

open 👌 access

Crystal structure of $[NaZn(BTC)(H_2O)_4]$ -1.5H₂O (BTC = benzene-1,3,5-tricarboxylate): a heterometallic coordination compound

Min Ni, Quanle Li, Hao Chen and Shengqing Li*

College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China. *Correspondence e-mail: sqingli@mail.hzau.edu.cn

Received 28 March 2015; accepted 23 June 2015

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary

The title coordination polymer, $poly[[\mu-aqua-triaqua$ $(\mu_3$ -benzene-1,3,5-tricarboxylato)sodiumzinc] sesquihydrate], $\{[NaZn(C_9H_3O_6)(H_2O)_4]\cdot 1.5H_2O\}_n$, was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tricarboxylic acid (H₃BTC) with $Zn(NO_3)_2 \cdot 6H_2O$ in the presence of NaOH. The asymmetric unit comprises two Na⁺ ions (each located on an inversion centre), one Zn²⁺ ion, one BTC ligand, four coordinating water molecules and two solvent water molecules, one of which is disordered about an inversion centre and shows halfoccupation. The Zn2+ cation is five-coordinated by two carboxylate O atoms from two different BTC ligands and three coordinating H_2O molecules; the Zn-O bond lengths are in the range 1.975 (2)–2.058 (3) Å. The Na⁺ cations are sixcoordinated but have different arrangements of the ligands: one is bound to two carboxylate O atoms of two BTC ligands and four O atoms from four coordinating H₂O molecules while the other is bound by four carboxylate O atoms from four BTC linkers and two O atoms of coordinating H₂O molecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn²⁺ atom and Na⁺ ions, forming a layered structure extending parallel to (100). An intricate network of $O-H \cdots O$ hydrogen bonds is present within and between the layers.

Keywords: crystal structure; heterometallic coordination compound; benzene-1,3,5-tricarboxylic acid; hydrogen bonding.

CCDC reference: 1055450

1. Related literature

For general background to heterometallic coordination compounds, see: Stock & Biswas (2012); Gao *et al.* (2005); Zhou *et al.* (2012). For details of the synthesis, see: Shang *et al.* (2013); Fu *et al.* (2011). For the potential application of this compound, see: Huang *et al.* (2014).

 $\gamma = 84.720 \ (3)^{\circ}$

Z = 2

 $V = 687.68 (19) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.05 \times 0.03 \times 0.02 \text{ mm}$

7585 measured reflections

4331 independent reflections

2567 reflections with $I > 2\sigma(I)$

 $\mu = 1.88 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.051$

2. Experimental

2.1. Crystal data

 $[\text{NaZn}(\text{C}_9\text{H}_3\text{O}_6)(\text{H}_2\text{O})_4] \cdot 1.5\text{H}_2\text{O}$ $M_r = 394.56$ $\text{Triclinic, } P\overline{1}$ a = 7.0980 (11) Åb = 9.8000 (16) Åc = 11.2043 (17) Å $\alpha = 66.923 (2)^{\circ}$ $\beta = 73.598 (2)^{\circ}$

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.912, T_{\rm max} = 0.963$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	214 parameters
$vR(F^2) = 0.113$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
1331 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

	ли	11 A		
	<i>D</i> -п	п…а	$D \cdots A$	$D = \Pi \cdots A$
$O7-H7A\cdots O5^{i}$	0.82	1.79	2.587 (4)	162
$O7 - H7B \cdot \cdot \cdot O12^{ii}$	0.82	1.93	2.740 (4)	172
$O8-H8A\cdots O10$	0.82	2.40	3.114 (5)	146
O8−H8A···O11	0.82	1.98	2.672 (8)	142
$O8-H8B\cdots O6^{ii}$	0.82	2.05	2.641 (5)	128
O9−H9A···O12 ⁱⁱⁱ	0.82	1.95	2.734 (4)	159
$O9-H9B\cdots O2^{iv}$	0.82	2.01	2.823 (4)	170
$O10-H10A\cdots O5^{v}$	0.82	2.06	2,719 (6)	137

data reports

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O10−H10B···O9 ^{vi}	0.82	2.31	3.079 (5)	155
$O11-H11A\cdots O3^{vii}$	0.85	2.03	2.835 (8)	157
$O11 - H11B \cdots O3^{v}$	0.85	2.27	2.866 (7)	127
$O11 - H11B \cdot \cdot \cdot O11^{viii}$	0.85	1.33	1.973 (9)	128
$O12-H12A\cdots O6$	0.82	1.86	2.652 (4)	161
$O12-H12B\cdots O4^{ix}$	0.82	1.97	2.787 (3)	172

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS7* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

Acknowledgements

Financial support by the Fundamental Research Funds for the Central Universities (grant Nos. 2011PY128 and 2014PY053) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (grant No. 2015028) of Huazhong Agricultural University are gratefully acknowledged. We thank Dr Y. Qu of HZAU and Dr X. G. Meng of CCNU for their kind assistance with this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZP2017).

References

- Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fu, Y., Su, J., Yang, S. H., Zou, Z. B., Li, G. B., Liao, F. H., Xiong, M. & Lin, J. H. (2011). Cryst. Growth Des. 11, 2243–2249.
- Gao, Y. N., Han, S., Han, B., Li, G., Shen, D., Li, Z., Du, J., Hou, W. & Zhang, G. (2005). Langmuir, 21, 5681–5684.
- Huang, X. Q., Chen, Y. F., Lin, Z. G., Ren, X. Q., Song, Y. N., Xu, Z. Z., Dong, X. M., Li, X. G., Hu, C. W. & Wang, B. (2014). *Chem. Commun.* 50, 2624– 2627.
- Shang, W. T., Kang, X. C., Ning, H., Zhang, J. L., Zhang, X. G., Wu, Z. H., Mo, G., Xing, X. Q. & Han, B. (2013). *Langmuir*, 29, 13168–13174.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.
- Zhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.

supporting information

Acta Cryst. (2015). E71, m143-m144 [doi:10.1107/S2056989015012001]

Crystal structure of $[NaZn(BTC)(H_2O)_4] \cdot 1.5H_2O$ (BTC = benzene-1,3,5-tricarboxylate): a heterometallic coordination compound

Min Ni, Quanle Li, Hao Chen and Shengqing Li

S1. Synthesis and crystallization

In the experiment, the microemulsion of desired composition containing water, [Bmim]PF₆, and Triton X-100 was prepared using the method reported previously (Gao *et al.* 2005). H₃BTC (0.210 g, 1.0 mmol), NaOH (0.040 g, 1.0 mmol) and Zn(NO₃)₂.6H₂O (0.298 g, 1.0 mmol) were added one by one into the microemulsion (20 g) which was clear and transparent system including 1.444 g [Bmim]PF₆, 10.428 g Triton X-100 and 8.310 g water. The whole system was stirred continuously for 24 h at 25°C. Then, the product crystals were collected by centrifugation at 4500 r/min and washed with alcohol three times (3x20 mL) to remove the surfactant and [Bmim]PF₆. Then, the crystals were dried in a vacuum oven at 60°C for 24 h. The resulting colorless crystals of the title compound were obtained.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Figure 1

The molecular structure of the title compound with the atom-numbering scheme and 30% probability ellipsoids.

Figure 2

The packing diagram viewed along the b axis.

The FT–IR spectrum of the title compound.

Figure 4

The XRD pattern of the title compound.

Poly[[μ -aqua-triaqua(μ_3 -benzene-1,3,5-tricarboxylato)sodiumzinc] sesquihydrate]

Crystal data

-	
$[NaZn(C_9H_3O_6)(H_2O)_4] \cdot 1.5H_2O$	Z = 2
$M_r = 394.56$	F(000) = 402
Triclinic, P1	$D_{\rm x} = 1.906 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.0980 (11) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.8000 (16) Å	Cell parameters from 1047 reflections
c = 11.2043 (17) Å	$\theta = 2.4 - 22.5^{\circ}$
$\alpha = 66.923 \ (2)^{\circ}$	$\mu = 1.88 \text{ mm}^{-1}$
$\beta = 73.598 \ (2)^{\circ}$	T = 296 K
$\gamma = 84.720 \ (3)^{\circ}$	Block, colourless
$V = 687.68 (19) \text{ Å}^3$	$0.05 \times 0.03 \times 0.02 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.912, T_{\max} = 0.963$ 7585 measured reflections 4331 independent reflections 2567 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 32.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: mixed
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0356P)^2]$
4331 reflections	where $P = (F_o^2 + 2F_c^2)/3$
214 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.79 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. olex2_refinement_description 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All O(H,H) groups 2. Others Fixed Sof: O11(0.5) H11A(0.5) H11B(0.5) 3.a Riding coordinates: O7(H7A,H7B), O8(H8A,H8B), O9(H9A,H9B), O10(H10A,H10B), O12(H12A,H12B) 3.b Free rotating group: O11(H11A,H11B) 3.c Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C6(H6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.69252 (6)	1.17043 (4)	0.17723 (4)	0.02302 (13)	
Na1	0.5000	1.0000	0.0000	0.0322 (5)	
Na2	0.5000	0.0000	0.5000	0.0319 (5)	
C1	0.7424 (5)	0.7068 (3)	0.3327 (3)	0.0184 (7)	
C2	0.7376 (5)	0.5950 (3)	0.2865 (3)	0.0186 (7)	
H2	0.7312	0.6192	0.1988	0.022*	
C3	0.7423 (5)	0.4476 (3)	0.3710 (3)	0.0188 (7)	
C4	0.7512 (5)	0.4130 (4)	0.5013 (3)	0.0207 (7)	
H4	0.7529	0.3140	0.5581	0.025*	
C5	0.7576 (5)	0.5231 (4)	0.5492 (3)	0.0211 (7)	
C6	0.7566 (5)	0.6703 (4)	0.4623 (3)	0.0204 (7)	
Н6	0.7657	0.7455	0.4917	0.024*	
C7	0.7273 (5)	0.8667 (4)	0.2423 (3)	0.0204 (7)	
C8	0.7345 (5)	0.3229 (4)	0.3272 (3)	0.0206 (7)	
С9	0.7632 (5)	0.4837 (5)	0.6923 (4)	0.0291 (8)	
01	0.7044 (4)	0.9607 (3)	0.2967 (3)	0.0371 (7)	
O2	0.7376 (4)	0.8999 (3)	0.1217 (3)	0.0341 (6)	
O3	0.7335 (4)	0.1931 (3)	0.4071 (3)	0.0325 (6)	
O4	0.7242 (4)	0.3558 (3)	0.2063 (2)	0.0268 (6)	
O5	0.7596 (4)	0.3477 (4)	0.7661 (3)	0.0467 (8)	
O6	0.7682 (4)	0.5863 (4)	0.7316 (3)	0.0479 (8)	
O7	0.5762 (4)	1.2363 (3)	0.0195 (2)	0.0292 (6)	
H7A	0.6483	1.2811	-0.0557	0.044*	
H7B	0.4703	1.2778	0.0249	0.044*	
O8	0.3875 (4)	1.1497 (3)	0.3061 (3)	0.0396 (7)	

H8A	0.3040	1.0995	0.3031	0.059*		
H8B	0.3305	1.2022	0.3464	0.059*		
09	0.9800 (4)	1.1943 (3)	0.0630 (3)	0.0382 (7)		
H9A	1.0364	1.2580	0.0713	0.057*		
H9B	1.0536	1.1721	0.0026	0.057*		
O10	0.2322 (5)	0.9423 (4)	0.2021 (4)	0.0790 (13)		
H10A	0.1808	0.8593	0.2402	0.119*		
H10B	0.1445	1.0027	0.1899	0.119*		
011	0.0497 (9)	0.9938 (8)	0.4107 (6)	0.0482 (16)	0.5	
H11A	-0.0558	1.0390	0.3993	0.072*	0.5	
H11B	0.0429	0.9553	0.4942	0.072*	0.5	
O12	0.7580 (4)	0.6003 (3)	0.9650(2)	0.0294 (6)		
H12A	0.7717	0.5773	0.9002	0.044*		
H12B	0.7499	0.5234	1.0318	0.044*		

Atomic displacement parameters (A^2)

Zn1 $0.0340(2)$ $0.01306(19)$ $0.0218(2)$ $-0.00099(15)$ $-0.00540(16)$ $-0.00759(16)$ Na1 $0.0424(13)$ $0.0290(11)$ $0.0309(12)$ $0.0027(9)$ $-0.0169(10)$ $-0.0128(10)$ Na2 $0.0457(13)$ $0.0204(10)$ $0.0228(11)$ $-0.0072(9)$ $-0.0013(9)$ $-0.0048(9)$ C1 $0.0191(16)$ $0.0153(15)$ $0.0210(17)$ $-0.0019(12)$ $-0.0009(13)$ $-0.0096(13)$ C2 $0.0267(18)$ $0.0163(16)$ $0.0141(16)$ $-0.0003(13)$ $-0.0044(13)$ $-0.0078(13)$ C3 $0.0211(17)$ $0.0145(15)$ $0.0205(17)$ $-0.0018(12)$ $-0.0023(13)$ $-0.0025(13)$ C4 $0.0239(18)$ $0.0150(16)$ $0.0184(17)$ $0.0016(13)$ $-0.0045(13)$ $-0.0025(13)$ C5 $0.0217(17)$ $0.0228(17)$ $0.0150(17)$ $0.0005(13)$ $-0.0033(13)$ $-0.0045(14)$ C6 $0.0229(17)$ $0.0190(16)$ $0.0221(18)$ $-0.0014(13)$ $-0.0039(13)$ $-0.0123(14)$ C7 $0.0221(17)$ $0.0146(16)$ $0.0221(18)$ $-0.0014(13)$ $-0.0047(14)$ $-0.0089(14)$ C8 $0.0229(17)$ $0.0170(16)$ $0.0221(18)$ $0.0007(13)$ $-0.0047(14)$ $-0.0082(11)$ C9 $0.0241(19)$ $0.044(2)$ $0.0187(19)$ $0.0110(16)$ $-0.0022(13)$ $-0.0053(11)$ C9 $0.0241(19)$ $0.0187(13)$ $0.0223(15)$ $0.0030(12)$ $-0.0202(13)$ $-0.0053(11)$ C9 $0.0241(19)$ $0.0187(13)$ $0.0223(14)$ $-0.0019(10)$ -0		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1 $0.0424(13)$ $0.0290(11)$ $0.0309(12)$ $0.0027(9)$ $-0.0169(10)$ $-0.0128(10)$ Na2 $0.0457(13)$ $0.0204(10)$ $0.0228(11)$ $-0.0072(9)$ $-0.0013(9)$ $-0.0048(9)$ C1 $0.0191(16)$ $0.0153(15)$ $0.0210(17)$ $-0.0019(12)$ $-0.0009(13)$ $-0.0096(13)$ C2 $0.0267(18)$ $0.0163(16)$ $0.0141(16)$ $-0.0003(13)$ $-0.0044(13)$ $-0.0078(13)$ C3 $0.0211(17)$ $0.0145(15)$ $0.0205(17)$ $-0.0018(12)$ $-0.0023(13)$ $-0.0025(13)$ C4 $0.0239(18)$ $0.0150(16)$ $0.0184(17)$ $0.0016(13)$ $-0.0045(13)$ $-0.0025(13)$ C5 $0.0217(17)$ $0.0228(17)$ $0.0150(17)$ $0.0005(13)$ $-0.0033(13)$ $-0.0045(14)$ C6 $0.0259(18)$ $0.0190(16)$ $0.0194(17)$ $0.0014(13)$ $-0.0017(14)$ $-0.0070(14)$ C7 $0.0221(17)$ $0.0146(16)$ $0.0221(18)$ $-0.0017(13)$ $-0.0047(14)$ $-0.0070(14)$ C8 $0.0229(17)$ $0.0170(16)$ $0.0221(18)$ $0.0007(13)$ $-0.0047(14)$ $-0.0089(14)$ C9 $0.0241(19)$ $0.044(2)$ $0.0187(19)$ $0.0110(16)$ $-0.0063(15)$ $-0.013(18)$ D1 $0.071(2)$ $0.0100(12)$ $0.0223(15)$ $0.0030(12)$ $-0.0220(13)$ $-0.0053(11)$ D2 $0.0607(19)$ $0.0187(13)$ $0.0235(15)$ $0.0030(12)$ $-0.0202(13)$ $-0.0058(11)$ D3 $0.0481(17)$ $0.0191(12)$ $0.0235(14)$ $-0.0019(10)$ $-0.0079(11$	Zn1	0.0340 (2)	0.01306 (19)	0.0218 (2)	-0.00099 (15)	-0.00540 (16)	-0.00759 (16)
Na2 $0.0457(13)$ $0.0204(10)$ $0.0228(11)$ $-0.0072(9)$ $-0.0013(9)$ $-0.0048(9)$ C1 $0.0191(16)$ $0.0153(15)$ $0.0210(17)$ $-0.0019(12)$ $-0.0009(13)$ $-0.0096(13)$ C2 $0.0267(18)$ $0.0163(16)$ $0.0141(16)$ $-0.0003(13)$ $-0.0044(13)$ $-0.0072(13)$ C3 $0.0211(17)$ $0.0145(15)$ $0.0205(17)$ $-0.0018(12)$ $-0.0023(13)$ $-0.0081(13)$ C4 $0.0239(18)$ $0.0150(16)$ $0.0184(17)$ $0.0016(13)$ $-0.0045(13)$ $-0.0025(13)$ C5 $0.0217(17)$ $0.0228(17)$ $0.0150(17)$ $0.0005(13)$ $-0.0033(13)$ $-0.0045(14)$ C6 $0.0259(18)$ $0.0190(16)$ $0.0194(17)$ $0.0014(13)$ $-0.0039(13)$ $-0.0123(14)$ C7 $0.0221(17)$ $0.0146(16)$ $0.0221(18)$ $-0.0017(14)$ $-0.0070(14)$ C8 $0.0229(17)$ $0.0170(16)$ $0.0221(18)$ $0.0007(13)$ $-0.0047(14)$ $-0.0089(14)$ C9 $0.0241(19)$ $0.044(2)$ $0.0187(19)$ $0.0110(16)$ $-0.0063(15)$ $-0.0131(18)$ O1 $0.071(2)$ $0.0100(12)$ $0.0212(14)$ $0.0004(12)$ $0.0018(13)$ $-0.0053(11)$ O2 $0.6067(19)$ $0.0187(13)$ $0.0253(15)$ $0.0030(12)$ $-0.0222(13)$ $-0.0058(11)$ O4 $0.441(15)$ $0.0191(12)$ $0.0235(14)$ $-0.0019(10)$ $-0.0079(11)$ $-0.0058(11)$ O4 $0.0411(15)$ $0.0191(12)$ $0.0235(17)$ $0.0229(17)$ $-0.0228(14)$ $-0.0346(17)$	Na1	0.0424 (13)	0.0290 (11)	0.0309 (12)	0.0027 (9)	-0.0169 (10)	-0.0128 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na2	0.0457 (13)	0.0204 (10)	0.0228 (11)	-0.0072 (9)	-0.0013 (9)	-0.0048 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0191 (16)	0.0153 (15)	0.0210 (17)	-0.0019 (12)	-0.0009 (13)	-0.0096 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0267 (18)	0.0163 (16)	0.0141 (16)	-0.0003 (13)	-0.0044 (13)	-0.0078 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.0211 (17)	0.0145 (15)	0.0205 (17)	-0.0018 (12)	-0.0023 (13)	-0.0081 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0239 (18)	0.0150 (16)	0.0184 (17)	0.0016 (13)	-0.0045 (13)	-0.0025 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.0217 (17)	0.0228 (17)	0.0150 (17)	0.0005 (13)	-0.0033 (13)	-0.0045 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0259 (18)	0.0190 (16)	0.0194 (17)	0.0014 (13)	-0.0039 (13)	-0.0123 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.0221 (17)	0.0146 (16)	0.0221 (18)	-0.0014 (13)	-0.0017 (14)	-0.0070 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.0229 (17)	0.0170 (16)	0.0221 (18)	0.0007 (13)	-0.0047 (14)	-0.0089 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0241 (19)	0.044 (2)	0.0187 (19)	0.0110 (16)	-0.0063 (15)	-0.0131 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1	0.071 (2)	0.0100 (12)	0.0212 (14)	0.0004 (12)	0.0018 (13)	-0.0062 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0607 (19)	0.0187 (13)	0.0253 (15)	0.0030 (12)	-0.0202 (13)	-0.0053 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	0.0481 (17)	0.0124 (12)	0.0351 (16)	0.0001 (11)	-0.0128 (12)	-0.0058 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04	0.0411 (15)	0.0191 (12)	0.0235 (14)	-0.0019 (10)	-0.0079 (11)	-0.0117 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	0.0529 (19)	0.053 (2)	0.0203 (15)	0.0040 (15)	-0.0114 (13)	0.0006 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	0.058 (2)	0.070 (2)	0.0325 (17)	0.0229 (17)	-0.0228 (14)	-0.0346 (17)
D8 0.0298 (15) 0.065 (2) 0.0303 (16) -0.0049 (13) -0.0034 (12) -0.0265 (15) D9 0.0386 (17) 0.0369 (16) 0.0418 (18) -0.0062 (12) 0.0029 (13) -0.0260 (14) D10 0.059 (2) 0.062 (3) 0.068 (3) 0.0028 (18) -0.0052 (18) 0.016 (2) D11 0.041 (4) 0.052 (4) 0.052 (4) 0.008 (3) -0.018 (3) -0.019 (4) D12 0.0440 (16) 0.0224 (13) 0.0223 (14) -0.0001 (11) -0.0096 (11) -0.0086 (11)	O7	0.0337 (15)	0.0261 (14)	0.0213 (14)	0.0047 (11)	-0.0037 (11)	-0.0057 (11)
D9 0.0386 (17) 0.0369 (16) 0.0418 (18) -0.0062 (12) 0.0029 (13) -0.0260 (14) D10 0.059 (2) 0.062 (3) 0.068 (3) 0.0028 (18) -0.0052 (18) 0.016 (2) D11 0.041 (4) 0.052 (4) 0.052 (4) 0.008 (3) -0.018 (3) -0.019 (4) D12 0.0440 (16) 0.0224 (13) 0.0223 (14) -0.0001 (11) -0.0096 (11) -0.0086 (11)	08	0.0298 (15)	0.065 (2)	0.0303 (16)	-0.0049 (13)	-0.0034 (12)	-0.0265 (15)
D10 0.059 (2) 0.062 (3) 0.068 (3) 0.0028 (18) -0.0052 (18) 0.016 (2) D11 0.041 (4) 0.052 (4) 0.052 (4) 0.008 (3) -0.018 (3) -0.019 (4) D12 0.0440 (16) 0.0224 (13) 0.0223 (14) -0.0001 (11) -0.0096 (11) -0.0086 (11)	09	0.0386 (17)	0.0369 (16)	0.0418 (18)	-0.0062 (12)	0.0029 (13)	-0.0260 (14)
D110.041 (4)0.052 (4)0.052 (4)0.008 (3)-0.018 (3)-0.019 (4)D120.0440 (16)0.0224 (13)0.0223 (14)-0.0001 (11)-0.0096 (11)-0.0086 (11)	O10	0.059 (2)	0.062 (3)	0.068 (3)	0.0028 (18)	-0.0052 (18)	0.016 (2)
D120.0440 (16)0.0224 (13)0.0223 (14)-0.0001 (11)-0.0096 (11)-0.0086 (11)	011	0.041 (4)	0.052 (4)	0.052 (4)	0.008 (3)	-0.018 (3)	-0.019 (4)
	012	0.0440 (16)	0.0224 (13)	0.0223 (14)	-0.0001 (11)	-0.0096 (11)	-0.0086 (11)

Geometric parameters (Å, °)

Zn1—Na1	3.6267 (5)	C3—C8	1.495 (4)
Zn1—Na2 ⁱ	3.2603 (6)	C4—H4	0.9300
Zn1—O1	1.975 (2)	C4—C5	1.390 (5)

$Zn1-O4^{i}$	2.009 (2)	C5—C6	1.390 (4)
Zn1—O7	2.013 (2)	С5—С9	1.506 (5)
Zn1—O8	2.214 (3)	C6—H6	0.9300
Zn1—O9	2.058 (3)	C7—O1	1.267 (4)
Na1—Zn1 ⁱⁱ	3.6267 (5)	C7—O2	1.242 (4)
Na1—O2	2.369 (3)	C8—O3	1.235 (4)
Na1—O2 ⁱⁱ	2.369 (3)	C8—O4	1.286 (4)
Na1—O7	2.529 (3)	C9—O5	1.262 (5)
Na1—O7 ⁱⁱ	2.529 (3)	C9—O6	1.252 (5)
Na1—O10	2.413 (3)	O1—Na2 ⁱ	2.482 (2)
Na1—O10 ⁱⁱ	2.413 (3)	O4—Zn1 ^{iv}	2.009 (2)
Na2—Zn1 ⁱⁱⁱ	3.2603 (6)	O7—H7A	0.8201
Na2—Zn1 ^{iv}	3.2603 (6)	O7—H7B	0.8201
Na2—O1 ^{iv}	2.482 (2)	O8—Na2 ⁱ	2.403 (3)
Na2—O1 ⁱⁱⁱ	2.482 (2)	O8—H8A	0.8200
Na2—O3	2.339 (3)	O8—H8B	0.8201
Na2—O3 ^v	2.339 (3)	O9—H9A	0.8199
Na2—O8 ⁱⁱⁱ	2.403 (3)	O9—H9B	0.8200
Na2—O8 ^{iv}	2.403 (3)	O10—H10A	0.8200
C1—C2	1.389 (4)	O10—H10B	0.8200
C1—C6	1.384 (4)	O11—H11A	0.8500
C1—C7	1.509 (4)	O11—H11B	0.8500
С2—Н2	0.9300	O12—H12A	0.8203
C2—C3	1.386 (4)	O12—H12B	0.8200
C3—C4	1.382 (4)		
Na2 ⁱ —Zn1—Na1	108.751 (15)	O3 ^v —Na2—O8 ⁱⁱⁱ	81.75 (9)
O1—Zn1—Na1	81.47 (8)	O3—Na2—O8 ⁱⁱⁱ	98.25 (9)
O1—Zn1—Na2 ⁱ	49.45 (7)	O3—Na2—O8 ^{iv}	81.75 (9)
$O1$ — $Zn1$ — $O4^{i}$	129.50 (11)	O8 ⁱⁱⁱ —Na2—Zn1 ^{iv}	137.24 (6)
O1—Zn1—O7	123.49 (11)	O8 ^{iv} —Na2—Zn1 ⁱⁱⁱ	137.24 (6)
O1—Zn1—O8	83.14 (11)	O8 ⁱⁱⁱ —Na2—Zn1 ⁱⁱⁱ	42.76 (6)
O1—Zn1—O9	97.22 (11)	$O8^{iv}$ —Na2—Zn1 ^{iv}	42.76 (6)
O4 ⁱ —Zn1—Na1	147.26 (7)	O8 ⁱⁱⁱ —Na2—O1 ⁱⁱⁱ	69.50 (9)
O4 ⁱ —Zn1—Na2 ⁱ	89.66 (7)	O8 ⁱⁱⁱ —Na2—O1 ^{iv}	110.50 (9)
O4 ⁱ —Zn1—O7	105.44 (10)	O8 ^{iv} —Na2—O1 ^{iv}	69.50 (9)
O4 ⁱ —Zn1—O8	88.15 (11)	O8 ^{iv} —Na2—O1 ⁱⁱⁱ	110.50 (9)
O4 ⁱ —Zn1—O9	89.49 (10)	O8 ⁱⁱⁱ —Na2—O8 ^{iv}	180.0
O7—Zn1—Na1	42.24 (7)	C2—C1—C7	119.8 (3)
O7—Zn1—Na2 ⁱ	131.91 (7)	C6—C1—C2	119.7 (3)
O7—Zn1—O8	86.91 (10)	C6—C1—C7	120.6 (3)
O7—Zn1—O9	95.17 (11)	C1—C2—H2	119.9
O8—Zn1—Na1	85.30 (7)	C3—C2—C1	120.1 (3)
O8—Zn1—Na2 ⁱ	47.48 (7)	С3—С2—Н2	119.9
O9-Zn1-Na1	97.50 (8)	C2—C3—C8	122.3 (3)
O9—Zn1—Na2 ⁱ	131.02 (8)	C4—C3—C2	119.4 (3)
O9—Zn1—O8	177.20 (11)	C4—C3—C8	118.2 (3)
Zn1—Na1—Zn1 ⁱⁱ	180.0	C3—C4—H4	119.3

O2—Na1—Zn1	53.49 (6)	C3—C4—C5	121.4 (3)
O2 ⁱⁱ —Na1—Zn1 ⁱⁱ	53.49 (6)	C5—C4—H4	119.3
O2 ⁱⁱ —Na1—Zn1	126.51 (6)	C4—C5—C9	120.8 (3)
O2—Na1—Zn1 ⁱⁱ	126.51 (6)	C6—C5—C4	118.3 (3)
O2 ⁱⁱ —Na1—O2	180.0	C6—C5—C9	120.8 (3)
O2 ⁱⁱ —Na1—O7 ⁱⁱ	83.14 (8)	C1—C6—C5	121.0 (3)
O2—Na1—O7	83.14 (8)	C1—C6—H6	119.5
O2 ⁱⁱ —Na1—O7	96.86 (8)	С5—С6—Н6	119.5
O2—Na1—O7 ⁱⁱ	96.86 (8)	O1—C7—C1	116.3 (3)
O2—Na1—O10 ⁱⁱ	86.91 (11)	O2—C7—C1	120.1 (3)
O2 ⁱⁱ —Na1—O10 ⁱⁱ	93.09 (11)	02	123.6 (3)
O2 ⁱⁱ —Na1—O10	86.91 (11)	O3—C8—C3	120.1 (3)
Ω^2 —Na1— Ω^{10}	93.09 (11)	03-08-04	122.0(3)
$O7^{ii}$ —Na1—Zn1	147.65 (5)	04	117.9(3)
O7—Na1—Zn1	32.36 (5)	05	117.2 (4)
$O7^{ii}$ Na1 Zn1 ⁱⁱ	32.35 (5)	06-09-05	118.8 (4)
07—Na1—Zn1 ⁱⁱ	147 64 (5)	06-09-05	1240(4)
07^{ii} Na1-07	180.0	$7n1-01-Na2^{i}$	93 35 (9)
$O10^{ii}$ Na1 Zn1	99 48 (11)	C7 - O1 - Zn1	116 3 (2)
O10—Na1—Zn1 ⁱⁱ	99.48 (11)	$C7 - O1 - Na2^{i}$	140.1(2)
O10—Na1—Zn1	80 52 (11)	C7 - O2 - Na1	130.6(2)
010^{ii} Na1 Zn1 ⁱⁱ	80.52 (11)	$C_8 = O_3 = N_a^2$	130.0(2) 132.2(2)
010 Na1 -07^{ii}	89.62 (12)	$C8 - O4 - Zn1^{iv}$	132.2(2) 110 2 (2)
010 Na1 -07	90.38 (12)	7n1-07-Na1	105.2(2)
010^{ii} Na1-07 ⁱⁱ	90.38 (12)	Zn1-07-H7A	117.9
010^{ii} Na1-07	89.62 (12)	Zn1-07-H7B	118.8
010^{ii} Na1-010	180.0	Na1 -07 $-H7A$	101.6
$Zn1^{iii}$ Na2 $Zn1^{iv}$	180.0	Na1-07-H7B	102.9
Ω_1^{iii} Na2—Zn1 ^{iv}	142.80 (5)	H7A = 07 = H7B	107.7
$O1^{iv}$ Na2 Zn1 ^{iv}	37 20 (5)	$Zn1-O8-Na2^{i}$	89 76 (9)
$O1^{iv}$ Na2 Zn1 ⁱⁱⁱ	142.80(5)	Zn1-O8-H8A	121.4
$O1^{iii}$ Na2—Zn1 ⁱⁱⁱ	37.20 (5)	Zn1—O8—H8B	129.0
01^{iv} Na2 -01^{iii}	180.0	$Na2^{i}$ $O8$ $H8A$	106.3
$O3^{v}$ Na ² $Zn1^{iv}$	123 65 (7)	$Na2^{i}$ $O8$ $H8B$	89.2
O3—Na2—Zn1 ^{iv}	56 35 (7)	H8A - O8 - H8B	107.7
$O3^{v}$ Na ² Zn1 ⁱⁱⁱ	56 35 (7)	Zn1—O9—H9A	109.9
O3—Na2—Zn1 ⁱⁱⁱ	123 65 (7)	Zn1	141 4
$03 - Na^2 - 01^{iii}$	102.00(7)	H9A_09_H9B	107.7
$03 - Na2 = 01^{iv}$	77 89 (9)	Na1-010-H10A	120.4
03^{v} Na ² 01^{iii}	77 89 (9)	Na1 - O10 - H10B	110.7
03^{v} Na ² 01^{iv}	102 11 (9)	H10A - 010 - H10B	107.7
$03 - Na^2 - 03^{v}$	180.0	H11A—011—H11B	109.5
03^{v} Na ² 03^{iv}	98 25 (9)	H12A-012-H12B	107.7
00 1142 000) (i.20 (j)		10/1/
C1—C2—C3—C4	0.2 (5)	C4—C5—C6—C1	2.3 (5)
C1—C2—C3—C8	179.1 (3)	C4—C5—C9—O5	-0.8(5)
C1—C7—O1—Zn1	178.2 (2)	C4—C5—C9—O6	-179.8 (3)
C1-C7-O1-Na2 ⁱ	-48.0 (5)	C6—C1—C2—C3	1.5 (5)
	× /		× /

C1	114.6 (3)	C6-C1-C7-O1	-8.3 (5)
C2-C1-C6-C5	-2.8 (5)	C6—C1—C7—O2	171.6 (3)
C2-C1-C7-O1	170.3 (3)	C6—C5—C9—O5	178.5 (3)
C2-C1-C7-O2	-9.9 (5)	C6—C5—C9—O6	-0.4 (5)
C2—C3—C4—C5	-0.7 (5)	C7—C1—C2—C3	-177.0 (3)
C2—C3—C8—O3	-178.0 (3)	C7—C1—C6—C5	175.7 (3)
C2—C3—C8—O4	0.4 (5)	C8—C3—C4—C5	-179.6 (3)
C3—C4—C5—C6	-0.6 (5)	C9—C5—C6—C1	-177.1 (3)
C3—C4—C5—C9	178.8 (3)	O1—C7—O2—Na1	-65.6 (4)
C3—C8—O3—Na2	116.2 (3)	O2—C7—O1—Zn1	-1.6 (5)
C3-C8-O4-Zn1 ^{iv}	-175.2 (2)	O2-C7-O1-Na2 ⁱ	132.1 (3)
C4—C3—C8—O3	0.9 (5)	O3—C8—O4—Zn1 ^{iv}	3.1 (4)
C4—C3—C8—O4	179.3 (3)	O4—C8—O3—Na2	-62.1 (5)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+2, -*z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
07—H7 <i>A</i> ···O5 ^{vi}	0.82	1.79	2.587 (4)	162
O7—H7 <i>B</i> ···O12 ^{vii}	0.82	1.93	2.740 (4)	172
O8—H8A…O10	0.82	2.40	3.114 (5)	146
O8—H8A…O11	0.82	1.98	2.672 (8)	142
O8—H8 <i>B</i> ···O6 ^{vii}	0.82	2.05	2.641 (5)	128
O9—H9A…O12 ^{viii}	0.82	1.95	2.734 (4)	159
O9—H9 <i>B</i> ···O2 ^{ix}	0.82	2.01	2.823 (4)	170
O10—H10A····O5 ⁱⁱⁱ	0.82	2.06	2.719 (6)	137
O10—H10 <i>B</i> ···O9 ^x	0.82	2.31	3.079 (5)	155
O11—H11A····O3 ^{xi}	0.85	2.03	2.835 (8)	157
O11—H11 <i>B</i> ····O3 ⁱⁱⁱ	0.85	2.27	2.866 (7)	127
O11—H11 <i>B</i> ···O11 ^{xii}	0.85	1.33	1.973 (9)	128
O12—H12A···O6	0.82	1.86	2.652 (4)	161
O12—H12 <i>B</i> ···O4 ^{xiii}	0.82	1.97	2.787 (3)	172

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+1; (vi) *x*, *y*+1, *z*-1; (vii) -*x*+1, -*y*+2, -*z*+1; (viii) -*x*+2, -*y*+2, -*z*+1; (ix) -*x*+2, -*y*+2, -*z*; (x) *x*-1, *y*, *z*; (xi) *x*-1, *y*+1, *z*; (xii) -*x*, -*y*+2, -*z*+1; (xiii) *x*, *y*, *z*+1.