
1. Study Area and Methods
The ESA/ROSCOSMOS ExoMars 2022 mission consists of a rover named “Rosalind Franklin” and a sur-
face platform named “Kazachok” (J. Vago et al., 2015). In 2023, the mission will land in Oxia Planum 
(18.2° N; 24.3° W) to search for signs of past or present life on Mars and to perform long-term atmospheric 
investigations (Rodionov et al., 2017; J. L. Vago et al., 2017). Oxia Planum shows large outcrops of Noachi-
an-aged phyllosilicates (a light-toned sedimentary/clay bearing unit) and a fan delta enriched in hydrated 
silicates, which record two distinct alteration environments and events (Carter et al., 2016; Lakdawal-
la, 2019; Pajola et al., 2017; Quantin-Nataf et al., 2016, 2021; J. L. Vago et al., 2017). The clay bearing unit 
is unconformably overlain by a Amazonian dark resistant unit (Adru or Capping Unit; Quantin-Nataf 
et al., 2016, 2021; J. L. Vago et al., 2017), which was interpreted to be remnants of an Early Amazonian 
(2.6 Ga) volcanic material suggesting an intense and prolonged erosion by wind (Carter et al., 2016; Pa-
jola et al., 2017; Quantin-Nataf et al., 2016, 2021). Aeolian bedforms, such as megaripples or transverse 
aeolian ridges (TARs; Balme et al., 2008; Foroutan & Zimbelman, 2016; Hugenholtz et al., 2017; Zim-
belman,  2010), are also widespread, testifying the key role played by the wind in shaping the surface 
of Oxia Planum (Balme et al., 2017; Bhardwaj et al., 2019; Ivanov et al., 2020; Pajola et al., 2017; J. L. 
Vago et al., 2017). Previous works about bedforms such as TARs in the landing site were limited to the 
rover trafficability analysis and their risk assessment estimate (Balme et al., 2017; Bhardwaj et al., 2019). 

Abstract Wind-formed features are abundant in Oxia Planum (Mars), the landing site of the 2022 
ExoMars mission, which shows geological evidence for a past wet environment. Studies of aeolian 
bedforms at the landing site were focused on assessing the risk for rover trafficability, however their 
potential in recording climatic fluctuations has not been explored. Here we show that the landing site 
experienced multiple climatic changes in the Amazonian, which are recorded by an intriguing set of 
ridges that we interpret as Periodic Bedrock Ridges (PBRs). Clues for a PBR origin result from ridge 
regularity, defect terminations, and the presence of preserved megaripples detaching from the PBRs. PBR 
orientation differs from superimposed transverse aeolian ridges pointing toward a major change in wind 
regime. Our results provide constrains on PBR formation mechanisms and offer indications on paleo 
winds that will be crucial for understanding the landing site geology.

Plain Language Summary Oxia Planum on Mars is the landing site for the ExoMars 2022 
mission. The region likely hosted a standing body of water, but the effect of the wind was also important 
in shaping the landscape. In this study, we first describe a set of linear ridges that, in our interpretation, 
were sculpted by the wind in a more recent past. We also show that the wind that formed the ridges 
(Periodic Bedrock Ridges) was blowing from a different direction than the ones that formed younger 
ripples on top, suggesting a complex geological history of wind erosion and deposition that will be further 
investigated during the ExoMars mission.
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Nevertheless, TARs and megaripples are crucial in recording climatic signatures on Mars and they can 
provide invaluable information on the geological history of the landing site (Day & Dorn, 2019; Fenton 
et al., 2015; 2018; Golombek et al., 2010; Silvestro et al., 2015; Sullivan et al., 2005). In this study, we 
investigate the relationship between TARs and an enigmatic EW-oriented ridge pattern that is pervasive 
across the ExoMars landing area (Figure 1a). We test the hypothesis of an aeolian origin for these ridges 
and discuss the related climatic implications.

This analysis has been made on the basis of images from the High Resolution Imaging Science Experi-
ments (HiRISE), with a spatial resolution of 25–50 centimeter/pixel, co-registered over a 5 meters/pixel 
Context Camera mosaic (Dickinson et al., 2018; Malin et al., 2007; McEwen et al., 2007). Images were 
analyzed in ESRI's ArcGIS where TAR and ridge crestlines were mapped (Figures S1–S4) and their ori-
entations were plotted using R statistical computing software (Figure 1b). Topographic data are derived 
from HiRISE Digital Terrain Models (DTMs) with a spatial resolution of 1 meter/pixel (Supplementary 
Table  1). The DTM (1  meter/pixel) used for deriving the profile EF (Figure  3f) was derived by using 
the NASA Ames Stereo Pipeline from HiRISE orbits ESP_036780_1985 and ESP_042622_1985 (Beyer 
et al., 2018).
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Figure 1. (a) Ridge unit occurrence (mapped in yellow) at the ExoMars 2022 landing area contained within the three and one sigma envelopes of the landing 
ellipses. (b) Circular plot showing the average trend and circular standard deviation intervals of the mapped ridges and TARs. (c) HiRISE image showing examples 
of TARs and mini-TARs in the study area. Topographic profile AB derived from a HiRISE DTM (Table S1). (d) Close-up of TARs showing the exposed cross 
beds over the TAR stoss side (white arrows). (e) HiRISE image showing details of the fractured ridges. Black arrows point to defect terminations (Y junctions). 
Topographic profile CD (inset on the top right) derived from HiRISE DTM (Table S1). (f) Close-up of the FR Y junction (g) HiRISE image showing the mutual 
stratigraphic relationship between large eroded impacts, FRs and dark resistant unit (Adru). Note the continuity of the FR crestlines inside and outside the crater 
rim (white dashed box). TARs, transverse aeolian ridges; FRs, fractured ridges; HiRISE DTM, High Resolution Imaging Science Experiments Digital Terrain Models.

Figure 2. (a) HiRISE image showing the different albedo of the fractured ridges and smooth ridges. (b) Close-up showing details of the SRs. (c)–(d) HiRISE 
perspective views of the FR/SR transition. Note the same orientations and the superposition of boulders from the nearby impacts. HiRISE, High Resolution 
Imaging Science Experiments; FR, fractured ridge; SR, smooth ridges.
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2. Results
2.1. TARs

The landing area is covered by aeolian bedforms which are normally referred to as TARs or megaripples (Fig-
ures 1b–d, S4 and S5; Balme et al., 2008, 2017; Berman et al., 2018; Bhardwaj et al., 2019; Foroutan & Zimbel-
man, 2016; Foroutan et al., 2018; Hugenholtz et al., 2017; Zimbelman, 2010). Two types of TARs have been 
previously detected in the landing site: regular TARs (up to a few meters in height) within impact craters 
and other topographic depressions and 15–25 cm-tall mini-TARs found on the surrounding plains (Balme 
et al., 2017; Figure S4). TARs and mini-TARs are inactive bedforms (Bridges et al., 2012) as suggested by the 
presence of superimposed craters (Figure S5b) and locally found as continuous fields of bedforms, suggesting 
they belong to the same population and were formed under similar wind conditions (Figure 1c). The general 
trend of these bedforms in Oxia Planum, derived by mapping of 1370 TARs/mini-TARs crestlines in sampling 
areas, is NE-SW (53.9 ± 13.2°; Figures 1b, S4, and S5). Because TARs are thought to orient transverse to the 
formative wind, such a NE-SW trend can indicate winds coming from the SE or the NW. Topographic profiles 
of several TARs, however (Figure 1c inset), show a clear stoss and lee topography with steeper NW-dipping 
slopes. In addition, a set of dark and bright alternating bands following the TARs topography are locally visible 
over the southeastern TAR slopes (Figures 1d and S5). We interpret these layers as exposed cross beds over the 
erosional stoss side (see Figure S6 for clarification; Arvidson et al., 2011; Geissler, 2014; Golombek et al., 2010) 
indicating formative wind direction from the SE (Figure 1c). TARs and mini-TARs overlie a set of cratered 
ridges that cover 44% of the presumed landing area (∼633 km2; Figures 1a and 1b, 1e–1g and S7).

2.2. Ridges

Ridges are on average 38-m spaced, trend ∼EW (95.4 ± 10°) and are 0.5–1.5m tall with a symmetric profile 
(Figure 1b, 1e, S3 and S7). Ridges display Y-junction terminations and can be visible over units with differ-
ent albedo (Figures 1e–1g, 2 and S8). Based on their slope textures we recognize two ridge classes: fractured 
ridges (FRs) and smooth ridges (SRs) (Figures 1e–g, 2 and 3).

2.2.1. FRs

Most of the ridges in the region of study belong to this category. FRs are bright-toned, show cross-cutting 
fractures, and share the same blocky texture of the bedrock they are associated with (Figures 1e and 1f). 
Thus, FRs are lithified and directly carved into the bedrock. FR crestlines are locally found in continuity 
outside and inside heavily eroded impact craters (Figure 1g white dotted square) around the dark upstand-
ing material exposed in the center (Figure 1g). Note also that the ridge crestlines on the crater floor seem 
slightly deflected by the dark material, suggesting the topography played an important role in controlling 
the formation of the ridges (Day et al., 2016). The dark material is the volcanic dark resistant unit (Adru; 
Quantin-Nataf et al., 2021) emplaced at the crater floor followed by rim degradation and outcropping as the 
inverted, flat-topped morphology visible nowadays. Similar ridge-crater relationships are visible in other ar-
eas in the study site (Figure S9). Thus, the ridge unit postdates the deposition of the Adru and the following 
erosional event.

2.2.2. SRs

SRs have smooth slope surfaces (not cross-cut by fractures), resembling classic TARs or megaripples (Fig-
ures 2 and 3). SRs are visible in association with impact crater ejecta and inside craters (Figures 2 and 3). 
SRs have similar orientation and spacing than FRs (Figure 2) and are superimposed by small (10–25 m) 
secondary craters and boulders, so SRs predate these impact events (Figures 2b–2d and 3). To better under-
stand the relative age of the SRs, we mapped their occurrence on 316 craters in the study area that we qual-
itatively classified as relatively degraded/old and pristine/young on the basis of their state of degradation 
(Figures 3a, 3b and S10). Results show that SRs are only found in degraded/old craters but are never found 
inside pristine/young craters (Figures 3a and 3b). Thus, the SR forming process was only active in between 
the formation of degraded/old and pristine/young craters.

SR locally show two different crests that are faintly recognizable on HiRISE DTM (Figures 3d–3f). Both 
crests are truncated by craters 10–25 m in diameter, which suggest that the double crest arrangement was 
emplaced before the impacts (Figures 3d and 3e).
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3. Discussion
3.1. An Aeolian (PBR) Origin for the Ridges

The overall regularity of the ridge crestlines seems to point toward an aeolian origin for the ridges. 
The fact that the ridges are mostly carved into the bedrock narrows down the possible formation pro-
cess to aeolian erosion. Candidate resulting landforms are either yardangs, which are streamlined hills 
eroded by wind or periodic bedrock ridges (PBRs), which are bedform-like erosional features (Goud-
ie, 2007; Hugenholtz et al., 2015; Laity, 2009; Montgomery et al., 2012). The crestlines of the ridges are 
not streamlined, have Y junction terminations (typical in aeolian bedforms [McKee,  1979; Werner & 
Kocurek, 1999]), and do not resemble yardangs at any of their formational stages (Wang et al., 2018). 
Their overall morphology and wavelength are rather consistent with PBRs (Montgomery et al., 2012). 
PBRs were hypothesized to form from the direct sand abrasion of the surface bedrock (Montgomery 
et  al.,  2012) or by bedrock erosion seeded by megaripples (Hugenholtz et  al.,  2015). In the latter hy-
pothesis, the erosion of the underlying bedrock starts in ripple troughs where the substrate is exposed 

SILVESTRO ET AL.

10.1029/2020GL091651

5 of 10

Figure 3. HiRISE image showing details of the smooth ridges . ((a)–(b)) SRs are only found in eroded/old craters and never in pristine/young ones which 
can be filled by TARs. Note the cratered appearance of the SRs and the stratigraphic relationship with the NE-SW oriented TARs/mini-TARs. (c) Close-up 
of intracrater SRs overlaid by boulders from nearby younger impacts. ((d)–(e)) SRs crossing the impact ejecta blankets showing two crests (arrowed) cut by 
impacts. See Figures. 1 and S8 for location. (f) Double crest structures can be locally detectable on HiRISE DTM (Profile EF). TARs, transverse aeolian ridges; 
HiRISE, High Resolution Imaging Science Experiments; SR, smooth ridges.
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(see Figures 10a and 10b in Hugenholtz et al., 2015). Bedrock erosion 
continues at the pace of megaripple migration until an equilibrium is 
maintained between the erosion of the substrate and the bedform mi-
gration rate (Hugenholtz et al., 2015).

The estimated Amazonian age for the studied ridges (they are younger 
than the Adru, which was dated to Early Amazonian by Quantin-Nataf 
et al. (2021)), permits us to discard the hypothesis that the ridges were 
dune/ripples cemented by percolating water, as previously suggested 
for other areas on Mars (Grotzinger et al., 2005; Milliken et al., 2014). 
Instead, we favor the aeolian PBR origin sketched in Figure 4. A field 
of aeolian megaripples was deposited after the event(s) that eroded the 
crater rim of Figures  1g and S9a (Figure  4a). The erosional event(s) 
would have probably provided the necessary sand required for the for-
mation of ∼EW megaripples. Sometime, after the megaripples were 
deposited, incipient PBRs formed into the underlying bedrock on the 
plain (Figure  4b). When subsequent impacts struck the surface, the 
megaripple/PBR system was likely at different stages of evolution with 
some megaripples located on top and others downwind the PBRs (Fig-
ure 4c). Thus, the double crest arrangement shown in Figures 3d–3f can 
be interpreted as megaripples detaching from PBRs in agreement with 
the model proposed by Hugenholtz et al. (2015). Besides reinforcing the 
PBR hypothesis, the observation of the double crests gives also clues on 
the direction of the wind that formed the megaripple-PBR system: that 
is, it should have blown from N-NNE because the megaripples are locat-
ed at the downwind side of PRBs (Figures 4 and 5). The ejecta deposited 
over the megaripple-PBRs favored the preservation of the megaripple 
crests from a subsequent episode/s of erosion that lead to the complete 
exposure of the PBRs on the plain (Figure 4d). In addition, the shelter-
ing effect of the crater topography, may explain the different slope tex-
tures of the intracrater SRs that were protected from erosion and thus 
maintained smoother sand-covered (maybe dust-coated) surfaces (Fig-
ure 4d). In this view, SRs are the preserved megaripples that seeded the 
PBRs while FRs are the exposed PBRs. The wind that exposed the PBRs 
should not necessarily be the same that carved them or the subsequent 
flow that formed the TARs/miniTARs.

In an alternative scenario, SRs might represent a separate aeolian deposi-
tional event postdating the formation of the PBRs. Our observations sug-
gest this alternative view to be less likely as the similar orientation and 
spacing for FRs and SRs would then be a coincidence. However, besides 
the interpretation of the formative flows (PBR winds will have a 180° 
directional ambiguity) this view will not change the main implication of 
this work: a main change in the wind regime followed the erosion of the 
PBRs in the Amazonian.

To summarize, we favor the hypothesis in which the FRs and SRs repre-
sent the same PBR-megaripple system preserved at different degrees of 
evolution. A major change in the wind regime occurred during or after 
the event that exposed the PBRs, with the winds coming from the SE be-
coming dominant and leading to the deposition of the TARs/mini-TARs 
population above the PBR/megaripples and forming the complex pat-
tern (Kocurek & Ewing, 2005) still visible today (Figure 4d). PBRs did 
not form over the volcanic dark resistant unit as this is locally elevated 

and more resistant to erosion (Figure S11; Quantin-Nataf et al., 2016, 2019, 2021).
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Figure 4. Schematic drawing showing the interpreted evolution of the 
megaripple-PBR system. (a) Deposition of the megaripples (dotted lines) 
in the Amazonian. (b) Formation of the PBRs (solid lines): megaripples 
overlie the PBRs or are locally detached. (c) New impacts strike the surface 
covering the megaripple/PBR pattern. (d) Erosional event: megaripples are 
eroded, but locally preserved were covered/sheltered. Subsequent winds 
deposit TARs/mini-TARs (red lines). PBRs, Periodic Bedrock Ridges; TARs, 
transverse aeolian ridges.
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3.2. Potential Causes for a Main Wind Change

This work unveils a complex history of aeolian erosion and deposition in Oxia Planum during the Amazo-
nian. The studied ridges and the NE-SW oriented TARs/miniTARs are relict features that recorded different 
wind regimes. Amazonian changes in the wind regime were hypothesized to explain the different orientation 
of bedforms in Meridiani Planum, the NASA Opportunity Rover landing site (Fenton et al., 2015; Golombek 
et al., 2010). Interestingly, a set of megaripples oriented similarly to the Oxia Planum TARs/mini-TARs were 
reported and attributed to an enhancing of the Hadley return-flow triggered by a decrease in the planet axial 
obliquity from its last relative maximum in the Late Amazonian 86–72 ka (Fenton et al., 2018). Because the 
Hadley circulation dictates the wind regime at these latitudes (Fenton et al., 2013), we cannot exclude that 
the same event promoted the formation of the TARs/mini-TARs in the study area.

3.3. Implication for the ExoMars Mission

Roving in Oxia Planum will be a unique opportunity to dig inside the aeolian origin of the ridge unit, pro-
viding clues on the nature and formation mechanism of similar features observed elsewhere on Mars (and 
also on Earth; Hugenholtz et al., 2015; Montgomery et al., 2012; Figure 5). Preserved megaripple crests 
shown in this work (SRs) could represent a main target for the ExoMars rover and inferences made in this 
work on PBR formative paleoflows can be directly tested. Wheel scuffs of the preserved megaripples cres-
tlines can expose foreset beds dipping in the direction of transport. Microscopic imaging by the Close-UP 
Imager used in combination with the Mars Multispectral Imager for Subsurface Studies and the spectrome-
ters MicrOmega and Raman Laser can provide detailed grain sizing and compositional data, hinting on past 
wind conditions and source rocks (Bibring et al., 2017; De Sanctis et al., 2017; Josset et al., 2017; Veneranda 
et al., 2020). PBRs formative winds can be investigated even if landing will be far from double-crested ridge 
structures, by looking for aeolian grooves over a specific ridge slope (Hugenholtz et al., 2015). In addition, 
being eroded into the bright clay-rich unit (Carter et al., 2016; Quantin-Nataf et al., 2021), PBRs provide an 
easily accessible window into the first 1–2 m of this astrobiologically promising rock unit.

Furthermore, the lander instruments will provide a better assessment on the present-day aeolian environ-
ment at the surface (Martín-Torres et al., 2020; Mongelluzzo et al., 2019; Rodionov et al., 2017; Soria-Sali-
nas et al., 2020). The presence of PBRs represents a roughness element that should be taken into account 
when deriving key parameters for the characterization of the present-day aeolian environment such as 

SILVESTRO ET AL.

10.1029/2020GL091651

7 of 10

Figure 5. PBR-megaripple systems on (a) Mars, HiRISE image showing megaripples detaching from PBRs in the study area (see Figure 1a for location) and 
(b) Earth, Puna (Argentina; cf., Hugenholtz et al., 2015). Dark-toned megaripples are found downwind of bright PBRs (image from Google Earth). (c) HiRISE 
image of a similar PBR-megaripple arrangement in Candor Chasma (Mars). PBRs, Periodic Bedrock Ridges; HiRISE, High Resolution Imaging Science 
Experiments.



Geophysical Research Letters

aerodynamic roughness length and wind threshold velocity (Hébrard et al., 2012; Kok et al., 2012; Sullivan 
et al., 2000; Zimbelman et al., 2015).

4. Conclusions
This work provides the first detailed analysis of a set of ∼EW trending ridges interpreted as PBRs, representing 
erosional footprints left by the passage of megaripples at the surface. The PBR orientation differs from younger 
TARs/miniTARs suggesting that the wind regime changed from mostly dominant N winds to dominant SE 
winds. Stratigraphic relationships indicate that the erosion of PBRs occurred after the emplacement of a dark 
volcanic unit in the Early Amazonian and halted before the emplacement of pristine-looking impacts.

These results indicate that the landing site experienced a complex geological history marked by several epi-
sodes of erosion and deposition triggered by the wind action in the Amazonian epoch. By visiting PBRs for 
the first time, the ExoMars 2022 mission will provide further constraints on PBR formation, shedding light 
on a past Amazonian environment.

Data Availability Statement
Data are also available at the HiRISE website (http://hirise.lpl.arizona.edu/) or the Planetary Data System 
(http://pds.nasa.gov/).
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