RESEARCH ARTICLE

Genetics of diabetic neuropathy: Systematic review, metaanalysis and trial sequential analysis

Yating Zhao¹, Ruixia Zhu¹, Danni Wang² & Xu Liu¹

¹Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China ²Department of Endocrinology, The Fifth People's Hospital of Dalian, Dalian, Liaoning, 116000, China

Correspondence

Xu Liu, Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, Liaoning 110001, China. Tel: +86 24 83282521; Fax: +86 24 83282515; Email: valentine1120@126.com

Funding Information

This work was supported by the National Natural Science Foundation of China (grant no. 81400950, 81501006).

Received: 6 May 2019; Revised: 19 August 2019; Accepted: 21 August 2019

Annals of Clinical and Translational Neurology 2019; 6(10): 1996–2013

doi: 10.1002/acn3.50892

Abstract

Objective: Diabetic neuropathy (DN) is one of the most common complications of diabetes that occurs in more than 67% of individuals with diabetes. Genetic polymorphisms may play an important role in DN development. However, until now, the association between genetic polymorphisms and DN risk has remained unknown. We performed a systematic review, meta-analysis, and trial sequential analysis (TSA) of the association between all genetic polymorphisms and DN risk. Methods: Relevant published studies examining the relationship between all genetic polymorphisms and DN were obtained based on a designed search strategy up to 28 February 2019. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess overall pooled effects of genetic models as well as in subgroup analyses. Sensitive analysis and publication bias were applied to evaluate the reliability of the study. Moreover, TSA was conducted to estimate the robustness of the results. Results: We conducted a systematic review of a total of 1256 articles, and then 106 publications reporting on 136 polymorphisms of 76 genes were extracted. We performed 107 meta-analyses on 36 studies involving 12,221 subjects to derive pooled effect estimates for eight polymorphisms. We identified that ACE I>D, MTHFR 1298A/C, GPx-1 rs1050450, and CAT -262C/T were associated with DN, while MTHFR C677T, GSTM1, GSTT1, and IL-10 -1082G/A were not. Sensitivity analysis, funnel plot, and Egger's test displayed robust results. Furthermore, the results of TSA indicated sufficient sample size in studies of ACE, GPx-1, GSTM1, and IL-10 polymorphisms. Interpretation: Our study assessed the association between ACE I>D, MTHFR C677T, MTHFR 1298A/C, GPx-1 rs1050450, CAT -262C/T, GSTM1, GSTT1, and IL-10 -1082G/A polymorphisms and DN risk. We hope that the data in our research study are used to study DN genetics.

Introduction

As a global public threat, diabetes mellitus (DM) is a life-long disease that involves multiple organs and systems, and the morbidity of diabetes among adults could rise to 552 million by 2030.^{1,2} As the most common complication of diabetes, diabetic neuropathy (DN) including diabetic autonomic neuropathy and somatic sensorimotor neuropathy has a prevalence of 8% in newly diagnosed diabetic patients and over 50% in patients with a long course of disease.^{3,4} DN may produce a series of clinical manifestations including numbness, tingling, pain, and/or weakness which considerably decrease the quality of life in patients.⁵ Currently, the risk factors and pathogenesis of DN have drawn increasing attention.

Many factors are known to be associated with DN susceptibility, including smoking, obesity, poor glycemic control, and duration of diabetes, but there are still some potential factors leading to the occurrence of DN, such as genetic variants.^{6,7} In 1997, Vague P et al. first found an association between the ATP1 A1 gene polymorphism and DN risk.⁸ Since then, an increasing number of studies have been carried out to investigate the association between various genetic polymorphisms and DN susceptibility, such as ACE I/D, MTHFR C677T and GSTM1.^{9,10} For example, in 2012, Jurado et al.¹¹ reported that the ID genotype of the ACE I/D polymorphism had a protective effect on the development of DN. However, others drew a completely different conclusion in that the ID genotype

1996 ©

© 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. may lead to an increased DN risk.^{2,12} Similarly, a significant association between the MTHFR gene C677T mutation and DN was observed by Yigit in 2013,¹³ which could not be replicated by Russo in 2016.¹⁴

Till now, the findings of individual studies were not always consistent, and no systematic review covered all genetic polymorphisms has been reported. To fill this gap in medical literature worldwide, we performed the first systematic review and meta-analysis involving all the available evidence in the field of genetic variants and DN susceptibility.

Materials and Methods

Search strategy

A comprehensive literature search was performed in the PubMed and Embase databases up to 28 February 2019, using the following terms: "diabetic neuropathy/diabetic polyneuropathy/diabetic peripheral neuropathy/DPN/cardiovascular autonomic neuropathy/CAN" and "polymorphism/ variant/genotype/allele/SNP/mutation". As a complement, we also checked the reference list of the meta-analyses and review articles on genetic association for DN, in case the references they used had been missed in original search.

Inclusion criteria

Studies were included if they met the following conditions: (1) case–control studies; (2) for the association between any genetic polymorphism and DN susceptibility; (3) sufficient allele and genotype data to calculate the odds ratios (ORs) with 95% confidence intervals (CIs); (4) studies published in English. If two papers included the same dataset, but one included additional data not found in the other paper, only the later was included. Any genetic polymorphism with three or more published studies was included in our meta-analysis.

Figure 1. Flow diagram of the study selection process.

Fit a latter image								Gen	otype c	listribut	ion			Age and				
ACE (-D)	First author	Year	Region	Ethnicity	Case	Control		Case			ontrol		Genotyping method	gender matched	Type of diabetes	Type of DN	NOS	P for HWE ¹
Windsnot, C. Zitz Billing Asian Zitz Billing Site Zitz Site Zitz Zitz Site Zitz	ACE I>D Inanir A	2013	Turkav	Acian	735	781	= 4	⊡ 6	DD 101	= "	D []	DC re	D N	Matched	MACT & MALT	NC	~	0.058
Support Support <t< td=""><td>Mansoor O</td><td>C102</td><td>Pakistan</td><td>Acian</td><td>976</td><td>706</td><td>n o</td><td>161</td><td>- - -</td><td>161</td><td></td><td>10F</td><td></td><td></td><td></td><td></td><td>- с</td><td>7710</td></t<>	Mansoor O	C102	Pakistan	Acian	976	706	n o	161	- - -	161		10F					- с	7710
Cospendu, T. Concersion Cancersion Cance	Stephens, J. W.	2006	UK	Caucasian	173	399	25	87	61	78	199	125	AN	Matched	T2DM	DN (sensorimotor)	, u	0.940
Dipopredicit 2002 Jame 55 5 3 1 3 2 1 Matched 7 Matched 7 Matched 7 0 Off-Moriti 2002 Jama Asan 21 65 3 2 1 2 0 Matched 70M DN Exercition DI 7 0 0 Advanced 2017 Parto Matched 70M Matched 70M DN Exercition DI 7 0 0 Matched 2017 Parto Asan 1 1 2 2 2 1 1 2 0 2 0	Costacou, T.	2006	USA	Caucasian	114	256	86		28	200	2,	20	NA	Matched	T1DM	DN (sensorimotor)	7	AA
IIII, H., 100 Zool III, H., 100 Zool III, H., 100 Zool III, III, 100 Zool III III, 100 Zool III IIII, 100 Zool IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Degirmenci, I.	2005	Turkey	Asian	65	75	9	38	21	19	35	21	NA	NA	T2DM	DN	ъ	0.568
MHHR CG771 C, C T C, C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C C T C C C C C T C C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C T C C T C C T C C T C C C C T C C C C C	Ito, H.	2002	Japan	Asian	21	63	14	9	-	26	27	10	NA	Matched	T2DM	DN (sensorimotor)	7	0.506
Kalaand 218 rad Ajan 141 107 73 62 6 73 R4 Matched 7DM DN (senstrinctor) 7 0.00 RameLer, Limence, F.1. 2017 Tunis Carcasian 89 400 72 8 15 7 7 0.00 RameLer, F.1. 2017 Tunis Carcasian 16 144 4 12 0 20 NM NM NM DN DN <th< td=""><td>MTHFR C677T</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>CT</td><td>Ħ</td><td>UU</td><td>IJ</td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	MTHFR C677T						U	CT	Ħ	UU	IJ	F						
Immere: 2017 Parento Rico Caucasian 89 400 72 8 19 57 CR-RFL Matched 72DM DM 7 2020 Remmere: 1 2017 Tuneisa Caucasian 19 124 4 12 0 22 133 Matched 72DM DM Remonologies 7 2000 Rewo, G.T. 2001 Caucasian 16 141 2 5 2 133 Matched 72DM DM Resonance 7 2000 Waso, G.T. 2001 Gaucasian 101 143 25 3 2<	Kakavand Hamidi, A.	2018	Iran	Asian	141	107	73	62	9	53	42	12	PCR-RFLP	Matched	T2DM	DN (sensorimotor)	7	0.408
Mantrez, F.I. America, F.I. Namelya,	Jimenez-	2017	Puerto Rico	Caucasian	89	400	72	8	б	184	159	57	PCR-RFLP	Matched	T2DM	DN	7	0.020
Rebn. Marched Z017 Tunisia Gaucasian 16 14.4 4 1 1 1 2 1 2 1 2 1 2 1 2 1 3 2 1 3 1 1 3 2 3 1 1 1 1 3 3 1 3 1 3 1 3 1 3	Ramirez, F. J.																	
Busso.G.T. 2116 Italy Caucasian 73 32 32 133 NA Unmatched 72M N Vigit.5. 2013 Tury Asian 101 149 20 31 S 00 Sensormool) 5 0.469 Wigit.5. 2013 Cinva Asian 101 149 20 31 N N Sensormool) 7 0.405 Ambrosch.A. 2010 German Asian 114 256 47 3 5 2 2 2 2 2 2 2 2 2 2 0.00 N N Sensormool) 7 0.402 Arthosot, A. 2010 German 118 106 68 47 3 67 39 0 N Sensormool) 7 0.402 MHR 2010 Germano 5 3 1 1 N Sensormool 7 0.402	Fekih-Mrissa, N.	2017	Tunisia	Caucasian	16	144	4	12	0	52	06	2	NA	Matched	T2DM	DN	7	0.000
Yigit, 5.2013Tufy (a)Asian23028212385221809395CR-RFL (R-RFL)MatchedTIDMDN (sensormoto)80.465Vang, H.2016USUS10110110110110310310101<	Russo, G. T.	2016	Italy	Caucasian	79	184	27	52		51	133		NA	Unmatched	T2DM	DN (sensorimotor)	ß	NA
Wang, H. 2012 Chia Asian 101 143 20 31 28 100 21 CR-RFLD Matched TDM DN To DN Costscou, T. 2006 G4ma 114 256 3 3 10 21 Matched TDM DN PN 7 0.00 Anthoso, T. 2006 G4ma 41 25 2 8 168 7 0.00 1 Matched TDM DN PN 0.00 Kakavard 2013 Iran Asian 118 106 6 A AC C AA AC C AA <t< td=""><td>Yigit, S.</td><td>2013</td><td>Turky</td><td>Asian</td><td>230</td><td>282</td><td>123</td><td>85</td><td>22</td><td>180</td><td>63</td><td>0</td><td>PCR-RFLP</td><td>Matched</td><td>T1DM & T2DM</td><td>DN (sensorimotor)</td><td>œ</td><td>0.469</td></t<>	Yigit, S.	2013	Turky	Asian	230	282	123	85	22	180	63	0	PCR-RFLP	Matched	T1DM & T2DM	DN (sensorimotor)	œ	0.469
Costacourt. 2006 USA Caucasian 11 256 47 67 88 168 NA Costacourt. DN (sensorinotor) 7 Nath HTHRPROSCIA. 2010 German Caucasian 43 22 15 25 2 8 12 2 PC RFHP Matched TDM DN (sensorinotor) 7 0.020 Hamidi.A. 2017 Perto Rico Caucasian 43 2 15 3 0 PC RFHP Matched TDM DN (sensorinotor) 7 0.020 Hamidi.A. 2017 Perto Rico Caucasian 16 14 12 25 13 11 PC RFHP Matched TDM DN (sensorinotor) 7 0.020 Raminez.F.J. 2017 Pueto Rico 7 201 Matched TDM DN (sensorinotor) 7 0.011 Reminez.F.J. 2017 Pieto Rico 7 2017 Matched TDM DN (sensorinotor) 7	Wang, H.	2012	China	Asian	101	149	20	50	31	28	100	21	PCR-RFLP	Matched	T2DM	DN	7	0.000
Ambrosch, A. 201 Geman Caucasian 23 15 25 2 R 12 2 PCR-RFL Matched TDM DN T 0.402 MTHR 1289AC A A C C AA AC C AA AC C AA C C C <td< td=""><td>Costacou, T.</td><td>2006</td><td>USA</td><td>Caucasian</td><td>114</td><td>256</td><td>47</td><td>67</td><td></td><td>88</td><td>168</td><td></td><td>NA</td><td>Matched</td><td>T1DM</td><td>DN (sensorimotor)</td><td>7</td><td>NA</td></td<>	Costacou, T.	2006	USA	Caucasian	114	256	47	67		88	168		NA	Matched	T1DM	DN (sensorimotor)	7	NA
	Ambrosch, A.	2001	German	Caucasian	43	22	15	25	2	œ	12	2	PCR-RFLP	Matched	T2DM	DN	7	0.402
Kakavand 2018 Ian Agan 118 106 68 47 3 67 39 0 PCR-RFL Matched T2DM DN (sensorimotor) 7 0.020 Hemridi, A. Immezz. 2017 Puerto Rico Caucasian 89 40 41 23 13 11 PCR-RFLP Matched T2DM DN (sensorimotor) 7 0.013 Ramirez, F.J. 2017 Puerto Rico Caucasian 16 144 10 6 0 82 22 N Matched T2DM DN (sensorimotor) 7 0.001 GR-L1s1050450 2017 UK Caucasian 406 83 167 179 60 468 28 9 N Matched T2DM DN (sensorimotor) 7 0.000 GR-L1s1050450 2011 Japan 23 39 22 34 9 PCR-RFL Matched T2DM DN (sensorimotor) 7 0.000 GR-L1	MTHFR 1298A/C						AA	AC	0	AA	AC	S						
Hamidi, A.Jimenez.2017Ivento RicoCaucasian804004125113811PCR-RFLMatched72 MDN70.118Raminez F. J.TunisiaCaucasian804004143125113811PCR-RFLMatched72 MDN70.011GP-1 Fe/h/Missa, N.2017TunisiaCaucasian161441060824220NAMatched72 MDN70.001GP-1 Fi/h/Missa, N.2017PolandCaucasian21155879108242570NAMatched72 MDNPN70.000Tang, T. 5-b2012UKCaucasian2115587910824252469PCR-RFLPMatched72 MDNPN<(sensorinotot)	Kakavand	2018	Iran	Asian	118	106	68	47	m	67	39	0	PCR-RFLP	Matched	T2DM	DN (sensorimotor)	7	0.020
limenez- 2017 Puerto Rico Caucasian 89 400 41 43 1 251 138 11 PCR-RFLP Matched T2DM DN 7 0.118 Ramirez F.J. Ramire F.J. Ramire F.J. Ramire F.J. Ramire F.J. Ramire F.J.	Hamidi, A.																	
Ramirez, F. J. Ramirez, F. J. Ramirez, F. J. Ramirez, F. J. Carcasian 16 144 10 6 0 82 22 N Matched T2DM DN 7 0.001 GPx-1 rs1050450 C CT T C CT CT C CT C CT C	Jimenez-	2017	Puerto Rico	Caucasian	89	400	41	43	-	251	138	11	PCR-RFLP	Matched	T2DM	DN	7	0.118
Fekih-Mrisa, N. 2017 Tunisia Caucasian 16 144 10 6 0 82 42 20 NA Matched T2DM DN 7 0.001 GPx-1rs/050450 2017 Poland caucasian 406 838 167 179 60 468 281 89 NA Matched T2DM DN 7 0.001 Tang, T. 5-b 2017 Poland Caucasian 201 83 163 137 19 RAtched T2DM DN Resportmotor) 6 0.043 Tang, T. 5-b 2011 Japan Asian 79 94 51 17 0 RC-RFLP Matched T1DM & RCDM N (Resorrimotor) 6 0.016 Matsuno, S-b 2011 Japan Asian 25 148 22 3 0 127 DN N (Resorrimotor) 6 0.166 Matsuno, S-b 2011 Japan Asian	Ramirez, F. J.																	
	Fekih-Mrissa, N.	2017	Tunisia	Caucasian	16	144	10	9	0	82	42	20	NA	Matched	T2DM	DN	7	0.001
Buraczynska, M. 2017 Poland Caucasian 406 833 167 179 60 483 281 89 NA Matched T2DM DN 7 0.000 Tang, T. Sa 2012 UK Caucasian 211 558 79 108 24 69 PCR-RFL Matched T1DM R 12DM DN (sensorimotor) 6 0.047 Tang, T. Sb 2011 UK Caucasian 63 319 22 38 3 163 137 19 PCR-RFL Matched T1DM R 12DM DN (sensorimotor) 6 0.047 Matsuno, Sb 2011 Japan Asian 25 148 22 3 0 127 21 0 PCR-RFL Matched T1DM R 12DM DN (sensorimotor) 6 0.169 Matsuno, Sb 2011 Japan Zai 2 2 2 2 2 2 2 2 2 2 <	GPx-1 rs1050450						U	CT	⊨	UU	CT	⊨						
Tang, T. Sa 2012 UK Caucasian 211 558 79 108 24 69 PCR-RFLP Matched T1DM & T2DM DN (sensorimotor) 6 0.047 Tang, T. Sb 2012 UK Caucasian 63 319 22 38 3 163 137 19 PCR-RFLP Matched T1DM & T2DM DN (sensorimotor) 6 0.047 Matsuno, Sb 2011 Japan Asian 25 148 22 3 0 127 21 0 PCR-RFLP Matched T2DM DN (sensorimotor) 7 0.708 Matsuno, Sb 2011 Japan Asian 25 148 22 3 0 127 Z1 DN (sensorimotor) 7 0.708 Matsuno, Sb 2018 Slovak Caucasian 34 80 1 13 20 6 7 0 7 0.708 Snahnicanova, Z. 2018 Slovak Caucasian	Buraczynska, M.	2017	Poland	Caucasian	406	838	167	179	60	468	281 8	89	NA	Matched	T2DM	DN	7	0.000
Tang, T. Sb 2012 UK Caucasian 63 319 22 38 3 163 137 19 PCR-RFLP Matched TIDM & T2DM DN (sensorimotor) 6 0.160 Matsuno, Sa 2011 Japan Asian 79 94 62 17 0 RC-RFLP Matched TDM & T2DM DN (sensorimotor) 7 0.353 Matsuno, Sb 2011 Japan Asian 25 148 22 3 0 127 21 0 PCR-RFLP Matched TDM DN (sensorimotor) 7 0.353 CAT -262C/T 2018 Slovak Caucasian 34 80 1 13 20 6 32 42 Remotion 7 0.353 CAT -262C/T 2016 Poland Caucasian 100 129 4 30 6 7 0 7 0.353 Kasznicki, J. 2016 Rusian Caucasian 100 129	Tang, T. Sa	2012	UK	Caucasian	211	558	79	108	24	265	224 (60	PCR-RFLP	Matched	T1DM & T2DM	DN (sensorimotor)	9	0.047
Matsuro, Sa 2011 Japan Asian 79 94 62 17 0 RCR-RFLP Matched T2DM DN (sensorimotor) 7 0.703 Matsuro, Sb 2011 Japan Asian 25 148 22 3 0 127 21 0 PCR-RFLP Matched T2DM DN (sensorimotor) 7 0.353 CAT -262CT T T CT CC TT CT CC T CT C T 0 PCR-RFLP Matched T2DM DN (DAN) 7 0.353 CAT -262CT T 2018 Slovak Caucasian 100 129 4 30 6 7 42 74 0 7 0.353 Sabizhayev, M. A. 2015 Russia 100 129 4 30 6 7 8 79 7 0.719 Babizhayev, M. A. 2015 Russia 206 7 42 80	Tang, T. Sb	2012	UK	Caucasian	63	319	22	38	m	163	137	19	PCR-RFLP	Matched	T1DM & T2DM	DN (sensorimotor)	9	0.160
Matsuno, Sb 2011 Japan Asian 25 148 22 3 0 127 21 0 PCR-RFLP Matched T2DM DN (DAN) 7 0.353 CAT -262CT T CT CC TT CT CC TT <t< td=""><td>Matsuno, Sa</td><td>2011</td><td>Japan</td><td>Asian</td><td>79</td><td>94</td><td>62</td><td>17</td><td>0</td><td>87</td><td>7 (</td><td>0</td><td>PCR-RFLP</td><td>Matched</td><td>T2DM</td><td>DN (sensorimotor)</td><td>7</td><td>0.708</td></t<>	Matsuno, Sa	2011	Japan	Asian	79	94	62	17	0	87	7 (0	PCR-RFLP	Matched	T2DM	DN (sensorimotor)	7	0.708
CAT -262CT TT CT CC TT CT CT CC TT CT CT CC TT CT CC TT CT	Matsuno, Sb	2011	Japan	Asian	25	148	22	m	0	127	21 (0	PCR-RFLP	Matched	T2DM	DN (DAN)	7	0.353
Snahnicanova, Z. 2018 Slovak Caucasian 34 80 1 13 20 6 32 42 TaqMan Matched TIDM DN (sensorimotor) 6 0.978 Kasznicki, J. 2016 Poland Caucasian 100 129 4 30 66 7 43 79 PCR-RFLP Matched TDM DN (sensorimotor) 6 0.719 Babizhayev, M. A. 2015 Russia 216 250 53 80 83 96 74 80 NA Matched TDM DN (sensorimotor) 6 0.719 GSTM1 null/present Null Present Null Present Null Present Null Present Null Present 7 0.000 Stoian, A. 2015 Rusia Caucasian 216 22 22 20 PCR-RFLP Matched TDM DN (sensorimotor) 6 0.719 Stoian, A. 2015 Rusia	CAT -262C/T						⊨	CT	0	F	CT	U						
Kasznicki, J. 2016 Poland Caucasian 100 129 4 30 66 7 43 79 PCR-RFLP Matched T2DM DN (sensorimotor) 6 0.719 Babizhayev, M. A. 2015 Rusia 216 250 53 80 83 96 74 80 NA Matched T1DM DN (sensorimotor) 6 0.719 GSTM1 null/present Null Present Null Present Null Present Null Present 201 DN (sensorimotor) 6 0.000 Stoian, A. 2015 Rusia Caucasian 42 18 24 22 20 PRC-RFLP Matched TDM DN (sensorimotor) 6 NA Stoian, A. 2015 Rusia Caucasian 216 220 278 154 344 156 NA Matched TDM DN (sensorimotor) 6 NA Stoian, A. 2015 Rusia 242	Snahnicanova, Z.	2018	Slovak	Caucasian	34	80	-	13	20	9	32 4	42	TaqMan	Matched	T1DM	DN (sensorimotor)	9	0.978
Babizhayev, M. A. 2015 Russia Carcasian 216 250 53 80 83 96 74 80 NA Matched TIDM DN 7 0.000 GSTM1 null/present Null Present Null	Kasznicki, J.	2016	Poland	Caucasian	100	129	4	30	99	7	43	79	PCR-RFLP	Matched	T2DM	DN (sensorimotor)	9	0.719
GSTM1 null/present A: 2015 Romania Caucasian 42 42 18 24 22 20 PCR-RFLP Matched T2DM DN (sensorimotor) 6 NA Babizhayev, M. A 2015 Russia Caucasian 216 250 278 154 344 156 NA Matched T1DM DN (sensorimotor) 7 NA Zaki, M. A. 2015 Egypt Caucasian 27 10 13 3 1 NA Matched T2DM DN 6 NA	Babizhayev, M. A.	2015	Russia	Caucasian	216	250	53	80	83	96	74 8	80	NA	Matched	T1DM	DN	7	0.000
Stoian, A. 2015 Romania Caucasian 42 42 18 24 22 20 PCR-RFLP Matched T2DM DN (sensorimotor) 6 NA Babizhayev, M. A 2015 Russia Caucasian 216 250 278 154 344 156 NA Matched T1DM DN 7 NA Zaki, M. A. 2015 Egypt Caucasian 277 10 13 3 1 NA Matched T2DM DN 6 NA	GSTM1 null/present						Null	Pre	esent	Null	Pres	ent						
Babizhayev, M. A 2015 Russia Caucasian 216 250 278 154 344 156 NA Matched TIDM DN 7 NA Zaki, M. A. 2015 Egypt Caucasian 27 27 10 13 3 1 NA Matched T2DM DN 6 NA	Stoian, A.	2015	Romania	Caucasian	42	42	18	24		22	20		PCR-RFLP	Matched	T2DM	DN (sensorimotor)	9	NA
Zaki, M. A. 2015 Egypt Caucasian 27 27 10 13 3 1 NA Matched T2DM DN 6 NA	Babizhayev, M. A	2015	Russia	Caucasian	216	250	278	15	4	344	156		NA	Matched	T1DM	DN	7	NA
	Zaki, M. A.	2015	Egypt	Caucasian	27	27	10	13		m	-		NA	Matched	T2DM	DN	9	NA

Genetics of Diabetic Neuropathy

							Geno	type di	stributic	uc		Age and				
First author	Year	Region	Ethnicity	Case	Control		Case		Ŭ	ontrol	 Genotyping method 	gender matched	Type of diabetes	Type of DN	NOS	P for HWE ¹
Vojtkova, J.	2013	Slovak	Caucasian	19	27	10	6		10	17	NA	Matched	T1DM	DN (DAN)	2	NA
GSTT1 null/present						Null	Pre	sent	Null	Preser	ıt					
Stoian, A.	2015	Romania	Caucasian	42	42	7	35		00	34	PCR-RFLP	Matched	T2DM	DN (sensorimotor)	9	NA
Babizhayev, M. A.	2015	Russia	Caucasian	216	250	160	272	~	170	330	NA	Matched	T1DM	DN	7	ΝA
Zaki, M. A.	2015	Egypt	Caucasian	27	27	7	0	7	4	16	NA	Matched	T2DM	DN	9	NA
Vojtkova, J.	2013	Slovak	Caucasian	19	27	m	16		13	14	NA	Matched	T1DM	DN (DAN)	7	ΝA
IL-10-1082G/A						99	БA	AA AA	00	7A AE						
Canecki-Varžić, S.	2018	Croatia	Caucasian	204	96	45	06	27	28 3	38 11	Taqman	NA	T2DM	DN	ß	0.742
Rodrigues, K. F.	2015	Brazil	Caucasian	42	60	m	20	19	6	27 24	PCR-SSP	Unmatched	T2DM	DN (sensorimotor)	9	0.757
Kolla, V. K.	2009	India	Asian	198	202	32	42	124	13 4	t1 14	8 ARMS PCR	Matched	T2DM	DN (sensorimotor)	9	0.000
DN, diabetic neurop lenath polymorphisn	athy; NC 1: PCR-5	SS, Newcastle	-Ottawa Quali se chain react	ty Asses ion-sea	ssment Sc uence sp	ale; HV ecific p	VE, Harc	dy–Weii ARMS	nberg E PCR. al	Equilibriu molificati	m; NA, not avail	lable; PCR-RFLP utation_svstem	, polymerase cha polymerase cha	ain reaction and restric in reaction methods:	tion fra	agment Jiabetic

polymerase chain reaction methods; ength polymorphism; PCR-SSP, polymerase chain reaction-sequence specific primers; ARMS PCR, amplification refractory mutation system autonomic neuropathy; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. HWE in control.

By using a standardized form, two investigators independently extracted the following data: the name of the first author, publication year, region, ethnicity, sample size, allele and genotype frequencies, genotyping methods, age- and gender-matched status, type of diabetes, type of neuropathy, Newcastle-Ottawa Quality Assessment Scale (NOS) score, and P value for Hardy-Weinberg equilibrium (HWE) in the control group. The quality of studies was evaluated using the NOS and scores >5 were considered to be of high quality, otherwise, they were thought to be with low quality.

Meta-analysis

Data extraction

We used Stata 12.0 software to conduct the meta-analysis for each genetic polymorphism to determine the pooled ORs and 95% CIs. We calculated the pooled results under all five genetic models (allelic, recessive, dominant, homozygous, and heterozygous model). Heterogeneity was measured by the I^2 statistic, and $I^2 > 50\%$ was considered significant heterogeneity. The random-effects model was used if significant heterogeneity existed or else the fixed-effects model was adopted. Subgroup analyses were performed based on ethnicity, genotyping methods, age- and gendermatched status, HWE status of controls, quality of studies, source of control, type of diabetes, and type of neuropathy. The sensitivity analyses were conducted by sequentially omitting each study to detect the stability of pooled results and source of heterogeneity. Publication bias was explored using visual inspection of the funnel plot and Egger's test. P < 0.05 was considered to be statistically significant.

Trial sequential analysis

Meta-analysis may lead to a false-positive or negative conclusion.¹⁵ Hence, we used trial sequential analysis (TSA) to reduce these statistical errors.¹⁶ TSA is a novel statistical analysis method that uses a combination of techniques that provides required information size (RIS), a threshold of statistically significant effect, for evaluating whether sufficient evidence is included and whether a result is reliable or not, in meta-analysis. Additionally, a threshold of futility could be tested by TSA to find a conclusion of no effect before reaching the information size by using TSA software (version 0.9.5.10 beta) (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark). We computed the RIS based on an alpha risk of 5%, a beta risk of 20%, a relative risk reduction of 20% and a two-sided boundary type. For those analyses that the Z-curve reached the RIS line or monitoring the boundary line or futility area, it indicates that enough samples are included in the studies, and their results are credible. Otherwise, the amount of information is not large enough, and more evidence is needed.

Table 1. Continued

© 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Results

Study selection

In total, 1256 articles were retrieved according to our search strategy. First, we excluded 1032 articles by duplicate screening as well as title and abstract reviewing. Second, after full-text reviewing, 118 studies containing 60 letters, reference abstracts and reviews; 38 studies not relevant to DN; 12 studies not focused on DN susceptibility; and eight studies not written in English were excluded. Third, 106 eligible articles were selected in our systematic review, and the relationship between all 136 genetic polymorphisms and DN susceptibility was extracted and listed in Table S1. Finally, for any polymorphism with three or more published studies and sufficient genotype data to extract, we keep it into our meta-analysis. A total of 36 studies were involved in the meta-analysis, and the entire process of study selection is shown in Figure 1.

Study characteristics

Thirty-six studies with 4515 cases and 7706 controls were included in the meta-analysis according to the inclusion and exclusion criteria.^{13,14,17–39} The general characteristics of the studies are summarized in Table 1. Among the 36 studies, 6 were related to ACE I/D, 8 to MTHFR C677T, 3 to MTHFR 1298A/C, 5 to GPx-1 rs1050450, 3 to CAT -262C/T, 4 to GSTM1 and GSTT1 and 3 to IL-10 -1082G/A. In these studies, 26 studies were performed in the Caucasian population and 10 remaining studies were performed in the Asian population. The genotyping methods included polymerase chain reaction-restriction fragment length polymorphism, TaqMan, polymerase chain reaction-sequence specific primers, and amplification refractory mutation system-polymerase chain reaction. For the quality of studies, all of them except four^{14,18,21,37} scored more than 5 in NOS. In addition, for the HWE of controls, most of the articles met HWE equilibrium, while 10 studies failed.^{24–26,30–,32,37,39}

Figure 2. Forests for ACE I>D polymorphism and DN risk. (A) allele model (D vs. I); (B) homozygous model (DD vs. II). DN, diabetic neuropathy.

		Allele (D) vs. I)		Recessive (DD) vs. ID +	II)	Dominant (ID	+ DD vs	. II)
Locus	N*	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)
Total	6	1.23 (1.08–1.39)	0.002	49.3	1.17 (0.97–1.41)	0.101	0	1.40 (0.91–2.14)	0.126	65.0
Ethnicity										
Asian	4	1.18 (0.89–1.58)	0.252	61.8	1.16 (0.91–1.46)	0.229	37.7	1.36 (0.76–2.44)	0.301	73.6
Caucasian	2	1.21 (0.93–1.56)	0.152	_	1.19 (0.88–1.62)	0.260	0	1.43 (0.87–2.33)	0.157	_
Quality of studies										
High-quality studies	4	1.06 (0.72–1.56)	0.764	71.8	1.27 (1.01–1.59)	0.043	0	1.03 (0.57–1.87)	0.919	66.5
Matched status										
Age and gender matched	4	1.06 (0.72–1.56)	0.764	71.8	1.27 (1.01–1.59)	0.043	0	1.03 (0.57–1.87)	0.919	66.5
Type of diabetes										
T2DM	4	1.15 (0.87–1.53)	0.333	60.1	1.05 (0.82–1.34)	0.688	0	1.40 (0.77–2.55)	0.268	72.4
T1DM	1	_		-	1.16 (0.69–1.95)	0.569	-	_		-
Type of neuropathy										
Sensorimotor neuropathy	2	0.75 (0.25–2.20)	0.596	83.5	1.14 (0.84–1.53)	0.404	0	0.77 (0.20–2.99)	0.700	82.5

 Table 2.
 Summary ORs and 95% CIs of ACE I>D polymorphism and DN risk.

ORs, odds ratios; Cls, confidence intervals; DN, diabetic neuropathy; T2DM, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus. *Numbers of comparisons.

Association between genetic polymorphisms and DN risk

ACE I>D

The ACE I>D polymorphism was investigated in six studies along with DN (884 cases, 1570 controls).^{17–22} A significant association was uncovered between the ACE I>D genetic polymorphism and DN risk under allelic and homozygous models (D vs. I: OR = 1.23, 95% CI = 1.08– Furthermore, stratified analyses based on ethnicity, quality of studies, matched status, type of diabetes and type of neuropathy were conducted for allele, recessive, and dominant models, with results presented in Table 2. Finally, increased susceptibility was found in the recessive model in the high-quality study group as well as in the age- and gender-matched group. We subsequently performed sensitivity analyses to explore the influence of an individual study on the pooled results, and our results did not

1.39; DD vs. II: OR = 1.50, 95% CI = 1.15–1.95) (Fig. 2).

Figure 3. Forests for MTHFR C677T polymorphism and DN risk. (A) allele model (T vs. C); (B) recessive model (TT vs. TC + CC); (C) dominant model (TC + TT vs. CC); (D) homozygous model (TT vs. CC); (E) heterozygous model (TC vs. CC). DN, diabetic neuropathy.

change when omitting each study in the allelic and homozygous models (Figure S1).

MTHFR C677T and 1298A/C

Totally, there were 8 studies^{13,14,20,23–27} (813 cases, 1544 controls) associated with MTHFR C677T and DN involved in the meta-analysis. Five of eight studies were performed in the Caucasian population, and the other three studies were performed in the Asian population. The pooled results of the five genetic models did not show any significant difference (Fig. 3). Further subgroup analyses were conducted, and no significant result was observed (Table 3).

We included three studies (223 cases, 650 controls) published on the relationship between the MTHFR 1298A/C polymorphism and DN in this meta-analysis.^{23–25} Two of them were performed in the Caucasian population and the other one in the Asian population. Using the AA genotype as the reference, two genetic models revealed a significant association between the MTHFR 1298A/C polymorphism and DN (CC + AC vs. AA: OR = 1.44, 95% CI = 1.03-2.01; AC vs. AA: OR = 1.51, 95% CI = 1.07-2.11; Fig. 4). In addition, the stratified analyses according to ethnicity suggested that MTHFR 1298C/T was correlated with DN in the Caucasian population (CC + AC vs. AA: OR = 1.57, 95% CI = 1.02-2.41).

GPx-1 rs1050450

Five studies^{31–33} (784 cases, 1957 controls) were combined to analyze the association between the GPx-1 rs1050450 polymorphism and DN. Three of five studies were performed in the Caucasian population, and the other two studies were conducted in the Asian population. The pooled OR values of four models revealed a significant association between GPx-1

 Table 3.
 Summary ORs and 95% CIs of MTHFR C677T polymorphism and DN risk.

		Allele (T	vs. C)		Recessive (TT v	s. TC + (CC)	Dominant (TC	+ TT vs.	CC)
Locus	N*	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)
Total	8	0.93 (0.56–1.54)	0.784	87.1	1.16 (0.50–2.71)	0.732	75.2	0.81 (0.50–1.31)	0.396	81.6
Ethnicity										
Asian	3	1.22 (0.82–1.81)	0.321	74.5	1.53 (0.46–5.10)	0.489	85.2	1.22 (0.94–1.59)	0.135	43.3
Caucasian	5	0.69 (0.28–1.68)	0.416	82.5	0.68 (0.34–1.35)	0.272	0	0.66 (0.33–1.30)	0.227	79.8
Genotyping method										
PCR-RFLP	5	0.89 (0.50–1.57)	0.686	89.6	1.13 (0.46–2.78)	0.799	80.2	0.77 (0.36–1.64)	0.494	88.9
Others	3	1.24 (0.58–2.64)	0.580	_	1.73 (0.08–37.54)	0.728	_	0.80 (0.57–1.12)	0.200	0
Type of diabetes										
T2DM	6	0.82 (0.47-1.44)	0.497	84.4	0.88 (0.34-2.33)	0.803	73.4	0.73 (0.40–1.33)	0.299	78.5
T1DM	1	_		_	_		_	0.75 (0.47–1.18)	0.207	_
Type of neuropathy										
Sensorimotor neuropathy	4	1.14 (0.58–2.24)	0.701	86.9	1.09 (0.13–9.48)	0.939	91.1	0.97 (0.66–1.42)	0.864	64.0
Controls in HWE	3	1.09 (0.65–1.83)	0.742	75.6	0.90 (0.17–4.71)	0.895	83.6	1.27 (0.96–1.68)	0.092	30.7

ORs, odds ratios; CIs, confidence intervals; DN, diabetic neuropathy; PCR-RFLP, polymerase chain reaction and restriction fragment length polymorphism; T2DM, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus; HWE, Hardy–Weinberg Equilibrium. *Numbers of comparisons.

Figure 4. Forests for MTHFR 1298A/C polymorphism and DN risk. (A) dominant model (CC + AC vs. AA); (B) heterozygous model (AC vs. AA). DN, diabetic neuropathy.

rs1050450 and DN risk (T vs. C: OR = 1.43, 95% CI = 1.26– 1.64; TT + CT vs. CC: OR = 1.74, 95% CI = 1.46–2.08; TT vs. CC: OR = 1.58, 95% CI = 1.17–2.12; CT vs. CC: OR = 1.78, 95% CI = 1.48–2.14; Fig. 5). Stratification accounting for the type of diabetes revealed increased DN risk in the T2DM group (Table 4). Additionally, a similar relationship was detected under allelic and dominant models in the group with Caucasian ethnicity, sensorimotor neuropathy and controls in HWE (Table 4). In addition, each single study was omitted sequentially, without obvious alteration of overall statistical significance in sensitivity analysis (Figure S1).

Figure 5. Forests for GPx-1 rs1050450 polymorphism and DN risk. (A) allele model (T vs. C); (B) dominant model (TT + CT vs. CC); (C) homozygous model (TT vs. CC); (D) heterozygous model (CT vs. CC). DN, diabetic neuropathy.

Table 4. Summary ORs and 95% CIs of GPx-1 rs1050450 polymorphism and DN risk.

		Allele (T	vs. C)		Recessive (TT v	vs. CT +	CC)	Dominant (TT	+ CT vs.	CC)
Locus	N*	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)	OR (95% CI)	Р	l ² (%)
Total	5	1.43 (1.26–1.64)	0.000	33.5	1.21 (0.92–1.59)	0.182	29.2	1.74 (1.46–2.08)	0.000	5.6
Ethnicity										
Caucasian	3	1.42 (1.24–1.62)	0.000	18.4	1.21 (0.92–1.59)	0.182	29.2	1.72 (1.44–2.07)	0.000	0
Asian	2	1.74 (0.48–6.26)	0.399	64.2	Excluded		_	1.80 (0.45–7.19)	0.404	67.0
Type of diabetes										
T2DM	3	1.57 (1.32–1.87)	0.000	37.6	1.46 (1.03–2.07)	0.035	_	1.84 (1.46–2.30)	0.000	36.6
Type of neuropathy										
Sensorimotor neuropathy	3	1.33 (1.09–1.62)	0.005	49.9	0.89 (0.56–1.41)	0.624	0	1.72 (1.32–2.25)	0.000	29.5
Autonomic neuropathy	1	0.84 (0.24–2.91)	0.778	_	Excluded		_	0.83 (0.23–3.00)	0.770	_
Both	1	1.55 (1.29–1.85)	0.000	_	1.46 (1.03–2.07)	0.035	_	1.81 (1.42–2.30)	0.000	_
Controls in HWE	3	1.55 (1.10–2.19)	0.013	41.1	0.79 (0.23–2.75)	0.711	_	1.99 (1.29–3.09)	0.002	34.5

ORs, odds ratios; CIs, confidence intervals; DN, diabetic neuropathy; PCR-RFLP, polymerase chain reaction and restriction fragment length polymorphism; T2DM, type 2 diabetes mellitus; HWE, Hardy–Weinberg Equilibrium. *Numbers of comparisons.

CAT-262C/T

The analysis of the CAT -262C/T polymorphism associated with DN included 3 studies (350 cases, 465 controls), which were all performed in the Caucasian population.^{28–} ³⁰ Using the CC genotype as a reference, we found a protective effect of the CAT -262C/T polymorphism against the susceptibility of DN (T vs. C: OR = 0.71, 95% CI = 0.57–0.87; TT vs. CT + CC: OR = 0.53, 95% CI = 0.36–0.77; TT vs. CC: OR = 0.54, 95% CI = 0.35– 0.82; Fig. 6). When stratified by the type of diabetes, a decreased risk was identified in the T1DM group (T vs. C: OR = 0.68, 95% CI = 0.53–0.86; TT vs. CT + CC: OR = 0.51, 95% CI = 0.35–0.76), but not T2DM group.

GSTM1 and GSTT1 null/present

The meta-analysis including four studies^{30,34–36} (516 cases, 573 controls) about GSTM1 null/present polymorphism and DN reflected no significant difference (OR = 1.21, 95% CI = 0.94–1.56, Fig. 7). Concerning GSTT1 null/present polymorphism, four studies^{30,34–36} (500 cases, 589 controls) were enrolled in the meta-analysis. The pooled results also failed to show any significant difference (OR = 0.96, 95% CI = 0.30–3.04, Fig. 8). The sensitivity

analysis showed no significance after excluding any of the studies (Figure S1).

IL-10 -1082G/A

In the meta-analysis of the IL-10 -1082G/A polymorphism and DN, three studies³⁷⁻³⁹ were involved (444 cases, 358 controls). The pooled results showed no significance between IL-10 -1082G/A and DN (Fig. 9).

Other genetic polymorphisms associated with DN

In addition to the genetic polymorphisms discussed above, we also found that some other polymorphisms had statistical significance on DN risk in 33 individual studies, such as CACNA 1A rs2248069, CYBA rs4673, FTO rs17817449, IL2RA rs706778, SCN10A rs7375036, CTLA-4 rs5742909, GNB3 C825T, and NOS3 Glu298Asp.^{8,20,28,39–68} Due to the small number of relevant studies or insufficient data for genotype frequency, these studies could not be enrolled in our meta-analysis. Therefore, we performed a systematic review of these polymorphisms and listed them in Table 5, with the purpose of providing clues in future searches for genetic risk factors of DN.

Figure 6. Forests for CAT-262C/T polymorphism and DN risk. (A) allele model (T vs. C); (B) recessive model (TT vs. CT + CC); (C) homozygous model (TT vs. CC). DN, diabetic neuropathy.

Detection of publication bias

Funnel plot and Egger's test were employed to appraise the publication bias among all eight studies. By visual detection of funnel plots, six genetic variants including ACE I>D, MTHFR C677T, GPx-1 rs1050450, CAT -262C/ T, GSTM1 null/present and GSTT1 null/present, showed symmetric shapes, which demonstrated that no publication bias existed and was further confirmed by Egger's test. In contrast with these variants, we detected mild publication bias in MTHFR 1298A/C and IL-10 polymorphisms. As for MTHFR 1298A/C, marginal bias could be found in the allelic model (P = 0.025). In the recessive genetic model of IL-10, a statistically significant difference could be found by Egger's test (P = 0.023). The visual inspection of the funnel plot and P value of Egger's test of all included studies are summarized in Figure S2 and Table 6, respectively.

Trial sequential analysis

Among the eight studies mentioned above, three studies performed on the ACE I>D polymorphism, GPx-1 rs1050450 polymorphism, and IL-10 -1082G/A polymorphism concluded that a sufficient number of samples were used in the analyses, and conclusive results could be

Figure 7. Forest for GSTM1 null/present polymorphism and DN risk. DN, diabetic neuropathy.

Figure 8. Forest for GSTT1 null/present polymorphism and DN risk. DN, diabetic neuropathy.

obtained. Specifically, in the study of the ACE I>D polymorphism, the Z-curve of the allelic and homozygous model crossed either the TSA monitoring boundary or RIS line, confirming that the ACE I>D polymorphism was associated with increased DN risk. For the GPx-1 rs1050450 polymorphism, in the allelic, dominant and heterozygous models, we detected that the Z-curve exceeded the RIS line, which revealed enough evidence for significant results. With regard to the IL-10 -1082G/A polymorphism, as the Z-curve entered the futility area in the allelic and dominant models, we came to a confirmed conclusion that the IL-10 polymorphism had no relationship with DN susceptibility. However, the TSA results of the other five genetic variants did not show adequate information involved in the meta-analysis. More relevant studies are necessary to prove our findings in the future. The TSA results for all the included studies are shown in Figure S3.

Figure 9. Forests for IL-10 -1082G/A polymorphism and DN risk. (A) allele model (G vs. A); (B) recessive model (AA vs. AG + GG); (C) dominant model (AA + AG vs. GG); (D) homozygous model (AA vs. GG); (E) heterozygous model (AG vs. GG). DN, diabetic neuropathy.

Sun Zolls Chinese Cac(MA MA72248059 Avenus G 1437180 827 (35-7140) 400 Sun, L 2018 Chinese Cac(MA 10/512030) Census 1437180 258 (15-7,40) 400 Sun, L 2018 Chinese Cac(MA 10/512030) Census 1437180 253 (15-7,40) 400 Sun, L 2018 Chinese Cac(MA 10/57321340) Census 1437180 253 (15-2,417) 400 Sun, L 2018 Chinese Cac(MA 10/57321340) Census 1437180 253 (15-2,417) 400 Sunhan, L 2018 Show Census Census 1437180 253 (15-2,417) 400 Sunhan, A 2017 Innain MA499405733 Avenus G 506 (14-45) 400	Author Ye,	Ir Ethnicity	Gene/variant	Comparison	No. of cases/controls	OR (95% CI)	<i>P</i> -value	NOS	References
Sun, L 2018 Chinese CACMA TAYG 15003 Census T 147/180 52.5 (1.5., 4.7) 40. Sun, L 2018 Chinese CACMA TAYG 15003 Census T 143/180 53.6 (1.3., 51.5) 40. Sun, L 2018 Chinese CACMA TAYG 15003 G vesus C 143/180 53.7 (1.4.1-5.29) 60.1 25.8 (1.45-1.67) 40. Sun, L 2018 Chinese CACMA TAYG 151046 G vesus C 143/180 53.7 (3.1, 54.9) 40. Sun, L 2018 Chinese CACMA TAYG 151046 G vesus C 143/180 53.7 (3.2, 4.7) 40. Sun, L 2018 Exponsynopsimal A vesus G C vesus T 43/43 4.7 (3.2) 60.1 (3.7, 5.2, 4.7) 4.0 Zons Chinese CACMA TAYG 150.8 G vesus T 2000200 15.6 (1.4, 1.2.6) 4.0 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4, 1.2.6) 50.6 (1.4.1.6) 50.6 (1.4.1.6) 50.6 (1.4.1.6) <td>Sun, L. 201</td> <td>8 Chinese</td> <td>CACNA 1A/rs2248069</td> <td>A versus G</td> <td>143/180</td> <td>8.27 (3.93–17.40)</td> <td><0.001</td> <td>9</td> <td>40</td>	Sun, L. 201	8 Chinese	CACNA 1A/rs2248069	A versus G	143/180	8.27 (3.93–17.40)	<0.001	9	40
Sun, L 2018 Chinese CACMA 1076316008 Creasus T 143/180 258 (145-16) 00 Sun, L 2018 Chinese CACMA 10763236015 Creasus T 143/180 252 (152, 417) 40 Sun, L 2018 Chinese CACMA 11975713749 Creasus T 143/180 533 (11, 17.25) 40 Sun, L 2018 Creasus T 74/339 1158 (75.2, 417) 40 Sun, L 2018 Creasus T 143/180 533 (11, 17.25) 40 Aubsch, E, A 2018 Creasus T 74/339 1158 (75.2, 417) 40 Creasus C 2018 Indian Marchan, A 2017 Indian 147/183 49	Sun, L. 20	8 Chinese	CACNA 1A/rs16030	C versus T	143/180	6.25 (2.86–13.67)	<0.001	9	40
Sun, L 2018 Chinese CACMA HINS739510 G versus T J47180 5011 5391 (13, 53, 13, 94) 401 Sun, L 2018 Chinese CACMA HINS739419 G versus T J47180 531 (13, 15, 56) 501 Sun, L 2018 Chinese CACMA HINS739419 G versus T J47180 533 (13, 17, 259) 500 500 101 441 500 <t< td=""><td>Sun, L. 201</td><td>8 Chinese</td><td>CACNA 1C/rs216008</td><td>C versus T</td><td>143/180</td><td>2.58 (1.45–1.60)</td><td>0.001</td><td>9</td><td>40</td></t<>	Sun, L. 201	8 Chinese	CACNA 1C/rs216008	C versus T	143/180	2.58 (1.45–1.60)	0.001	9	40
Sun, L. 2018 Chinese CALM HH/s7191246 Ceresus T 143/180 232 (13, 14, 15) -00 Sun, L. 2018 Chinese CACM HH/s7191246 Genesis T 143/180 238 (11, 17, 50) -00 Shiftmanoa, Z. 2018 Exech Trion/s17317443 Genesis T 34/00 500 (140-1908) 00 10 117, 200 00 126 (11, 12, 20) 120 127 (12, 21, 41) 126	Sun, L. 201	8 Chinese	CACNA 1C/rs2239050	G versus C	143/180	6.01 (2.59, 13.94)	<0.001	9	40
Sum, L. 2018 Chicken C, CM, HHy? 191246 G versus T 143/180 7.38 11.31, 17.56 -0.0 Abw, E.A. 2018 Sport Flows 173/1449 G versus T 3480 5.00 (1.40-19.56) 0.0 Hubenkizmona, Z 2018 Explorition 1. Explorition 2. 2018 Explorition 2. 2018 Explorition 2. 2018 Explorition 2. 2017 10.0 12.81/1.7.2.91 0.0 Exploration X 2018 Exploration 2. 2018 Exploration 2. 2018 19.0 0.0 12.81/1.7.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 0.0 12.81/1.2.2.91 0.0 12.81/1.2.2.91 0.0 12.81/1.1.2.2.91 0.	Sun, L. 201	8 Chinese	CACNA 1H/rs3794619	C versus T	143/180	2.52 (1.52, 4.17)	<0.001	9	40
Stabilizationes, Z. Stook Creativity Resists T 3420 500 (1.40-19.08) 00 Zhyly, E. M. 2018 Crech F10/x13817443 G versus T 3470 500 (1.40-19.08) 00 Zhyly, E. M. 2018 Irabin InRAV-PORT A versus G 2002 (1.11-2.2.9) 000 Zhyly, E. M. 2017 Irabin InRAV-PORT A versus G 2002 (1.11-2.2.9) 000 Marchan, A 2017 Irabin InRAV-PORT A versus G 2002 (1.11-2.2.9) 00 Marchan, A 2017 Irabin InRAV-PORT A versus G 2007 (1.11-2.2.9) 00 Marchan, A 2017 Irabin InRAV-PORT A versus G 2002 (1.11-2.2.9) 00 Gupta 2017 Irabin A versus G DOBT+12 alleles DBT+12 alleles	Sun, L. 201	8 Chinese	CACNA 1H/rs7191246	G versus C	143/180	7.38 (3.11, 17.56)	<0.001	9	40
Jaky E, A. 2018 Careh Front Name 2013 Careh Front Name 2013 Front Name Front Nam	Snahnicanova, Z. 201	8 Slovak	CYBA/rs4673	C versus T	34/80	5.00 (1.40-19.08)	0.016	9	28
Zaky, E. A. 2018 Egyptian L2AMry505778 A versus G 500200 1332 (7.22, 24.71) 0.01 Creacel, C. 2011 Indian HLA-D081/0081*02 allele D081*02 allele 9967 -<	Hubacek, J. A. 201	8 Czech	FTO/rs17817449	G versus T	474/339	1.59 (1.11–2.29)	0.005	9	41
Circacci, C. 2018 Inaja Mitry Mitr	Zaky, E. A. 201	8 Egyptian	IL2RA/rs706778	A versus G	200/200	13.63 (7.52–24.71)	<0.001	7	42
Epilaresi, K. 2018 Indian VDRYS1544110 Arensis G 72/- 936 (4.88-19-91) 0.00 Marzkan, A. 2017 Irainian HLAD0B1/0681*12 allele 2957 - - - Marzkan, A. 2017 Irainian HLAD0B1/0681*12 allele DB1*10/0681*12 alleles 4957 -	Ciccacci, C. 201	8 Italy	MIR499A/rs3746444	A versus G	69/80	1.92 (1.00–3.70)	0.005	7	43
Marzban, A. 2017 Tanian Hu-AnOBI/D081+02 allee D081+02 allee 4957 - Gupta, B. 2017 Tanian Hu-AnOBI/D081+12 alleles D081+100/D81+12 alleles D081+12 alleles D081+1412 alleles D081+12	Ezhilarasi, K. 201	8 Indian	VDR/rs1544410	A versus G	72/-	9.86 (4.88–19.91)	0.001	9	44
Marchan, A. 2017 Tanian Hu-AnBit/DB81+10/DB81+12 Bellst-10/DB81+12 Bellst-1 Bellst-1 <th< td=""><td>Marzban, A. 201</td><td>7 Iranian</td><td>HLA-DQB1/DQB1*02 allele</td><td>DQB1*02 allele</td><td>49/57</td><td>I</td><td>I</td><td>7</td><td>45</td></th<>	Marzban, A. 201	7 Iranian	HLA-DQB1/DQB1*02 allele	DQB1*02 allele	49/57	I	I	7	45
Gupta, B. 2017 Indian AfVs759833 C versus T 356/24 1.97 (1.16-3.35) 0.0 Lv, Y. 2017 Indian AfVs775036 C versus T 356/24 1.97 (1.16-3.35) 0.0 Jr, Z. Y. 2015 Chinese ADPfrs37729036 C versus T 49/100 2.66 (1.31-4.98) 0.00 Jr, Z. Y. 2015 Chinese ADPfrs3772903 G versus T 49/100 2.66 (1.31-4.98) 0.00 Fen, Y. 2015 Chinese ADPfrs3774261 A versus G 80/80 3.13 (1.20-4.15) 0.0 Ren, Z. 2015 Chinese ICAM-1/rs739959 A versus G 399/383 3.12 (1.01-1.43) 0.0 Ren, Z. 2015 Chinese ICAM-1/rs7391957 C versus G 399/383 3.12 (1.01-1.43) 0.0 Ren, Z. 2015 Chinese ICAM-1/rs7391957 C versus G 399/383 1.12 (1.01-1.43) 0.0 Ren, Z. 2015 Chinese ICAM-1/rs7343957 C versus G 399/383 1.12 (1.01-1.43)	Marzban, A. 201	7 Iranian	HLA-DRB1/DRB1*10/DRB1*12 alleles	DRB1*10/DRB1*12 alleles	49/57	I	I	7	45
Ly, Y. 2017 Chinese SCN10Ar/s7375036 C versus T 49/100 2.56 (1.31.4.98) 0.00 Kiani, J. 2016 Innian CTLA-4r/s75723209 C versus T 49/100 2.56 (1.31.4.98) 0.00 JL, Z. Y. 2015 Chinese ADP/rs3821799 G versus T 49/100 2.56 (1.31.4.98) 0.00 Ren, X. 2015 Chinese ADP/rs3821799 G versus C 80/80 3.18 (1.77-5.72) <0.00	Gupta, B. 201	7 Indian	AR/rs759853	C versus T	356/294	1.97 (1.16–3.35)	0.015	7	46
Klani, J. 2016 Irain CTLA-4/r55742003 C versus T 49/100 2:56 (1:31-4.96) 0:00 Li, Z. Y. 2015 Chinese ADPris501299 G versus T 9090 2:56 (1:31-4.96) 0:00 Chen, Y. 2015 Chinese ADPris32774261 A versus G 309383 370 (1:21-11:28) 0:00 Ren, Z. 2015 Chinese ADPris387799 T versus G 309383 370 (1:21-11:28) 0:00 Ren, Z. 2015 Chinese ADPris387199 T versus G 309383 370 (1:21-11:28) 0:00 Ren, Z. 2015 Chinese ADPris387192 C versus G 399/383 1:20 (1:01-143) 0:00 Ren, Z. 2015 Chinese GRP78/r5391957 C versus G 399/383 1:20 (1:01-143) 0:00 Ren, Z. 2014 Taly MIR12aáár188095 C versus G 399/383 1:20 (1:01-143) 0:00 Groered, C. 2014 Taly MIR12aáár1234 C versus G 399/383 1:20 (1:01-143)	-ν, Υ. 201	7 Chinese	SCN10A/rs7375036	C versus T	Ι	Ι	Ι	7	47
Ji, Z. Y. 2015 Chinese ADP/rs1501299 G versus G 90/90 2.68 (1.54-4.67) -01 Chen, Y. 2015 Chinese ADP/rs3774261 A versus G 80/80 3.18 (1.77-5.72) -00 Chen, Y. 2015 Chinese ADP/rs3774261 A versus G 80/80 3.18 (1.77-5.72) -00 Ren, Z. 2015 Chinese ADP/rs3774261 A versus G 399/333 3.20 (1.21-11.43) 00 Ren, Z. 2015 Chinese CAM-r/rs7391957 C versus G 399/333 1.20 (101-1.43) 00 Ren, Z. 2014 Taliy Mill 1388059 C versus G 399/333 1.20 (101-1.43) 00 Grocaci, C. 2014 Taliy Mill 1388055 C versus G 399/333 1.20 (101-1.43) 00 Grocaci, C. 2014 Taliy Mill 1388055 C versus G 399/333 1.20 (101-1.43) 00 Ciccaci, C. 2014 Taliy Mill 1388055 C versus G 399/333 1.20 (101-1.43) 00	Kiani, J. 201	6 Iranian	CTLA-4/rs5742909	C versus T	49/100	2.56 (1.31–4.98)	0.006	9	48
Chen, Y. 2015 Chinese ADP/rs3774261 A versus G 80/80 3.18 (1.77-5.72) <0.1 Chen, Y. 2015 Chinese ADP/rs3774261 A versus G 399/383 3.70 (1.21-11.28) 0.0 Ren, Z. 2015 Chinese ADP/rs371999 A versus G 399/383 3.77 (1.20-4.38) 0.0 Ren, Z. 2015 Chinese CAM-1/rs3193953 C versus G 399/383 1.72 (1.03-2.87) 0.0 Ren, Z. 2015 Chinese GRP7/86/331957 C versus G 399/383 1.72 (1.03-2.87) 0.0 Jia, Y. 2014 Taly MIR12a/rs11888095 C versus T 51/148 2.91 (1.32-4.34) 0.0 Ciccaci, C. 2014 Taly MIR12a/rs11888095 C versus T 51/148 2.91 (1.32-4.34) 0.0 Ciccaci, C. 2014 Taly MIR12a/rs11888095 C versus T 2.01 (1.32-4.34) 0.0 Ciccaci, C. 2014 Taly MIR12a/rs11888095 C versus T 2.01/143 2.23 (1.42-3.58) <td< td=""><td>li, Z. Y. 201</td><td>5 Chinese</td><td>ADP/rs1501299</td><td>G versus T</td><td>06/06</td><td>2.69 (1.54-4.67)</td><td><0.001</td><td>∞</td><td>49</td></td<>	li, Z. Y. 201	5 Chinese	ADP/rs1501299	G versus T	06/06	2.69 (1.54-4.67)	<0.001	∞	49
Chen, Y. 2015 Chinese ADP/rs3821799 T versus C 80/80 2.31 (1.30-4.08) 0.00 Ren, Z. 2015 Chinese (CAM-1/r579969) A versus G 399/333 3.70 (1.21-11.28) 0.00 Ren, Z. 2015 Chinese (CAM-1/r5548) A versus G 399/333 1.72 (1.02-18) 0.00 Ren, Z. 2015 Chinese (CAM-1/r5548) A versus G 399/333 1.72 (1.02-18) 0.00 Ren, Z. 2015 Chinese (CAM-1/r5548) A versus G 399/333 1.72 (1.02-18) 0.00 Jia, Y. 2015 Chinese (CAM-1/r5548) A versus G 399/333 1.72 (1.02-28) 0.00 Ciccaci, C. 2014 Italy MIR128a/r51188095 C versus T 97/198 2.23 (1.42-3.52) 0.00 Ciccaci, C. 2014 Italy MIR128a/r51188095 C versus T 2.04/184 2.29 (1.30-7.78) 0.00 Ciccaci, C. 2014 Italy MIR128a/r51188095 C versus T 2.04/184 2.29 (Chen, Y. 201	5 Chinese	ADP/rs3774261	A versus G	80/80	3.18 (1.77–5.72)	<0.001	7	50
Ren, Z. 2015 Chinese ICAM-1/r5179969 A versus G 399/383 3.70 (1.21-11.28) 0.0 Ren, Z. 2015 Chinese ICAM-1/r5281432 C versus G 399/383 1.20 (1.01-1.143) 0.0 Ren, Z. 2015 Chinese ICAM-1/r5281432 C versus G 399/383 1.20 (1.01-1.143) 0.0 Jia, Y. 2015 Chinese ICAM-1/r5281432 C versus G 399/383 1.20 (1.01-1.143) 0.0 Ciccaci, C. 2014 Italy MIR128#r11888095 C versus T 97/198 2.23 (1.42-3.52) 0.00 Ciccaci, C. 2014 Italy MIR128#r11888095 C versus T 51/7100 0.46 (0.22-0.94) 0.00 Ciccaci, C. 2014 Italy MIR128#r11888095 C versus T 20/1784 2.9 (1.30-7.78) 0.00 Ciccaci, C. 2014 Italy MIR27a/r589054 A versus G 20/1784 2.9 (1.30-7.78) 0.00 Ciccaci, C. 2014 Italy MIR27a/r589053 C versus T 2/17100	Chen, Y. 201	5 Chinese	ADP/rs3821799	T versus C	80/80	2.31 (1.30-4.08)	0.004	7	50
Ren, Z. 2015 Chinese ICAM-1/rs281432 C versus G 399/383 1.20 (1.01-1.43) 0.00 Jia, Y. 2015 Chinese ICAM-1/rs281432 C versus G 399/383 1.20 (1.01-1.43) 0.00 Jia, Y. 2015 Chinese ICAM-1/rs5498 A versus G 399/383 1.22 (1.03-2.87) 0.00 Jia, Y. 2014 Taly MIR12ad/rs80955 C versus T 61/64 2.91 (1.01-1.43) 0.00 Ciccaci, C. 2014 Taly MIR12ad/rs805510164 G versus G 27/100 0.46 (0.22-0.94) 0.00 Ciccaci, C. 2014 Taly MIR12ad/rs805510164 G versus G 27/1100 0.46 (0.22-0.94) 0.00 Ciccaci, C. 2014 Taly MIR12ad/rs805510164 G versus G 27/1100 0.46 (0.22-0.94) 0.00 Ciccaci, C. 2013 Turkish L-A/VIR(P1) P Versus G 26/97 3.20 (1.30-7.78) 0.00 Sconener, J. B. 2013 Gumany G/rs20173617	Ren, Z. 201	5 Chinese	IC AM-1/rs1799969	A versus G	399/383	3.70 (1.21–11.28)	0.014	7	51
Ren, Z. 2015 Chinese ICAM-1/r53498 A versus G 399/383 1.72 (1.03-2.87) 0.00 Jia, Y. 2015 Chinese GRP78/rs391957 C versus T 97/198 2.23 (1.42-3.52) 0.00 Ciccacci, C. 2014 taly MIR138a/rs11888095 C versus T 61/64 2.91 (1.30-7.78) 0.00 Ciccacci, C. 2014 taly MIR12ad/rs895819 A versus G 26/97 3.20 (1.30-7.78) 0.00 Ciccacci, C. 2014 taly MIR12ad/rs895819 A versus G 26/97 3.20 (1.30-7.78) 0.00 Zhano, X. 2014 taly MIR12ad/rs895819 A versus G 26/97 3.20 (1.30-7.78) 0.00 Zhono, X. 2013 Germany Glo1/rs4746 C versus T 2.91 (1.30-7.78) 0.00 Storener, J. B. 2013 Turkish L-4/NITR(P1) P1 versus P2 26/97 3.20 (1.30-7.78) 0.00 Ciccaci, C. 2013 talian TCF7/267903146 C versus T 26/97 3.20 (1.30-7.78)	Ren, Z. 201	5 Chinese	ICAM-1/rs281432	C versus G	399/383	1.20 (1.01–1.43)	0.041	7	51
Jia, Y. 2015 Chinese GRP78/rs391957 C versus T 97/198 2.23 (1.42-3.52) 0.00 Ciccacci, C. 2014 Italy MR1288751888095 C versus T 61/64 2.91 (1.32-6.94) 0.00 Ciccacci, C. 2014 Italy MR128675391954 G versus G 26/97 2.91 (1.32-7.78) 0.00 Ciccacci, C. 2014 Italy MR126675367 C versus G 26/97 3.20 (1.30-7.78) 0.00 Ciccacci, C. 2013 Turkish IL-4/NTR(P1) P1 versus G 26/97 3.20 (1.30-7.78) 0.00 Basol, N. 2013 Germany Gio1/rsy146 C versus T 204/184 -<	Ren, Z. 201	5 Chinese	IC AM-1/rs5498	A versus G	399/383	1.72 (1.03–2.87)	0.037	7	51
Ciccacci, C. 2014 Italy MIR128a/rs11888095 C versus T 61/64 2.91 (1:32-6:44) 0.00 Ciccacci, C. 2014 Italy MIR146a/rs2910164 G versus C 2.320 (1:30-7/78) 0.00 Ciccacci, C. 2014 Italy MIR146a/rs2910164 G versus G 2.37/100 0.46 (0:22-0:94) 0.00 Ciccacci, C. 2014 Italy MIR146a/rs2910164 G versus G 2.320 (1:30-7/78) 0.00 Ciccacci, C. 2014 Italy MIR128a/rs188095 C versus T 2.04/184 - - Shap, X. 2013 Germany Gio/rs4746 C versus T 2.04/184 - - Basol, N. 2013 Turkish IL-4W/NTR(P1) P1 versus P2 2.27/241 2.28 (1.463.58) - - Basol, N. 2012 Poland OPG/rs3102344 C versus T 2.44/95 - - - - - - - - - - - - - - -	lia, Y. 20	5 Chinese	GRP78/rs391957	C versus T	97/198	2.23 (1.42–3.52)	0.001	7	52
Ciccacci, C. 2014 Italy MIR146a/rs2910164 G versus G 27/100 0.46 (0.22–0.34) 0.0. Zhang, X. 2014 Italy MIR27a/rs895819 A versus G 26/97 3.20 (1.30–7.78) 0.00 Zhang, X. 2014 Italy MIR27a/rs895819 A versus G 26/97 3.20 (1.30–7.78) 0.00 Zhang, X. 2014 Chinese VEG/rC336 T C versus T 204/184 –	Ciccacci, C. 201	4 Italy	MIR128a/rs11888095	C versus T	61/64	2.91 (1.32–6.44)	0.007	9	53
Ciccacci, C. 2014 Italy MIR27a/rs895819 A versus G 26/97 3.20 (1.30-7.78) 0.00 Zhang, X. 2014 Chinese VEGF/C936 T C versus T 204/184 - - - Groener, J. B. 2013 Germany Glo1/rs4746 C versus T 204/184 -	Ciccacci, C. 201	4 Italy	MIR146a/rs2910164	G versus C	27/100	0.46 (0.22–0.94)	0.032	9	53
Zhang, X. 2014 Chinese VEGF/C936 T C versus T 204/184 - <td>Ciccacci, C. 201</td> <td>4 Italy</td> <td>MIR27a/rs895819</td> <td>A versus G</td> <td>26/97</td> <td>3.20 (1.30–7.78)</td> <td>0.009</td> <td>9</td> <td>53</td>	Ciccacci, C. 201	4 Italy	MIR27a/rs895819	A versus G	26/97	3.20 (1.30–7.78)	0.009	9	53
Groener, J. B. 2013 Germany Glo1/rs4746 C versus A 251/273 - - Basol, N. 2013 Turkish L-4/NTR(P1) P1 versus P2 227/241 2.28 (1.46-3.58) <00	Zhang, X. 201	4 Chinese	VEGF/C936 T	C versus T	204/184	I	Ι	7	54
Basol, N. 2013 Turkih L-4/NNTR(P1) P1 versus P2 227/241 2.28 (1.46-3.58) <0. Ciccacci, C. 2013 Italian TCF7L2/rs7903146 C versus T 13/49 3.88 (1.53-9.81) 0.0 Korzon-Burakowska, A. 2012 Poland OPG/rs3102734 C versus T 44/95 - - - Korzon-Burakowska, A. 2012 Poland OPG/rs21073617 T versus C 44/95 - - - Korzon-Burakowska, A. 2012 Poland OPG/rs2134069 T versus C 44/95 - - - - Korzon-Burakowska, A. 2011 Iranian NGS3/intron 4 VNTR a versus G 44/95 -	Groener, J. B. 201	3 Germany	Glo1/rs4746	C versus A	251/273	I	Ι	7	55
Ciccaca, C. 2013 Italian TCF7L2/rs7903146 C versus T 13/49 3.88 (1.53–9.81) 0.0 Korzon-Burakowska, A. 2012 Poland OPG/rs3102734 C versus T 44/95 - - - Korzon-Burakowska, A. 2012 Poland OPG/rs3102734 C versus T 44/95 - - - Korzon-Burakowska, A. 2012 Poland OPG/rs3132073417 T versus C 44/95 -	Basol, N. 201	3 Turkish	IL-4/VNTR(P1)	P1 versus P2	227/241	2.28 (1.46–3.58)	<0.001	7	56
Korzon-Burakowska, A. 2012 Poland OPG/rs3102734 C versus T 44/95 - - Korzon-Burakowska, A. 2012 Poland OPG/rs2073617 T versus C 44/95 - - - Korzon-Burakowska, A. 2012 Poland OPG/rs2073617 T versus C 44/95 - - - Korzon-Burakowska, A. 2011 Poland OPG/rs3134069 T versus G 44/95 - - - - Mehrab-Mohseni, M. 2011 Iranian NGS3/intron 4 VNTR a versus B 146/96 1.30 (1.00-3.70) 0.0 Tavakkoly-Bazzaz, J. 2010 Iranian VEGF/-7 C/T C versus T 82/166 1.91 (1.03-3.60) 0.0 Kolla, V. K. 2009 Indian FN-γ/+874A/T A versus T 198/202 1.40 (1.06-1.90) 0.0 Kolla, V. K. 2009 Rusian GNB3/C825T C versus T 198/202 1.40 (1.06-3.73) <0.	Ciccacci, C. 201	3 Italian	TCF7L2/rs7903146	C versus T	13/49	3.88 (1.53–9.81)	0.015	7	57
Korzon-Burakowska, A. 2012 Poland OPG/rs2073617 T versus C 44/95 - - Korzon-Burakowska, A. 2012 Poland OPG/rs2073617 T versus C 44/95 - <t< td=""><td>Korzon-Burakowska, A. 201</td><td>2 Poland</td><td>OPG/rs3102734</td><td>C versus T</td><td>44/95</td><td>I</td><td>Ι</td><td>9</td><td>58</td></t<>	Korzon-Burakowska, A. 201	2 Poland	OPG/rs3102734	C versus T	44/95	I	Ι	9	58
Korzon-Burakowska, A. 2012 Poland OPG/rs3134069 T versus G 44/95 - - Mehrab-Mohseni, M. 2011 Iranian NOS3/intron 4 VNTR a versus b 146/96 1.80 (1.00-3.70) 0.0. Tavakkoly-Bazzaz, J. 2010 Iranian VGEF/-7 C/T C versus T 82/166 1.91 (1.03-3.60) 0.0. Kolla, V. K. 2009 Indian FN-γ/+874A/T A versus T 198/202 1.40 (1.06-1.90) 0.0 Kolla, V. K. 2009 Indian FN-γ/+874A/T A versus T 198/202 1.40 (1.06-3.73) <0.	Korzon-Burakowska, A. 201	2 Poland	OPG/rs2073617	T versus C	44/95	I	I	9	58
Mehrab-Mohseni, M. 2011 Iranian NOS3/intron 4 VNTR a versus b 146/96 1.80 (1.00–3.70) 0.01 Tavakkoly-Bazzaz, J. 2010 Iranian VEGF/-7 C/T C versus T 82/166 1.91 (1.03–3.60) 0.01 Kolla, V. K. 2009 Indian IFN-γ/+874A/T A versus T 198/202 1.40 (1.06–1.90) 0.00 Kolla, V. K. 2009 Rolian FN-γ/+874A/T A versus T 198/202 1.40 (1.06–1.90) 0.00 Kolla, V. K. 2009 Rusian GNB3/C825T C versus T 198/202 1.40 (1.06–1.90) 0.00 Chistiakov, D. A. 2008 Rusian GNB3/C825T C versus G -	Korzon-Burakowska, A. 201	2 Poland	OPG/rs3134069	T versus G	44/95	I	Ι	9	58
Tavakkoly-Bazzaz, J. 2010 Iranian VEGF/-7 C/T C versus T 82/166 1.91 (1.03–3.60) 0.00 Kolla, V. K. 2009 Indian IFN-y/+874A/T A versus T 198/202 1.40 (1.06–1.90) 0.00 Kolla, V. K. 2009 Indian IFN-y/+874A/T A versus T 198/202 1.40 (1.06–1.90) 0.00 Chistiakov, D. A. 2009 Russian GNB3/C825T C versus T 100/113 2.44 (1.60–3.73) <0.	Mehrab-Mohseni, M. 201	1 Iranian	NOS3/intron 4 VNTR	a versus b	146/96	1.80 (1.00–3.70)	0.03	9	59
Kolla, V. K. 2009 Indian IFNy/+874A/T A versus T 198/202 1.40 (1.06–1.90) 0.0 Chistiakov, D. A. 2009 Russian GNB3/C825T C versus T 100/113 2.44 (1.60–3.73) <0.1	Tavakkoly-Bazzaz, J. 20	0 Iranian	VEGF/-7 C/T	C versus T	82/166	1.91 (1.03–3.60)	0.020	7	60
Chistiakov, D. A. 2009 Russian GNB3/C825T C versus T 100/113 2.44 (1.60–3.73) <0. Yang, L. 2008 Chinese MT1B/rs11076161 A versus G - <td< td=""><td>Kolla, V. K. 200</td><td>9 Indian</td><td>IFN-γ/+874Α/T</td><td>A versus T</td><td>198/202</td><td>1.40 (1.06–1.90)</td><td>0.012</td><td>7</td><td>39</td></td<>	Kolla, V. K. 200	9 Indian	IFN-γ/+874Α/T	A versus T	198/202	1.40 (1.06–1.90)	0.012	7	39
Yang, L. 2008 Chinese MT1B/rs11076161 A versus G - - Yang, L. 2008 Chinese MT2A/rs10636 G versus C - - - Nutrivin A - 03/R6 1.66/1.08-2.54) 0.0	Chistiakov, D. A. 200	9 Russian	GNB3/C825T	C versus T	100/113	2.44 (1.60–3.73)	<0.001	9	61
Yang, L. 2008 Chinese MI2A/rs10636 G versus C - - Nitkin, A. G. 2008 Riticiphe Lauribhe Lauribhe - -	Yang, L. 200	8 Chinese	MT1B/rs11076161	A versus G	Ι	I	Ι	9	62
Nii/i+in 7 2 2008 Purceian DAPD-11/au75/10/Pha 16(108-254) 00	Yang, L. 200	8 Chinese	MT2A/rs10636	G versus C	I	I	Ι	9	62
ואואווון, א. ט. בטטט ואטאומון דאווידוובטטידוום באווידוובטטידוום בעטט איטאומון א. ט. בטטט גיטע גיטלן גיער גיערן גיער גיער גיער גיער גיער גיער גיער גיער	Nikitin, A. G. 200	8 Russian	PARP-1/Leu54Phe	Leu/Phe	93/86	1.66 (1.08–2.54)	0.023	9	63

Author	Year	Ethnicity	Gene/variant	Comparison	No. of cases/controls	OR (95% CI)	P-value	NOS	References
Nikitin, A. G.	2008	Russian	PARP-1/Val762Ala	Val/Ala	93/86	2.88 (1.43–5.77)	0.002	9	63
Papanas, N.	2007	Greek	Alpha2B-AR//D	l versus D	130/60		0.001	7	64
Costacou, T.	2006	USA	NOS3/Glu 298 Asp	G versus T	114/256	4.86 (1.04–22.72)	<0.05	7	20
Rudofsky, G., Jr.	2006	Germany	UCP2/G-866A	G versus A	I	0.44 (0.24–0.79)	0.007	ß	65
Rudofsky, G., Jr.	2006	Germany	UCP3/C-55T	C versus T	I	0.48 (0.25–0.92)	0.031	ъ	65
Rudofskv, G., Jr.	2004	Germany	TLR4/Asp299Glv + Thr399lle	Asp versus Glv Thr versus Ile	I		Ι	7	66
Benjafield, A. V.	2001	Australia	TNFRSF1B/CA16 allele	l versus D	69/230	2.10 (1.20–3.80)	Ι	9	67
Shi, H.	1998	Chinese	ApoA/S2/S3/S4	S2 versus S3 versus S4	26/150		Ι	9	68
Vague, P	1997	Caucasian	ATP1A1/restricted allele	I versus D	31/50	I	I	9	00

ORs, odds ratios; Cls, confidence intervals; NOS, Newcastle-Ottawa Quality Assessment Scale

Discussion

As we all know, the systematic review and meta-analysis approach used in this study is the most comprehensive method to detect genetic risk factors in most human diseases.⁶⁹ To date, there is no complete systematic review and meta-analysis reporting the potential association between all genetic polymorphisms and DN risk. Using widely accepted genetic models and subgroup analyses based on ethnicity, HWE status, quality of studies and so on, we performed this comprehensive systematic review that provided empirical support for exploring the relationship between relevant genetic polymorphisms, such as ACE I/D, MTHFR C677T, MTHFR 1298 A/C, GPx-1 rs1050450, CAT -262C/T, GSTM1, GSTT1, IL-10 -1082G/A, and DN susceptibility.

ACE is a key component of the renin-angiotensin system that converts angiotensin (Ang) I to Ang II. Ang II impacts endothelial damage and microcirculatory dysfunction.⁷⁰ Therefore, insufficient blood supply to peripheral nerves due to microcirculatory dysfunction is considered a possible pathological mechanism of DN.⁷¹ As the starting factor affecting Ang II level, ACE activity is influenced by the presence of an insertion (I) or deletion (D) of a 287-base pair fragment in intron 16 of the ACE gene resulting in a common variant, with the D allele being associated with higher ACE activity.⁷² This allele has been previously observed to probably associate with microvascular complications of diabetes.73-75 In this study, we statistically confirmed that the ACE I/D polymorphism was significantly associated with DN risk. The D allele had a 1.23-fold risk for DN compared with the I allele, and a 50% increased risk of DN was identified in DN patients with the DD genotype compared with the II genotype.

MTHFR is a key regulatory enzyme in homocysteine metabolism that converts homocysteine back to methionine via the re-methylation pathway.⁷⁶ Therefore, defiincreases the of MTHFR odds for ciencv hyperhomocysteinemia.⁷⁷ Meantime, it was reported that homocysteine levels and the prevalence of hyperhomocysteinemia were strongly associated with DN.78 Mutations of the MTHFR gene have been defined, and C677T and A1298C variants are the two of the most explored.⁷⁷ Both are functional polymorphisms that lead to decreased enzymatic activity, resulting in elevated homocysteine levels.⁷⁷ The association between MTHFR gene polymorphisms and the susceptibility of DN has been investigated in several studies but with inconsistent results. Therefore, we performed this meta-analysis involving all the available evidence of these two genetic variants and DN risk. In our study, only the MTHFR 1298A/C polymorphism showed a significant association with DN in the pooled

Fable 5. Continued

Polymorphism	Allelic model	Recessive model	Dominant model	Homozygous model	Heterozygous model
ACE I/D	0.293	0.279	0.579	0.581	0.609
MTHFR C677T	0.512	0.383	0.682	0.712	0.514
MTHFR 1298A/C	0.025	_	0.329	-	0.655
GPx-1	0.880	0.510	0.933	0.577	0.880
CAT-262C/T	0.460	0.925	0.669	0.913	0.469
GSTM1 null/present	0.957	_	-	-	_
GSTT1 null/present	0.349	_	_	-	-
IL-10	0.535	0.023	0.866	0.441	0.936

Table 6. Summary of P values of Egger's test for various contrasts of genetic polymorphisms and diabetic neuropathy susceptibility.

results, while no significant difference was found in the analysis of MTHFR C677T. In vitro studies showed that hyperhomocysteinemia affected nervous function either by direct cytotoxicity or by oxidative damage.^{79,80} Oxidative stress is associated with the development of apoptosis in neurons and supporting glial cells and could be the unifying mechanism that leads to nervous system damage in diabetes.^{81,82}

GPx-1 is a gene that encodes an antioxidant enzyme. Its main role is protecting cells against oxidative damage by reducing hydrogen peroxide and organic peroxidases to H₂O₂ with reduced glutathione.⁸³ As one of the GPx-1 polymorphisms, rs1050450, which reduces the activity of this enzyme, may cause an adverse effect on the vascular system and microvascular complications of diabetes.84,85 The present study aimed to evaluate the association of the rs1050450 polymorphism in the GPx-1 gene with DN. For our pooled results, we detected that GPx-1 rs1050450 showed a significant difference in the risk for DN. In the subgroup analysis, we found a similar result in the Caucasian population, as well as in the T2DM and sensorimotor neuropathy groups. The exact mechanism of the observed effect of GPx-1 gene polymorphism on susceptibility to DN is unknown. We speculate that changing the capacity of the antioxidant enzyme by the rs1050450 polymorphism may lead to increased oxidative damage which was found to be an important pathophysiological mechanism involved in DN.

CAT is a widespread enzyme that can catalyze the decomposition of H_2O_2 to water and molecular oxygen, which inactivate free oxygen radicals and peroxides in the process of oxidative stress existing in DN.⁸⁶ Therefore, CAT plays an important role in the pathogenesis of DN. From the current meta-analysis of CAT -262C/T and DN risk, our findings suggested that the T allele showed a protective effect on DN development, with nearly 29% and 47% decreased susceptibility in the allelic and recessive genetic models, respectively. Additionally, all three studies involved in this meta-analysis are performed in the Caucasian population. Thus, there may be a low risk for DN in T allele carriers of Caucasians. However, no

related study was conducted in an Asian population. The role of CAT -262C/T in DN requires further studies for non-Caucasian populations.

Glutathione S-transferases (GSTs) are a family of antioxidant enzymes that play important antioxidant roles in the elimination of reactive oxygen species.⁸⁷ GSTM1 and GSTT1 genes are polymorphic in humans, and the null genotypes are accompanied by a lack of enzyme activity.⁸⁸ The GSTM1 and GSTT1 polymorphisms have been reported as risk factors for DN in the past but without consistent results. According to our pooled data, none of these two genetic polymorphisms showed a significant difference in the risk for DN. However, due to the limited number of further studies and the inadequate number of included samples indicated in TSA, confirming the association between either of the two genetic polymorphisms and DN is difficult. Future studies with larger sample sizes are required.

Limitation also existed in our study. First, several genes have just been investigated in small cohorts and in only Caucasian populations such as GSTT1, GSTM1, and CAT -262C/T. Second, we confined the enrolled studies to publications in English. Third, obvious heterogeneity could be detected among some meta-analyses, such as MTHFR C677T and GSTM1 null/present which influences the credibility of our results. Therefore, we performed subgroup and sensitivity analyses to explore the source of heterogeneity, which was often from different study designs, measurement errors and ethnic diversity. Unfortunately, heterogeneity was not eliminated by these methods, which indicated that all factors mentioned before should be considered together. Fourth, mild publication bias was detected in MTHFR 1298A/C and IL-10 polymorphisms, and TSA showed inadequate information involved in the analyses for MTHFR, CAT and GST genes. Thus, the comprehensive analyses should be interpreted with caution. Finally, we did not analyze the genegene and gene-environment interactions in our current meta-analysis due to insufficient information.

In conclusion, we demonstrated that ACE I/D, MTHFR 1298A/C, GPx-1 rs1050450, and CAT-262C/T were

associated with DN susceptibility but MTHFR C677T, GSTM1, GSTT1, and IL-10 -1082G/A were not. More studies performed in different ethnicities with larger sample sizes are required to confirm our findings in the near future.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 81400950, 81501006).

Conflict of Interest

The authors declare no financial or other conflicts of interests.

References

- Meo SA, Memon AN, Sheikh SA, et al. Effect of environmental air pollution on type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci 2015;19:123–128.
- Xu W, Qian Y, Zhao L. Angiotensin-converting enzyme I/ D polymorphism is a genetic biomarker of diabetic peripheral neuropathy: evidence from a meta-analysis. Int J Clin Exp Med 2015;8:944–948.
- Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 2014;80:21–35.
- Deli G, Bosnyak E, Pusch G, et al. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 2013;98:267–280.
- Callaghan BC, Cheng HT, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012;11:521–534.
- 6. Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341–350.
- Adler AI, Boyko EJ, Ahroni JH, et al. Risk factors for diabetic peripheral sensory neuropathy. Results of the Seattle Prospective Diabetic Foot Study. Diabetes Care 1997;20:1162–1167.
- Vague P, Dufayet D, Coste T, et al. Association of diabetic neuropathy with Na/K ATPase gene polymorphism. Diabetologia 1997;40:506–511.
- 9. Witzel II, Jelinek HF, Khalaf K, et al. Identifying common genetic risk factors of diabetic neuropathies. Front Endocrinol (Lausanne) 2015;6:88.
- Politi C, Ciccacci C, D'Amato C, et al. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res Clin Pract 2016;120:198–208.
- 11. Jurado J, Ybarra J, Romeo JH, et al. Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study. J Diabetes Complications 2012;26:77–82.

- Li Y, Tong N. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: a meta-analysis. J Renin Angiotensin Aldosterone Syst 2015;16:787–792.
- 13. Yigit S, Karakus N, Inanir A. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. Mol Vis 2013;19:1626–1630.
- Russo GT, Giandalia A, Romeo EL, et al. Diabetic neuropathy is not associated with homocysteine, folate, vitamin B12 levels, and MTHFR C677T mutation in type 2 diabetic outpatients taking metformin. J Endocrinol Invest 2016;39:305–314.
- 15. Imberger G, Thorlund K, Gluud C, Wetterslev J. Falsepositive findings in Cochrane meta-analyses with and without application of trial sequential analysis: an empirical review. BMJ Open 2016;6:e011890.
- Wetterslev J, Jakobsen JC, Gluud C. Trial sequential analysis in systematic reviews with meta-analysis. BMC Med Res Methodol 2017;17:39.
- Inanir A, Basol N, Karakus N, Yigit S. The importance of association between angiotensin-converting enzyme (ACE) Gene I/D polymorphism and diabetic peripheral neuropathy. Gene 2013;530:253–256.
- Mansoor Q, Javaid A, Bilal N, Ismail M. Angiotensinconverting enzyme (ACE) gene II genotype protects against the development of diabetic peripheral neuropathy in type 2 diabetes mellitus. J Diabetes 2012;4:257–261.
- Stephens JW, Dhamrait SS, Acharya J, et al. A common variant in the ACE gene is associated with peripheral neuropathy in women with type 2 diabetes mellitus. J Diabetes Complications 2006;20:317–321.
- 20. Costacou T, Chang Y, Ferrell RE, Orchard TJ. Identifying genetic susceptibilities to diabetes-related complications among individuals at low risk of complications: an application of tree-structured survival analysis. Am J Epidemiol 2006;164:862–872.
- Degirmenci I, Kebapci N, Basaran A, et al. Frequency of angiotensin-converting enzyme gene polymorphism in Turkish type 2 diabetic patients. Int J Clin Pract 2005;59:1137–1142.
- 22. Ito H, Tsukui S, Kanda T, et al. Angiotensin-converting enzyme insertion/deletion polymorphism and polyneuropathy in type 2 diabetes without macroalbuminuria. J Int Med Res 2002;30:476–482.
- 23. Kakavand Hamidi A, Radfar M, Amoli MM. Association between MTHFR variant and diabetic neuropathy. Pharmacol Rep 2018;70:1–5.
- 24. Jimenez-Ramirez FJ, Castro LM, Ortiz C, et al. Role of treatment-modifying MTHFR677C>T and 1298A>C polymorphisms in metformin-treated Puerto Rican patients with type-2 diabetes mellitus and peripheral neuropathy. Drug Metab Pers Ther 2017;32:23–32.
- 25. Fekih-Mrissa N, Mrad M, Ibrahim H, et al. Methylenetetrahydrofolate reductase (MTHFR) (C677T

and A1298C) polymorphisms and vascular complications in patients with type 2 diabetes. Can J Diabetes 2017;41:366–371.

- Wang H, Fan D, Hong T. Is the C677T polymorphism in methylenetetrahydrofolate reductase gene or plasma homocysteine a risk factor for diabetic peripheral neuropathy in Chinese individuals? Neural Regen Res 2012;7:2384–2391.
- Ambrosch A, Dierkes J, Lobmann R, et al. Relation between homocysteinaemia and diabetic neuropathy in patients with Type 2 diabetes mellitus. Diabet Med 2001;18:185–192.
- 28. Snahnicanova Z, Mendelova A, Grendar M, et al. Association of polymorphisms in CYBA, SOD1, and CAT genes with type 1 diabetes and diabetic peripheral neuropathy in children and adolescents. Genet Test Mol Biomarkers 2018;22:413–419.
- Kasznicki J, Sliwinska A, Kosmalski M, et al. Genetic polymorphisms (Pro197Leu of Gpx1, +35A/C of SOD1, -262C/T of CAT), the level of antioxidant proteins (GPx1, SOD1, CAT) and the risk of distal symmetric polyneuropathy in Polish patients with type 2 diabetes mellitus. Adv Med Sci 2016;61:123–129.
- 30. Babizhayev MA, Strokov IA, Nosikov VV, et al. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem Biophys 2015;71:1425– 1443.
- Buraczynska M, Buraczynska K, Dragan M, Ksiazek A. Pro198Leu polymorphism in the glutathione peroxidase 1 gene contributes to diabetic peripheral neuropathy in type 2 diabetes patients. Neuromolecular Med 2017;19:147–153.
- 32. Tang TS, Prior SL, Li KW, et al. Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutr Metab Cardiovasc Dis 2012;22:417–425.
- 33. Matsuno S, Sasaki H, Yamasaki H, et al. Pro198Leu missense polymorphism of the glutathione peroxidase 1 gene might be a common genetic predisposition of distal symmetric polyneuropathy and macrovascular disease in Japanese type 2 diabetic patients. J Diabetes Investig 2011;2:474–482.
- 34. Stoian A, Banescu C, Balasa RI, et al. Influence of GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus and diabetic sensorimotor peripheral neuropathy risk. Dis Markers 2015;2015:638693.
- 35. Zaki MA, Moghazy TF, El-Deeb MMK, et al. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications. Alexandria J Med 2015;51:73–82.

- 36. Vojtkova J, Durdik P, Ciljakova M, et al. The association between glutathione S-transferase T1 and M1 gene polymorphisms and cardiovascular autonomic neuropathy in Slovak adolescents with type 1 diabetes mellitus. J Diabetes Complications 2013;27:44–48.
- 37. Canecki-Varžić S, Prpić-Križevać I, Mihaljević S, et al. Association between interleukin-10 gene (-1082G/A) polymorphism and type 2 diabetes, diabetes-related traits, and microvascular complications in the Croatian population. Acta Clin Croat 2018;57:71–81.
- Rodrigues KF, Pietrani NT, Sandrim VC, et al. Association of a large panel of cytokine gene polymorphisms with complications and comorbidities in type 2 diabetes patients. J Diabetes Res 2015;2015:1–9.
- 39. Kolla VK, Madhavi G, Pulla Reddy B, et al. Association of tumor necrosis factor alpha, interferon gamma and interleukin 10 gene polymorphisms with peripheral neuropathy in South Indian patients with type 2 diabetes. Cytokine 2009;47:173–177.
- 40. Sun L, Ma J, Mao Q, et al. Association of single nucleotide polymorphisms in CACNA 1A/CACNA 1C/ CACNA 1H calcium channel genes with diabetic peripheral neuropathy in Chinese population. Biosci Rep 2018;38:BSR20171670.
- 41. Hubacek JA, Dlouha D, Klementova M, et al. The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene 2018;642:220–224.
- 42. Zaky EA, Elgebaly HH, Adly AA, et al. Interleukin 2 receptor alfa gene polymorphism in type 1 Egyptian diabetics. Curr Pediatr Res 2018;22:38–49.
- Ciccacci C, Latini A, Greco C, et al. Association between a MIR499A polymorphism and diabetic neuropathy in type 2 diabetes. J Diabetes Complications 2018;32:11–17.
- 44. Ezhilarasi K, Dhamodharan U, Vijay V. BSMI single nucleotide polymorphism in vitamin D receptor gene is associated with decreased circulatory levels of serum 25hydroxyvitamin D among micro and macrovascular complications of type 2 diabetes mellitus. Int J Biol Macromol 2018;116:346–353.
- 45. Marzban A, Kiani J, Hajilooi M, et al. HLA class II alleles and risk for peripheral neuropathy in type 2 diabetes patients. Neural Regen Res 2016;11:1839–1844.
- 46. Gupta B, Singh SK. Association of aldose reductase gene polymorphism (C-106T) in susceptibility of diabetic peripheral neuropathy among north Indian population. J Diabetes Complications 2017;31:1085–1089.
- Lv Y, Zhou L, Tang Z, Dong J. Association and interaction analysis of diabetes mellitus and SCN10A for cardiovascular autonomic neuropathy in a Chinese population. Postgrad Med J 2017;93:344–348.
- 48. Kiani J, Khadempar S, Hajilooi M, et al. Cytotoxic T lymphocyte antigen-4 gene variants in type 2 diabetic patients with or without neuropathy. Iran J Allergy Asthma Immunol 2016;15:220–228.

- 49. Ji ZY, Li HF, Lei Y, et al. Association of adiponectin gene polymorphisms with an elevated risk of diabetic peripheral neuropathy in type 2 diabetes patients. J Diabetes Complications 2015;29:887–892.
- Chen Y, Wang J, Wang L, et al. Adiponectin gene polymorphisms are associated with increased susceptibility to diabetic peripheral neuropathy. Biomarkers 2015;20:474–480.
- 51. Ren Z, Ji N, Jia K, et al. Association of the intercellular adhesion molecule-1 gene polymorphisms with type 2 diabetes and diabetic peripheral neuropathy in a Chinese Han population. Genes Genomics 2015;37:69–75.
- 52. Jia Y, Tong Y, Min L. Significance of functional GRP78 polymorphisms in predicting the onset of type 2 diabetic peripheral neuropathy in Chinese population. Neurol Res 2015;37:683–687.
- 53. Ciccacci C, Morganti R, Di Fusco D, et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 2014;51:663–671.
- 54. Zhang X, Sun Z, Jiang H, Song X. Relationship between single nucleotide polymorphisms in the 3'-untranslated region of the vascular endothelial growth factor gene and susceptibility to diabetic peripheral neuropathy in China. Arch Med Sci 2014;10:1028–1034.
- 55. Groener JB, Reismann P, Fleming T, et al. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Exp Clin Endocrinol Diabetes 2013;121:436–439.
- Basol N, Inanir A, Yigit S, et al. High association of IL-4 gene intron 3 VNTR polymorphism with diabetic peripheral neuropathy. J Mol Neurosci 2013;51:437–441.
- Ciccacci C, Di Fusco D, Cacciotti L, et al. TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol 2013;50:789–799.
- Korzon-Burakowska A, Jakobkiewicz-Banecka J, Fiedosiuk A, et al. Osteoprotegerin gene polymorphism in diabetic Charcot neuroarthropathy. Diabet Med 2012;29:771–775.
- 59. Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, et al. Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications. Diabetes Res Clin Pract 2011;91:348–352.
- Tavakkoly-Bazzaz J, Amoli MM, Pravica V, et al. VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep 2010;37:3625–3630.
- 61. Chistiakov DA, Spitsina EV, Nikitin AG, et al. A splice variant of GNB3 and peripheral polyneuropathy in type 1 diabetes. Dis Markers 2009;26:111–117.
- 62. Yang L, Li H, Yu T, et al. Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. Am J Physiol Endocrinol Metab 2008;294:E987–E992.

- 63. Nikitin AG, Chudakova DA, Strokov IA, et al. Leu54Phe and Val762Ala polymorphisms in the poly(ADP-ribose) polymerase-1 gene are associated with diabetic polyneuropathy in Russian type 1 diabetic patients. Diabetes Res Clin Pract 2008;79:446–452.
- 64. Papanas N, Papatheodorou K, Papazoglou D, et al. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2007;115:327–330.
- 65. Rudofsky G Jr, Schroedter A, Schlotterer A, et al. Functional polymorphisms of UCP2 and UCP3 are associated with a reduced prevalence of diabetic neuropathy in patients with type 1 diabetes. Diabetes Care 2006;29:89–94.
- 66. Rudofsky G Jr, Reismann P, Witte S, et al. Asp299Gly and Thr399Ile genotypes of the TLR4 gene are associated with a reduced prevalence of diabetic neuropathy in patients with type 2 diabetes. Diabetes Care 2004;27:179–183.
- Benjafield AV, Glenn CL, Wang XL, et al. TNFRSFF1B in genetic predisposition to clinical neuropathy and effect on HDL cholesterol and glycosylated hemoglobin in type 2 diabetes. Diabetes Care 2001;24:753–757.
- Shi H, Fang J, Yang X, et al. Lipoprotein (a) concentration and apolipoprotein (a) phenotype in subjects with type 2 diabetes mellitus. Chin Med J (Engl) 1998;111:1013–1017.
- 69. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001;29:306–309.
- Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: role of oxidative stress and sympathetic activation. Vascul Pharmacol 2019;115:13–17.
- 71. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019;5:41.
- Danser AH, Schalekamp MA, Bax WA, et al. Angiotensinconverting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995;92:1387–1388.
- 73. Araz M, Aynacioglu S, Aktaran S, et al. Association between polymorphism of the angiotensin I converting enzyme gene and hypertension in Turkish type II diabetic patients. Acta Medica (Hradec Kralove) 2001;44:29–32.
- 74. Hadjadj S, Gallois Y, Alhenc-Gelas F, et al. Angiotensin-Iconverting enzyme insertion/deletion polymorphism and high urinary albumin concentration in French Type 2 diabetes patients. Diabet Med 2003;20:677–682.
- 75. Yudkin JS, Andres C, Mohamed-Ali V, et al. The angiotensin-converting enzyme gene and the angiotensin II type I receptor gene as candidate genes for microalbuminuria. A study in nondiabetic and noninsulin-dependent diabetic subjects. Arterioscler Thromb Vasc Biol 1997;17:2188–2191.

- Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost 1997;78:523–526.
- 77. Moll S, Varga EA. Homocysteine and MTHFR mutations. Circulation 2015;132:e6–e9.
- Wang H, Cui K, Xu K, Xu S. Association between plasma homocysteine and progression of early nephropathy in type 2 diabetic patients. Int J Clin Exp Med 2015;8:11174–11180.
- Schlussel E, Preibisch G, Putter S, Elstner EF. Homocysteine-induced oxidative damage: mechanisms and possible roles in neurodegenerative and atherogenic processes. Z Naturforsch C 1995;50:699–707.
- Weir DG, Scott JM. The biochemical basis of the neuropathy in cobalamin deficiency. Baillieres Clin Haematol 1995;8:479–497.
- Russell JW, Sullivan KA, Windebank AJ, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999;6:347–363.
- 82. Russell JW, Golovoy D, Vincent AM, et al. High glucoseinduced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002;16:1738–1748.
- Endler M, Saltvedt S, Eweida M, Akerud H. Oxidative stress and inflammation in retained placenta: a pilot study of protein and gene expression of GPX1 and NFkappaB. BMC Pregnancy Childbirth 2016;16:384.
- Ravn-Haren G, Olsen A, Tjonneland A, et al. Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 2006;27:820–825.
- 85. Wickremasinghe D, Peiris H, Chandrasena LG, et al. Case control feasibility study assessing the association between

severity of coronary artery disease with Glutathione Peroxidase-1 (GPX-1) and GPX-1 polymorphism (Pro198Leu). BMC Cardiovasc Disord 2016;16:111.

- Basic J, Vojinovic J, Jevtovic-Stoimenov T, et al. The association of CAT-262C/T polymorphism with catalase activity and treatment response in juvenile idiopathic arthritis. Rheumatol Int 2019;39:551–559.
- 87. Ginsberg G, Smolenski S, Hattis D, et al. Genetic polymorphism in glutathione transferases (GST): population distribution of GSTM1, T1, and P1 conjugating activity. J Toxicol Environ Health B Crit Rev 2009;12:389–439.
- 88. Seidegard J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 1988;85:7293–7297.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Sensitivity analyses for the polymorphisms and DN risk.

Figure S2. Funnel plots for the polymorphisms and DN risk.

Figure S3. Trial sequential analyses for the polymorphisms and DN risk.

 Table S1. Full genetic polymorphism list for systematic review.