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Single-cell sampling with RNA-seq analysis plays an important role in reference laboratory; cytogenomic diagnosis for specimens
on glass-slides or rare cells in circulating blood for tumor and genetic diseases; measurement of sensitivity and specificity in tumor-
tissue genomic analysis with mixed-cells; mechanism analysis of differentiation and proliferation of cancer stem cell for academic
purpose. Our single- cell RNA-seq technique shows that fragments were 250–450 bp after fragmentation, amplification, and adapter
addition. There were 11.6 million reads mapped in raw sequencing reads (19.6 million). The numbers of mapped genes, mapped
transcripts, and mapped exons were 31,332, 41,210, and 85,786, respectively. All QC results demonstrated that RNA-seq techniques
could be used for single-cell genomic performance. Analysis of the mapped genes showed that the number of genes mapped by
RNA-seq (6767 genes) was much higher than that of differential display (288 libraries) among similar specimens which we have
developed and published. The single-cell RNA-seq can detect gene splicing using different subtype TGF-beta analysis. The results
from using Q-rtPCR tests demonstrated that sensitivity is 76% and specificity is 55% from single-cell RNA-seq technique with some
gene expression missing (2/8 genes). However, it will be feasible to use RNA-seq techniques to contribute to genomic medicine at
single-cell level.

1. Introduction
Clinical specimens are tremendously different from biolo-
gical specimens in that the former contain mixed cells while
the latter are mostly composed of pure cells. A mixed cell
population in clinical samples can mask real results of geno-
mic data, resulting in an inaccuracy of routine clinical
genomic analysis and clinical genomic diagnosis. However,
genomic medicine requires precise genomic profiling of clin-
ical specimens to work for a clinical genomic diagnosis and
to design personalized therapy for genetic and cancerous
diseases. Like most routine diagnosis techniques [1, 2], clin-
ical genomic analysis and genomic diagnosis techniques also
have two prerequisites, that is, sensitivity and specificity, for
clinical analysis and diagnosis [3–5]. In order tomeet the req-
uirements, two techniques can be considered: quantitative
real-time PCR (Q-rtPCR) [6] and single-cell genomic anal-
ysis. After clinical genomic data, such as microarray data, is

analyzed, Q-rtPCR is employed to support the microarray
results by using similar primer design in the PCR as mic-
roarray probes [7]. Although Q-rtPCR is often used to
confirm genomic data analysis as a standard test for genomics
profile, the technique only selects a very small number of
genes in the genomic profile. Moreover, most scientists only
take genes of higher expression from the genomic data pool
leading to only sensitivitymeasurements being demonstrated
in genomic profile. To date, very few data demonstrate spe-
cificity from the genomic data pool. By contrast, single-cell
genomic analysis can be applied for measurement of both
sensitivity and specificity. Unfortunately, single-cell genomic
techniques have different bottlenecks including a possibility
of contamination of cells isolated from tissue samples and
some comprehensive performance issues. Currently, most of
the single-cell genomics are still only being used in reference
laboratories and in some special fields such as specimens on
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glass-slides with local environmental changes (samples from
department of pathology and genetics) [8] and sample of
tumor tissue such as tumor infiltrating lymphocyte (TIL) and
tumor cells [9]. Because TIL is easy to be cultured and very
well identified from surface biomarkers (CD3, CD4, CD8,
etc.), it is often used to develop single-cell genomic tech-
niques. An example is the first single-cell genomic analysis
model derived from the TIL [10].

TILs, one type of the cells located in tumor tissue, are
responsible for immune surveillance to tumor cells [11]. If
the TILs are in quiescent status, they lack spontaneous pro-
liferation with a low metabolic rate. As the T-lymphocytes
cause the loss of immune surveillance, these groups of cells
attract interests of immunologists. Naturally, in native lym-
phocytes, quiescence reduces the resources (energy and size)
to maintain a vast repertoire of T-cells. Only a small fra-
ction of native lymphocytes will be clonally selected by
antigen during the lifetime of the host. Moreover, some
studies indicated that quiescence of CD8 T-cells is an actively
maintained state rather than a defective state in the absence
of the stimulated signals. Technically, we have successfully
implemented a genomic approach at a single-cell level and
implemented a modified differential display to analyze gene
expression profiles of the CD8 T-cell in quiescent status obta-
ined from human hepatic tumor tissue [12]. Based on the
technology, we have uncovered several proteins involved in
the regulation of T-cell quiescence including the lung-Krü-
pple-like factor (LKLF), which is a zinc finger-containing
transcription factor that maintains T-cell quiescence [13].
Although the differential display technique can uncover
some specific genes, it has limited routine applications for
clinical specimens. For example, it will take several days to
perform library processes of plasmid vectors with bacteria
amplification followed by SangerDNA sequencing to confirm
them. Some laboratories also use RNA-microarray at the
single-cell level [14]. More recently, a few studies attempt to
apply single cell into the pipeline of RNA-seq [15]. However,
analysis results of genomic profile are not clear at single-cell
level. In order to develop a more applicable way to routinely
work with single-cell genomics analysis and diagnosis of
future genomic analysis in reference laboratories such as for
personalized therapy, we study the feasibility of whole RNA
genomic sequencing. We used the similar RNA specimens
from differential display technique to run the RNA-seq. The
goal of our study is to test if the RNA-seq technique can
achieve similar results to our results of RNA differential
display, thereby providing a more efficient platform for clin-
ical genomic diagnosis.

2. Materials and Methods

2.1. Library Establishment. Single CD8 cells obtained from
TIL of liver cancers were isolated, and a cDNA library was
generated as previously reported [16]. Briefly, single CD8+
cells from TIL were directly lysed in an 8𝜇L DNA dige-
stion buffer with DNase I (Sigma). Two 𝜇L DNA diges-
tion solution was added to a cocktail mixture containing
1 𝜇L dNTP, 1 𝜇L 50mM 3 anchor primer containing [5-
CTCTAAGCTT(T)

11
-3], 2 𝜇LMgCl

2
, 1 𝜇L 10x buffer, 0.25 𝜇L

Table 1: Primer design.

Primer names Sequences

(A) 5-terminals

5-CTCTGAATTCCTGATCCATG-3

5-CTCTGAATTCCTTCATTGCC-3

5-CTCTGAATTCCTGCTCTCAT-3

5-CTCTGAATTCTCTGGAGGCA-3

(B) 3-terminals 5-CTCTAAGCTT(T)11-3


RNasin, 0.25𝜇L AMV reverse transcriptase, and 4.5𝜇L
sterile ddH

2
O (Promega, USA). First-strand synthesis was

performed at 25∘C 10min, 42∘C 1 hour, and 95∘C 5min.
The cDNA was amplified by PCR with four arbitrary 5
primers and oligo-T primers as in Table 1 in 25 𝜇L volume
using AmpliTaq Gold from Perkin Elmer, USA. TIL CD8
cell library was stored at −80∘C for further study. RNA of
PBMN T-cell control (peripheral bold mononuclear cells)
was isolated, and a cDNA library was generated similar to
TIL.

2.2. RNAWhole Genomic Sequencing

Sequencing Library. The protocol is the same as shown in
Illumina TruSeq RNA sampling process [17]. Briefly, after the
DNA library stored at −80∘C was fragmented with down-
stream end-repair process and a single “A” base addition, the
fragment was ligated to adapters, purified by 2% agarose gel,
and then enriched by PCR to create the final sequencing
library. Finally, RNA single-end sequencing was performed
using Solexa/Illumina Genome Analyzer II and using the
standard protocol. The sequencing library was loaded to a
single lane of an Illumina flow cell. The image was obtained
using CASAVA 1.6 module to transfer BCL format into
FASTQ format. Sequenced reads were generated by base
calling using the Illumina standard pipeline.

Alignment of Sequenced Reads. The alignments were per-
formed using the tool Galaxy. Galaxy was professionally
developed for short oligonucleotide analysis, allowing up
to 2 mismatches with the references. Sequenced reads were
aligned to human transcript reference sequences from the
human hg19 for the expression analysis at gene/transcript
levels by Tophat and differential analysis by Cufflinks and
Cuffdiff in Galaxy platform.

Evaluation of Data. To test the feasibility of sequencing,
the correlation of gene expression between genes of RNA-
seq whose data was from gene expression level as RPKM
(reads per kilobase of transcript per million mapped reads)
and single-cell differential display genomics (which we
have published in 2009) [12] was used for RNA-seq gene
expression in this study. FPKM (fragments per kilobase of
exon per million fragments mapped) was used to study
transcripts. In order to further analyze FPKM, we also used
Bam ReadCount platform to analyze read count of splicing
fragments.
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2.3. RNA-Seq Data Analysis. To analyze the data of RNA-
seq, the mapped genes were used to research the fold
change by RPKM. Briefly, RPKM from PBMN and TIL were
input into BRB ArrayTools (http://linus.nci.nih.gov/BRB-
ArrayTools.html) [18]. We selected significance analysis of
Microarray (SAM) with 1.2-fold change, false discovery rate
0.1, and permutation 100 to work on both RNA-seq profiles
from PBMN and TIL.

2.4. Q-rtPCR to Confirm the Expression. The Q-rtPCR assay
was performed in triplicate for each gene with the 25𝜇L
PCR reaction mixture, totaling at 50 uL containing 25 uL
2x SYBR Green (BioRad), 500 nM for each primer, RNA
extracts, and iScript reverse transcriptase 1 uL. According to
the primer conditions andmanufacturer’s recommendations,
one step real-time PCRwas 10min at 50∘C and 5min at 95∘C,
followed by 45 cycles of denaturation for 10 s at 95∘C and
annealing/extension for 30 s at 55∘C. The SYBR fluorescent
signals were quantitatively analyzed as previously reported
[12].

3. Results

3.1. Quality Control of RNA-Seq. After the library of DNA
was fragmented with downstream end-repair process and
a single “A” base addition, the fragments were ligated to
adapters following Illumina TruSeq kit protocol and sequenc-
ing libraries were enriched by PCR and 2100 bioanalyzer as
shown in Figure 1(a) with downstream purified under 2%
agarose gel. RNA pair-end sequencing was performed using
Solexa/Illumina Genome Analyzer II using the standard
protocol. The sequencing library was loaded to a single
lane of an Illumina flow cell. The image was performed
using CASAVA 1.6 module to transfer FASTQ format.
Sequenced reads and FSATQC were generated by base
calling using the Illumina standard pipeline (Figures 1(b) and
1(c)).

After the RNA-seq experiment harvested 19.6 million
sequencing reads, 11.6 million aligned reads were achieved.
All data analysis of the RAN-seq was performed in Galaxy
local system as shown in Figure 2 and bioinformatics pipe-
line as shown in Figure 3. The numbers of mapped genes,
mapped transcripts, or mapped exons were 31,332,
41,210, and 85,786 as Supplemental Tables 1, 2, 3, and 4,
respectively, in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/724124.

3.2. Data Summary of RNA-Seq. After mapping the genes,
mapped transcripts or mapped exons were mined, and
mapped genes were applied for data analysis. The results
of the gene expression Boxplot are given in Figure 4(a).
Correlation study was further confirmed by scatter plot
analysis. Results of scatter-plot for both RNA-seq from TIL
and PBMN were 0.65 as shown in Figure 4(b). SAM was
used for gene expression mining. After SAM analysis, a total
of 6767 genes passed filtering using the criteria of 0.1 FDR
and 100 permutations. All fold changes are demonstrated in
Supplemental Table 5.

Table 2: Feasibility results of single-cell RNA-seq.

Genes Single-cell DD Single-cell RNA-seq
Positive screening RPKM

Total pool 288 6767
Tob Yes 1.87048
Ski Yes 1.20975
Sno-A Yes N/A
TGF-beta Yes Research
LKLF Yes 0.42310
ERF Yes 1.74318
REST/NRSF Yes N/A
c-Myc Yes 1.19342

3.3. Sensitivity and Specificity for RNA-Seq. After SAM anal-
ysis, a total of 6767 genes were filtered from SAM RNA-seq,
and results were compared to 288 libraries from differential
display. Eight silence genes were mined in single-cell dif-
ferential display shown in Table 2, with 6 of 8 genes being
mined using the RNA-seq technique. As with most single-
cell genetics and genomics techniques, two of them (Sno-
A and REST/NRSF) were still missed in RNA-seq results at
single-cell level. In order to study measurement of sensitivity
and specificity of RNA-seq, we selected 25 upregulated genes
from TIL as positive genes and 11 downregulated genes as
negative genes to analyze the measurement. After standard
Q-rtPCR test, 19 out of 25 positive genes (Group-1) and 6 out
of 11 negative genes (Group-2)were confirmedby standardQ-
rtPCR test shown inTable 3. AlthoughRNA-seq is considered
a high-throughput technique, the sensitivity and specificity
(76% and 55%, resp.) shown inTable 4 are all lower than those
of differential display (100% and 86% which was published in
Immunology, 2009) [12].

3.4. Splicing Discovery of Single-Cell RNA-Seq. In our pre-
vious experiment, TGF-beta had higher expression in TIL
as measured by Q-rtPCR and differential display. Here, all
family members of TGF-beta (TGF-beta1, TGF-beta2, and
TGF-beta3) in TIL were expressed lower than those of T-cell
in PBMNby single-cell RNA-seq as shown inTable 5. In order
to address this question, we continue analyzing TGF-beta2
splicing as shown in Table 6. Surprisingly, TGF-beta2 RNA
splicing from chr11 46392470 to 46393364 of TIL has a 3-fold
change higher than those of PBMN. This result was further
demonstrated by single-cell Q-rtPCR.

4. Discussion

A major task of clinical genomics is to study the levels
of mRNA/protein expression and to discover functional
SNPs related to a disease specific to the patient. Traditional
approaches to identify and quantify genomic expression
include mRNA microarrays [19], expressed sequence tags
(EST) [20], serial analysis of gene expression (SAGE) [21],
subtractive cloning for differential display (DD) [22] on

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html
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Figure 1: (a) Sequencing libraries were enriched by PCR and analyzed by 2100 bioanalyzer with 250–450 bp molecular weight. (b) and (c)
Quality control for each base pair showed QC score >30.

mRNA, two-dimensional gel electrophoresis [23], mass spec-
trometry [24], protein microarray based antibody-binding
for protein [25], single nucleotide polymorphism (SNP)
microarray [26], and DNA-seq (whole genomics sequence

and whole exome sequence) [27] for DNA. These traditional
methods have been extensively utilized in the analysis of
clinical specimens. Most specimens of animal and human
tissue often contain multiple cell types with different gene
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Table 3: Relationship between NGS-RPKM and quantitative rtPCR.

Group Tracking id Gene short name NGS-RPKM (fold) Q-rtPCR (fold)
1 XLOC 000003 OR4G11P 2.082524442 4.12
1 XLOC 000004 OR4F5 1.912537997 2.54
1 XLOC 000018 WBP1LP6 2.098156562 0.62
1 XLOC 000019 CICP3 1.813002417 0.91
1 XLOC 000022 FAM87B 6.636153863 11.21
1 XLOC 000026 SAMD11 2.552233617 0.99
1 XLOC 000027 KLHL17 2.204370704 0.98
1 XLOC 000039 PUSL1 4.947080901 8.23
1 XLOC 000040 GLTPD1 2.846803765 3.32
1 XLOC 000041 TAS1R3 7.504951705 6.87
1 XLOC 000042 RP5-890O3.3 2.188584961 2.65
1 XLOC 001676 NDUFS2 10.64542674 15.21
1 XLOC 005590 RP11-57C13.5 3.13139258 2.12
1 XLOC 005591 PAPSS2 2.899004155 0.97
1 XLOC 005592 CFL1P1 2.49551064 0.87
1 XLOC 005593 PTEN 3.377478904 4.86
1 XLOC 014938 hsa-mir-3171 16.57512918 4.92
1 XLOC 014939 RP11-412H8.2 11.68354982 12.32
1 XLOC 014940 BTF3P2 8.902118851 7.23
1 XLOC 005113 APBB1IP 6.081246865 6.89
1 XLOC 005114 RNA5SP307 5.098972331 7.21
1 XLOC 022012 TOB1 1.870483205 2.12
1 XLOC 000060 SKI 1.209748635 2.43
1 XLOC 025300 ERF 1.743180444 3.12
1 XLOC 025768 MYC 1.193416773 2.17
2 XLOC 000028 PLEKHN1 0.316434457 1.12
2 XLOC 000029 ISG15 0.812291089 0.78
2 XLOC 000030 AGRN,RP11-54O7.14 0.020428549 0.45
2 XLOC 000031 RP11-465B22.3 0.031559673 0.86
2 XLOC 000654 MIR5584 0.120544436 0.92
2 XLOC 000655 C1orf228 0.284243365 1.13
2 XLOC 000656 KIF2C 0.387780493 1.23
2 XLOC 000657 RPS8,SNORD38A 0.3321431 0.89
2 XLOC 000658 SNORD46 0.293275977 2.21
2 XLOC 000028 PLEKHN1 0.316434457 0.92
2 XLOC 000029 ISG15 0.812291089 1.78

Table 4: Q-rtPCR test.

RNA-seq Positive Negative
24 19 (true positive) 5 (false negative)
12 6 (false negative) 6 (true negative)
36 Sensitivity (76%) Specificity (55%)

expression profiles [28]. Results of clinical genomic profile
will be unclear due to the multiple cell types at tissue
level. Therefore, clinical genomics need to extend to a more
precise technique and use data analysis procedures such as

Table 5: The results of TGF-beta.

TGF-beta PBMN FPKM TIL FPKM Fold change
TGFB1 6.86176 2.32141 0.338311162
TGFB2 1.13462 1.12126 0.988225133
TGFB3 0.666142 0.103165 0.154869382

the special biospecimen process and special bioinformatics
module and analysis. After a decade of effort, three fields have
been quickly developed in clinical specimens for genomic
analysis: (1) single-cell sampling with genomics analysis [29],
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Table 6: The results of TGF-beta2.

TGFB Chromosome Splicing Length (bp) FPKM Fold change ReadCount Fold change
PBMN TIL PBMN TIL

TGFB2 chromosome 11 45944222–45945304 1082 0.99 0.85 0.86 11.83 10.12 0.86
TGFB2 chromosome 11 46164868–46165049 181 145.95 5.82 0.04 290.59 11.59 0.04
TGFB2 chromosome 11 46342256–46342968 712 30.07 0.95 0.03 235.50 7.42 0.03
TGFB2 chromosome 11 46392470–46393364 894 0.38 1.14 2.97 3.76 11.18 2.97

RNA-seq bioinformatics workflow and report

FASTQ input and groomer 
with Igenome

FASTQ manipulation
Read QC with trimming

Tophat-discovering splice 
junction 

Cufflinks-assembly transcripts and 
FPKM

Report

Cuffcompare/merge-assembly 
transcripts with annotation

Cuffdiff-fold change

(1) QC1 (case 1-f)
(2) QC2 (case 1-r)
(3) QC3 (control 2-f)
(4) QC4 (control 2-r)

(1) RNA-seq gene
expression

(2) RNA-seq transcript
expression

(3) RNA-seq splicing
expression

(4) FPKM table report

Figure 2: Bioinformatic analysis design for RNA-seq workflow and
report.

(2) culture for a small number of cells (or single cells)
with genomic analysis [30], and (3) different bioinformatics
modules and applications with genomic analysis [31]. Single-
cell sampling with genomic analysis plays an important role
in all the three fields. For example, single-cell genomics are
necessary in reference laboratory, specimens on glass-slides,
and sample of tumor tissue such as TIL and tumor cells.
Moreover, measurement of sensitivity and specificity at the
single-cell level is an essential step to study genomic analysis
in mixed-tissue level.

As we all know, the quantity of whole genome DNA is
6.6 pg with two copies in single cell [32]. Because of stable
DNA with the mature downstream genomic DNA amplifi-
cation technique, single-cell DNA genomic techniques have
been successfully developed in SNP microarray and DNA-
seq. Unfortunately, although the quantity of whole genome
mRNA is approximately 1.0–30 pg (about 5 × 105–1.5 × 106
molecules based on different cell types) [33], unstable RNA
will limit the development of single-cell RNA genomics
techniques. The best way is to use a fresh cell lysate without
purifying procedures to work on the technique [34]. To date,
mRNA microarrays and differential display (DD) have been
successfully applied for single-cell genomic analysis. Both

have some pitfalls includingmissing genes and the possibility
of contamination. The goal of our study is to study the
feasibility of single-cell RNA-seq including measurement of
sensitivity and specificity.

Results of the quality of RNA-seq demonstrated that
most fragments ligated to adapters were 250–450 bp indi-
cating an intact mRNA at single-cell level. Among the 19.6
million sequencing reads, 11.6 million reads were mapped.
The numbers of mapped genes, mapped transcripts, and
mapped exons were 31,332, 41,210, and 85,786. The QC
results indicated that RNA-seq techniques can be used for
single-cell genomic performance. After the mapped genes
were applied for data analysis, the results of gene expression
described with both boxplot and scatter-plot did not show
bias. Unexpectedly, a total of 6767 genes were discovered
in RNA-seq by SAM mining. The results suggest that RNA-
seq is more powerful than differential display (only mining
288 libraries).TheQ-rtPCR test demonstrated that sensitivity
and specificity from RNA-seq technique were 76% and 55%,
respectively. As most single-cell genomic techniques, gene
missing rates are still higher (2/8 genes) including internal
control analysis (2/6 genes) as shown in Supplemental Table
6. Encouragingly, RNA-seq at single-cell level is also able to
uncover gene’s splicing in mRNA expression as routine RNA-
seq [35].

5. Conclusion

With this newRNA-seq technique, it would give researchers a
new tool to study the single-cell genomics techniques. Results
of RNA-seq including quality control, mapped reads, and the
discovery rate demonstrated that RNA-seq techniques could
be used for single-cell genomic analysis. The Q-rtPCR test
demonstrated that sensitivity and specificity from RNA-seq
techniques are lower than those from differential display with
missing gene expression.This result demonstrated that RNA-
seq still requiresmore time to bemodified.However, it will be
feasible to use RNA-seq techniques to contribute to genomic
medicine at single-cell level.
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RNA-seq bioinformatics pipeline

Figure 3: Bioinformatic analysis workflow from Galaxy analysis.
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Figure 4: (a) Gene expression boxplot analysis for both TIL and control; (b) gene expression scatter-plot analysis for both TIL and control.
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