface. The attractive electrostatic interaction between SMZ and MSN-TETA surface is
responsible for a higher loading and a slower release compared with the SMZ-MSN pair.
The present DDS, based on SMZ loaded on MSN-TETA obtained here, could be potentially
used against Gram negative bacteria such as E. coli to treat urinary tract infections. The
therapeutic antibacterial activity of the promising DDS will deserve to be tested in a
future work.
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