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Rheumatic heart disease (RHD) is often considered as a disease of developing countries and India is 
the home of about 40% of RHD patients. Environment seems to play a major role in its causation. 
Since gene environment interactions can lead to alterations of various metabolic pathways, 
identification of altered metabolites can help in understanding the various pathways leading to RHD. 
Blood plasma samples from 51 RHD and 49 healthy controls were collected for the study. Untargeted 
metabolomics approach was used to identify the metabolites that are altered in RHD patients. Data 
showed 25 altered metabolites among RHD patients. These altered metabolites were those involved 
in Purine, Glutamine, Glutamate, Pyrimidine, Arginine, Proline and Linoleic metabolism. Thus, the 
present study illuminates metabolic alterations among RHD patients which can help in determining 
the potential therapeutic targets.

Rheumatic heart disease (RHD) is one of the commonest causes of cardiac disease below 25 years of age1. Recur-
rences of Rheumatic fever leads to valvular damage and RHD. The global burden of this disease is estimated to 
be about 33 million worldwide, causing 2,75,000 deaths annually1. Rheumatic fever (RF) and RHD have almost 
disappeared from high income countries during late twentieth centuries, but are still prevalent in low-income 
countries. African, South Asian and Pacific Islands are the worst affected regions contributing to almost 84% of 
the total RHD cases2. In the South-East Asian region, India accounts for highest global prevalence of almost 27% 
(13.17 million) and 1,19,100 deaths approximately2. RHD is pathologically heterogenous where gene environ-
ment interaction plays a very important role3. The pathological mechanism of RHD has not been elucidated in 
detail till date.

Metabolomics is a powerful technique which has the potential to provide minute details of biological path-
ways, driven genes or mutations thereby shedding light in understanding the mechanism of disease progres-
sion and also discovering diagnostic biomarkers. It is helpful in identifying drug targets for the development 
of therapeutic agents. Metabolomics approach has helped in detecting biomarkers in diseases like cancer and 
neurological disorders but to the best of our knowledge there is paucity of metabolomic studies among RHD 
patients. Metabolomics analysis can be done using untargeted or targeted approach. Untargeted metabolite study 
is a hypothesis free approach where novel metabolites can be discovered whereas targeted metabolite approach is 
a hypothesis-based approach where metabolites are known. Thus, metabolomics approach will not only provide 
insights into the pathogenesis of disease progression but will also help in identifying new therapeutic targets.

In the present study we aim to identify the putative metabolic biomarkers for RHD using high throughput non 
targeted ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) which 
can be useful in early diagnosis and monitoring of RHD, further helping in understanding the disease pathology.
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Results
In this study, a total of 51 RHD patients and 49 age sex matched healthy controls were enrolled. There was no 
significant difference between the mean age and sex among both the groups. The number of females was higher 
among RHD patients. The mean body mass index (BMI) was significantly different in both the groups (P = 0.01) 
(Table 1). The diastolic pressure was significantly high among the RHD patients (P = 0.01) (Table 1). All the 
patients belonged to New York Heart Association (NYHA) class II and III (Table 1). Only 3.92% were smokers 
among RHD patients and were not significantly different from healthy controls. Diet pattern was almost similar 
in both the groups (Table 1).

Untargeted LC–MS analysis.  351 metabolites were identified in blood plasma through UHPLC-MS/MS 
analysis (Supplementary Table 1 and Supplementary Table 2). Metabolites with more than 20% missing values 
were removed from the study rest were replaced by LoDs (1/5 of the minimum positive value of each variable). 
The peak area data matrix was sum normalized, log transformed and pareto scaled. PCA analysis was performed 
to understand the aggregation and description of the samples (Fig. 1a.). Whereas PLS-DA score plot helped us 
to clearly discriminate between the two groups (R2 = 0.92 and Q2 = 0.76) (Fig. 1b). Cross validation analysis using 
100 random permutations were done to prevent overfitting of the PLS-DA model. The R2 and Q2 values of the 
originally obtained model were better than the 100 randomly permutated models indicating good predictive 
capacity of the obtained PLS-DA model.

Identification of significantly altered metabolites.  Identification of altered metabolites was based on 
univariant and multivariant analysis. Consideration of metabolites was based on VIP score > 1.2 from PLS-DA 
analysis, p < 0.05 selected upon student’s t test analysis. 25 metabolites were significantly differentially expressed 
in the blood plasma samples in RHD patients. Among these 25 metabolites 17 metabolites (N-acetylneurami-
nate, Arachidonic acid, D-Sphingosine, 16(R)-HETE, orotate, inosine, Hypoxanthine, linoleate, Prostaglandin 
B, d-( +)-Pyroglutamic Acid, l-5-Hydroxytryptophan, Adenosine monophosphate, l-glutamic acid, 5-Meth-
oxysalicylic acid, Prostaglandin A1, d-pantothenic acid, xanthine) were up regulated among RHD patients 
(Table 2). Remaining 8 metabolites (Caprolactam, trans-4-Hydroxy-l-proline, dihydroxymandelic acid, alpha-
Aspartylphenylalanine, 2’-Deoxyuridine, alpha-Lactose, 4-Nitrophenol, 4-Anisic acid) were down regulated 
(Table  2). Caprolactam, N-acetylneuraminate, trans-4-Hydroxy-l-proline, Dihydroxymandelic acid had VIP 
score > 2 indicating strong difference between RHD patients from the control group (Table 2).

Binary logistic regression analysis was also performed to assess the association between altered metabolites 
and RHD after controlling the effect of BMI and alcohol consumption. Findings of logistic regression analysis 
are provided in Supplementary table 3.

Statistically significant metabolites were subjected to KEGG pathway analysis (https://​www.​kegg.​jp/​kegg/​
kegg1.​html). Purine metabolism pathway was significantly altered (p = 0.01) with more than 2 hits. The results 
obtained from MetPA analysis is illustrated in Fig. 2.

Impact value more than 0.10 directs that the altered pathway evidently affects RHD patients therefore we 
consider Purine metabolism, Linoleic acid metabolism, d-Glutamine and D-glutamate metabolism, Arginine and 
proline metabolism, Pyrimidine metabolism, Arginine biosynthesis, Galactose metabolism, Alanine, aspartate 
and glutamate metabolism, Arachidonic acid metabolism and Tryptophan metabolism.

Table 1.   Demographic and clinical characteristics of the patients. Significant values are in bold.

RHD patients
(N = 51)

Healthy controls
(N = 49) p value

Age (years) 32.63 ± 8.75 29.93 ± 7.60 0.10

Male n (%) 17 (33.33) 22 (44.89) 0.23

BMI (kg/m2) 21.83 ± 3.91 25.71 ± 6.41 0.01

Heart rate (beats/min) 78 ± 19.03 79.89 ± 7.79 0.61

Systolic pressure (mmHg) 111.47 ± 14.52 112.17 ± 11.28 0.82

Diastolic pressure (mm Hg) 76.5 ± 11.50 70.28 ± 9.09 0.01

EF 57.76 ± 4.86

MVA (cm2) 1.04 ± 0.32

Severe MS N (%) 28 (54.90)

NYHA class

NYHA II 34 (66.67)

NYHA III 17 (33.33)

Diet veg N (%) 18 (35.29) 24 (48.97) 0.16

Alcohol N (%) 07 (13.72) 15 (30.61) 0.04

Smoking N (%) 02 (3.92) 07 (14.28) 0.07

https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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Discussion
Till date there is scarcity of studies to understand the metabolomic changes in blood plasma of RHD patients. 
Metabolomics is a new approach after genomics and proteomics, which is being used extensively to identify 
disease biomarkers and biological systems4. Metabolomics approach has been used in detecting biomarkers in 
diseases like cancer, neurological disorders, infectious diseases, inflammation and also in cardiovascular diseases5. 
It is also used to understand the regulation of pathways of various biological processes.

In the present study untargeted LCMS based metabolomics approach has been used to identify potential 
metabolites for RHD. To the best of our available findings the present study is the first to understand the potential 
difference between RHD patients and Healthy controls. The main finding of the present study includes identifi-
cation of 25 significantly altered metabolites, 17 upregulated and 8 down regulated in RHD patients compared 
to healthy controls.

The 25 significantly altered metabolites were mapped for different pathways. The most important altered 
pathways were Purine metabolism, Linoleic acid metabolism, D-Glutamine and D-glutamate metabolism, Argi-
nine and proline metabolism, Pyrimidine metabolism, Arginine biosynthesis, Galactose metabolism, Alanine, 
aspartate and glutamate metabolism, Arachidonic acid metabolism and Tryptophan metabolism (Fig. 2). Nota-
bly, purine metabolism comprises increase in inosine, adenosine monophosphate, hypoxanthine and xanthine 
(Table 2). In ischemic pig myocardium hypoxanthine accumulation has been reported earlier6. Xanthine oxidase 
metabolizes hypoxanthine to xanthine and uric acid. Increased level of hypoxanthine is mainly due to deficiency 
in hypoxanthine guanine phosphoribosyl transferase (HGPRT). It has been reported in earlier studies that 
hypoxanthine can lead to endothelial dysfunction by oxidative stress induced apoptosis7. Thus, the present study 
may suggest that hypoxanthine imbalance may lead to RHD.

Other significant altered pathways discovered in RHD patients were d-Glutamine and d-glutamate metabo-
lism and Linoleic acid metabolism (Fig. 2). Glutamate and glutamine are nonessential amino acids that are 
transformed into each other by glutamine synthase and glutaminase. Framingham heart study reported that 
the circulating glutamate levels lead to cardiometabolic risk factors whereas circulating level of glutamine and 
the glutamine:glutamate ratio exhibits opposite association with the cardiometabolic risk factors8. Yan Zheng 
et al., 2016 has reported association of CVD and especially stroke with metabolites in the Glutamate pathway9. 
Since patients of RHD with AF have a high risk of stroke, thus the present study gives evidence for considering 
glutamate as an early marker for RHD.

Linoleic acid is predominant n-6 polyunsaturated fatty acid (PUFA) which is commonly obtained from veg-
etable oils and nuts. It has been previously reported that linoleic acid reduces LDL cholesterol thus lowers the risk 
of chronic heart disease10. Therefore, polyunsaturated fatty acid (PUFA) has been recommended for prevention of 
chronic heart disease. Higher concentration of Linoleic acid shows a proinflammatory and thrombogenic effect11 
but this result has not been confirmed by randomised controlled trials. Chowdhury et al., 2014 performed meta-
analysis and reported no significant association between n-6 polyunsaturated fatty acids (PUFA) and chronic 

Figure 1.   Chemometric analysis of metabolites among RHD and healthy controls. (a) Principal Component 
Analysis (PCA) score plot from RHD and healthy control. The green dots represent RHD patients and the 
red dots represent healthy controls in the 2D PCA score plots. (b) Partial least squares discriminant analysis 
(PLS-DA) score plot from RHD and healthy control. The two groups are well separated in the PLS-DA score 
plot, indicating that they had markedly different metabolic characteristics.
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Table 2.   Plasma metabolites differentiating RHD patients from control group. VIP score variable of 
importance score obtained from PLS-DA analysis (VIP > 1.2), p value p value of the Wilcoxon signed-rank test, 
Log2(FC) log2 value of fold change, FC fold change (FC > 1.5), FDR false discovery rate, AUC​ area under the 
curve calculated from ROC analysis.

VIP P value Log2(FC) FDR AUC​

Caprolactam 2.3412 3.31E−24 −1.2333 1.16E−21 0.967

N-Acetylneuraminate 2.1912 1.27E−05 2.0395 0.000149 0.824

Trans-4-hydroxy-l-proline 2.0438 8.19E−07 −1.6103 2.05E−05 0.779

Dihydroxymandelic acid 2.04 4.05E−06 −2.3744 5.92E−05 0.736

Arachidonic acid 1.8545 2.82E−08 1.4512 1.24E−06 0.805

d-Sphingosine 1.7667 1.99E−05 0.88739 0.000208 0.768

16(R)-HETE 1.7518 2.40E−06 0.71539 4.44E−05 0.733

Orotate 1.7127 0.00309 1.3078 0.013226 0.58

Inosine 1.6591 0.001455 2.44 0.006809 0.719

Hypoxanthine 1.6467 0.005737 1.3465 0.022375 0.747

Linoleate 1.595 0.006022 2.1162 0.023227 0.76

Prostaglandin B1 1.5482 5.03E−06 1.1173 6.61E−05 0.758

d-( +)-pyroglutamic acid 1.4993 3.12E−06 0.8164 5.01E−05 0.773

Alpha-aspartylphenylalanine 1.4817 0.016667 −1.7362 0.047952 0.667

l-5-Hydroxytryptophan 1.4711 3.33E−10 0.70395 3.89E−08 0.876

Adenosine monophosphate 1.4458 0.000781 0.80453 0.004153 0.721

l-Glutamic acid 1.4397 3.27E−06 0.75709 5.01E−05 0.751

5-Methoxysalicylic acid 1.4297 5.09E−06 0.9186 6.61E−05 0.747

Prostaglandin A1 1.4266 6.22E−05 1.1885 0.000555 0.71

2’-Deoxyuridine 1.3609 0.000346 −1.1365 0.002131 0.692

d-Pantothenic acid 1.3421 0.001059 0.83355 0.005236 0.808

Alpha-lactose 1.2985 8.95E−05 −0.73137 0.000748 0.742

Xanthine 1.2797 0.000363 1.3465 0.002158 0.731

4-Nitrophenol 1.2617 9.41E−08 −0.65097 3.30E−06 0.803

4-Anisic acid 1.2602 0.00021 −1.4004 0.001502 0.717

Arginine biosynthesis 

Linoleic acid metabolism 

D-Glutamine and D-
glutamate metabolism 

Purine metabolism 

Arginine and 
proline metabolism 

Pyramidine 
metabolism 

Glutathione metabolism 

Nitrogen metabolism 

Figure 2.   The MetPA analysis based on KEGG Analysis. The darker the red colour of the metabolic pathway, 
the greater its-log (p) value, indicating a more significant difference.
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heart disease12. Since inflammation and thrombogenic effect are common among RHD patients therefore high 
consumption of n-6 polyunsaturated fatty acids (PUFA) should be discouraged.

In ischemic rat heart, UTP and CTP degrades quickly compared to ATP13. Coronary heart disease patients 
also show a great disturbance in pyrimidine nucleotides14. There are two main pathways for pyrimidine synthesis: 
de novo pathway which use amino acids and CO2to synthesize orotate and Salvage pathways uses pyrimidine 
precursors from the diet or from other tissues. The de novo pathway is not very prominent in cardiac tissue15 
but Salvage pathways appears to play a significant role in pyrimidine synthesis in heart tissue. The low efficacy 
of the de novo pathway could be due to limited availability of phosphoribosyl pyrophosphate (PRPP). The low 
availability of PRPP is due to inefficient pentose shunt of carbohydrate catabolism in myocardium. Studies have 
shown that administration of orotate increases the pyrimidine nucleotide content in heart tissue16. Pyrimidine 
precursor administration can accelerate the reconstitution of glycogen stores17. In cardioplegic arrest orotic acid 
has provided protection to the heart18. Orotic acid has also prevented changes in contractility and sarcolemmal 
glycoproteins in hamsters with muscular dystrophy19. Thus, pyrimidine pathway plays an important role in sup-
porting the myocardium20. In the present study Orotate was upregulated which may be a protective mechanism 
in RHD patients.

Arginine and proline metabolism is also observed to be altered in current study. Arginine is one of the most 
adaptable amino acid which acts as a precursor for protein, nitric oxide, polyamines, urea, glutamate, proline, 
agmatine and creatinine21. Lower arginine availability has been earlier reported to be associated with cardiovas-
cular risk22. Proline and hydroxyproline are amino acids which help in maintaining cell structure and functions.

Further, one of the metabolites caprolactam which is a xenobiotic compound was significantly reduced 
among RHD patients. The direct association of caprolactam with RHD has not been reported previously. How-
ever, caprolactam has been reported to be associated with sensory and dermal irritation, dysmenorrhea among 
humans23. Cardiovascular and respiratory effects have been reported in animals with an increase in blood pres-
sure followed by a decrease and an increased respiratory rate24. Further studies are required to establish the role 
of caprolactam in RHD.

To summarize, the present study is the first study to comprehend the complete metabolic alterations among 
RHD patients. The untargeted metabolomics approach leads to finding of a broad range of metabolites which will 
aid in understanding the complete view of key metabolic pathway alteration in RHD. The results suggest altera-
tion of several metabolic pathways including purine metabolism, d-Glutamine and d-glutamate metabolism, 
Pyrimidine metabolism, Arginine and Proline metabolism and Linoleic acid metabolism. Thus, the findings 
from the present study can act as a tool for validation and identification of possible targets for future therapeutic 
executives.

Methods
Participants and sample collection.  5 ml of intravenous blood samples were collected from 51 RHD 
patients and 49 age sex matched healthy controls. The plasma from the blood samples was separated and stored 
at −80 °C until analysis. The patients were included in the study after obtaining written informed consent. 12 
lead electrocardiogram and two-dimensional echocardiography was done in all the patients. All methods were 
carried out in accordance with relevant guidelines and regulations. The study has been approved by the Ethics 
committee of All India Institute of Medical Sciences, New Delhi and National Institute of Pathology, Indian 
Council of Medical Research, New Delhi.

Sample preparation.  Frozen samples were thawed at room temperature. Metabolites were extracted using 
chilled methanol in ratio of 1:3 (plasma: methanol) followed by vertexing and centrifugation at 10,000 rpm for 
10 min. The supernatant containing metabolites was then collected in a microcentrifuge tube and was lyophi-
lized. The lyophilized samples were reconstituted in 15% methanol and 5 µl was injected for LCMS analysis. 
Samples were run in randomised way and all the acquisition has been done in single batch.

Untargeted LCMS metabolomic profiling.  LC–MS acquisition was done using orbitrap Fusion 
(Thermo Fischer) coupled with ultimate 3000 UHPLC system. Ion source used for positive and negative data 
acquisition was heated electrospray ion source. Resolution of MS was set to 120,000 for MS1 and 3000 for MSMS. 
Mass range of data acquisition was 60–900 Da. Extracted metabolites were separated on reverse phase column 
HSS T3 column (Waters)25 before infusing to mass spectrometer. Mobile phase A was water with 0.1% formic 
acid and mobile phase B was methanol with 0.1% formic acid with flow rate of 0.3 mL/min. Total run time was 
of 14 min with gradient varying from 1% B to 95% B26. Quality control (5ul of all samples) run was used after 
every five samples to monitor the retention time (RT) shift and signal variations. The RT was in minutes. Data 
were acquired in data dependent mode with intensity threshold an input. Collision energy was 35 ± 15 for MS/
MS. Precursor ion selection was from 100 to 1000 Da and the ion isolation width was 1 Da.

Data processing.  Data pre-processing, RT alignment, deconvolution, feature detection, elemental compo-
sition prediction and metabolites annotation was done using Progenesis QI software. Metascope plug of Progen-
esis QI has been used for annotation of the metabolites, the in-house library with accurate mass, fragmentation 
pattern and RT for database search27. The in-house library compounds were purchased from IROA technology 
that has ~ 600 commands. Same library with chemical class and other information has been published by Phapale 
et al. 202128 (https://​pubs.​acs.​org/​doi/​abs/​10.​1021/​acs.​jprot​eome.​0c009​30). In Progenesis QI there is metascope 
plugin which can take .msp file (with fragment mass and their corresponding intensities information). Extract 
algorithm for spectral similarity match could be found at (https://​www.​nonli​near.​com/​proge​nesis/​qi/​v2.0/​faq/​
fragm​ent-​datab​ases.​aspx). Identification of metabolites based MSMS spectral similarity was considered only 

https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.0c00930
https://www.nonlinear.com/progenesis/qi/v2.0/faq/fragment-databases.aspx
https://www.nonlinear.com/progenesis/qi/v2.0/faq/fragment-databases.aspx


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5238  | https://doi.org/10.1038/s41598-022-09191-z

www.nature.com/scientificreports/

when the fragmentation pattern was > 30 in Progenesis metascope. MSP file of MSMS was downloaded from 
MS-DIAL spectral database (http://​prime.​psc.​riken.​jp/​compms/​msdial/​main.​html#​MSP) and same has been 
used for the identification of metabolites using progenesis metascope. Cut-off for RT match was 0.5 min and 
spectral similarity was more than 30% fragmentation match in Progenesis QI25. All features that had coefficient 
of variation (CV) less than 30% in pool QC samples were rejected25. Further, manual verification of each filtered 
feature has been to done to select the right peaks.

Multivariate statistical analysis.  Statistical analysis in data was done using Metaboanalyst 5.0. The data 
matrix was sum normalized, log transformed and Pareto scaled. Principal Component Analysis (PCA) was done 
to understand the clustering pattern. Partial least squares discriminant analysis (PLS-DA) was conducted to 
clarify groups among clusters. Goodness of the fit and predictive ability of PLS-DA models were evaluated by R2 
and Q2 values respectively29.

Comparison of socio-demographic and clinical characteristics across the two study groups:
Continuous variables in Table 1 were represented as mean ± SD and between group comparison was made 

by two sample t test. Categorical outcomes were reported as frequency (percentages) and compared with Chi 
squared test. Stata ver. 14.2 was used to perform the analysis.

Multivariate logistic regression analysis.  Binary logistic regression analysis was performed to assess 
the association between altered metabolites and RHD after controlling the effect of BMI and alcohol consump-
tion. In logistic regression analysis, RHD and healthy controls were assumed as dependent variables. Metabolite 
peak area, alcohol consumption and BMI were assumed as independent variables. BMI was categorized as nor-
mal (BMI ≤ 22.9), overweight (BMI 23–24.9) & obesity (≥ 25 kg/m2)30 respectively. Stata ver. 14.2 was used to 
perform logistic regression analysis.

Significant metabolites selection.  Variables with VIP (variable importance of projection) score greater 
than 1.2 were considered for discrimination. Student’s t-test (P < 0.05) were adjusted for multiple hypothesis 
testing using FDR correction. Metabolites with fold change threshold of 1.5 and above were considered in the 
study. Metabolites passing fold change, VIP, P value and FDR criteria were considered for the study. AUC was 
calculated from ROC analysis. All the univariate analysis was performed with Metaboanalyst 5.0.

Pathway analysis.  Pathway analysis was done using MetPA in Metaboanalyst 5.0. Information from Kyoto 
encyclopaedia of genes and genomes (KEGG) and human metabolome database (HMDB) for metabolic path-
way analysis was used.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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