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Objective. To identify the N6-methyladenosine (m6A) methylation regulator genes linking prostate adenocarcinoma (PRAD) and
periodontitis (PD). Materials and Methods. PD and TCGA-PRAD GEO datasets were downloaded and analyzed through
differential expression analysis to determine the differentially expressed genes (DEGs) deregulated in both conditions. Twenty-
three m6A RNA methylation-related genes were downloaded in total. The m6A-related genes that overlapped between PRAD
and PD were identified as crosstalk genes. Survival analysis was performed on these genes to determine their prognostic values
in the overall survival outcomes of prostate cancer. The KEGG pathways were the most significantly enriched by m6A-related
crosstalk genes. We also performed lasso regression analysis and univariate survival analysis to identify the most important
m6A-related crosstalk genes, and a protein-protein interaction (PPI) network was built from these genes. Results. Twenty-three
m6A methylation-related regulator genes were differentially expressed and deregulated in PRAD and PD. Among these, seven
(i.e., ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as m6A-related cross-talk genes.
Survival analysis showed that only the FMR1 gene was a prognostic indicator for PRAD. All other genes had no significant
influence on the overall survival of patients with PRAD. Lasso regression analysis and univariate survival analysis identified
four m6A-related cross-talk genes (i.e., ALKBH5, IGFBP3, RBM15B, and FMR1) that influenced risk levels. A PPI network was
constructed from these genes, and 183 genes from this network were significantly enriched in pathogenic Escherichia coli
infection, p53 signaling pathway, nucleocytoplasmic transport, and ubiquitin-mediated proteolysis. Conclusion. Seven m6A
methylation-related genes (ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as cross-talk
genes between prostate cancer and PD.

1. Introduction

Prostate cancer (PC) is the most common kind of cancer in
men worldwide. Epidemiological studies have identified sev-
eral factors, such as age, ethnicity, family history, lifestyle,
diet, environmental exposures, and occupational factors,
that increase the risk for PC [1]. Periodontitis (PD) is a novel
risk factor that is increasingly gaining attention among den-
tal and urological researchers. A 2021 meta-analysis summa-
rized nine cohort studies and concluded that periodontal
disease raised the incidence of PC by 1.40-fold [2]. However,

the underlying mechanisms linking periodontal disease and
PC have not been extensively explored.

Previous researchers hypothesized that PC and PD are
linked by periodontal pathogens and proinflammatory
mediators, such as cytokines and chemokines, that are pro-
duced as a host response to PD [3]. A recent study identified
Fusobacterium nucleatum, a periodontal pathogen, in pros-
tate gland samples that showed signs of prostatitis and PC.
However, more common periodontal pathogens, such as
Porphyromonas gingivalis, Prevotella intermedia, Treponema
denticola, Tannerella forsythia, and Campylobacter rectus,
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were not found in the same samples [4]. The identification of
a periodontal-specific microorganism, as well as other
inflammatory mediators, in prostate tissue samples indicates
that these compounds can migrate from one site to another
through the systemic circulation. The presence of foreign
pathogens and inflammatory mediators in the prostate gland
resulted in chronic prostatic inflammation [3], which may
have contributed to a tumor microenvironment (TME) and
PC initiation and progression [5].

In recent years, N6-methyladenosine (m6A) has gained
increasing attention because of its role in dynamic regulation
and reversible posttranscriptional regulation [6]. The RNA
methylation of m6A occurs through methyltransferases
(writers) and demethylases (erasers and readers), which are
corresponding enzymes [7]. Emerging evidence has shown
that alterations in m6AmRNAmethylation may result in car-
cinogenesis and metastasis [8], as well as inflammatory dis-
eases [9]. While there is a clear relationship between m6A
RNAmethylation and cancer and inflammation, an important

question remains. Does m6A RNA methylation modification
play a role in the pathogenesis of two related diseases? We
hypothesize that regulators of m6A RNA methylation may
link PC and PD on a genetic level.

We conducted an integrated analysis of both diseases by
studying the genetic data available on the GEO [10] and
TCGA databases [11]. Identifying the genetic links between
two related diseases is possible because of the advent of com-
putational biology and the analytical approach. Several bio-
informatics studies have attempted to identify the cross-
talk genes that are deregulated in PC and PD [12–17]. The
present research similarly aims to identify the m6A RNA
methylation regulators linking PC and PD.

2. Material and Methods

2.1. Study Flowchart. Figure 1 illustrates the study design of
the current research. Briefly, prostate cancer data and peri-
odontitis data were obtained from the Genomic Data
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Figure 1: The schematic diagram of the current research.

Table 1: PD and PRAD-related sample information.

PRAD PD

Datasets TCGA_PRAD GSE10334 GSE16134 GSE23586

Platform — GPL570 GPL570 GPL570

Experimental High-throughput sequencing Array Array Array

Variation data Known Unknown Unknown Unknown

Clinical data Known Unknown Unknown Unknown

Case number 496 183 241 3

Control number 52 64 69 3

Total (sample) 548 247 310 6
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Commons (GDC) data portal and the Gene Expression
Omnibus (GEO) database, respectively. The differential
expression analysis was performed to identify the differen-
tially expressed genes (DEGs) which were deregulated in
prostate cancer and periodontitis, respectively. Afterward,
23 m6A methylation regulator genes were obtained and inte-
grated with differentially expressed genes of both diseases,
and thereby 7 m6A methylation DEGs were obtained and
regarded as cross-talk genes. The subsequent analysis was
based on these 7 cross-talk genes from some aspects includ-
ing survival analysis, functional enrichment analysis, gene
selection analysis, and protein-protein interaction network
analysis.

2.2. Downloading Data. The RNA-seq dataset of prostate
adenocarcinoma (PRAD) were downloaded from the Geno-
mic Data Commons (GDC) data portal (https://portal.gdc
.cancer.gov/) [18]. At the same time, we downloaded the
clinical information of the relevant samples for PRAD. The
last number of the sample ID between 01 and 10 is the dis-
ease group, and greater than 10 is the control group.

Gene expression profiling data for periodontitis in
humans was downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/) [19]. Samples from gingival tissue
were selected, and both chronic and aggressive periodontitis
were regarded as the disease group, and healthy was

regarded as the control group. In order to reduce the data
error caused by the platform, all the analysis data of peri-
odontitis were downloaded from the chip data. Finally, three
datasets of periodontitis were obtained: GSE10334 [20],
GSE16134 [21, 22], and GSE23586 [23]. Finally, the statistics
of the filtered datasets are shown in Table 1. The 23 m6A
RNA methylation-related genes were acquired from the pre-
vious related research [24–27], including 8 readers, 13
writers, and 2 erasers (Table 2).

2.3. Data Preprocessing. For the PRAD obtained from the
TCGA database, the ensemble ID was converted to gene
symbol. The annotation file was downloaded from GEN-
CODE (https://www.gencodegenes.org/human/) [28], then
extracted the mapping information of Gene Symbol and
ENSG_ID, and finally mapped ENSG_ID to Gene Symbol.
When there were multiple matches, the median was taken,
and the transformed expression profile was finally obtained.
Since the expression value type is HTSeq Counts, the two
datasets were merged together based on their overlap genes,
and therefore, 496 cancer samples and 52 healthy samples
were acquired finally.

For the microarray dataset obtained from the GEO data-
base, the probes were converted into corresponding gene
names based on the platform information of GPL570. When
multiple probes corresponded to the same gene, the mean of
the expression values of these probes in a certain sample
were selected as the expression value of the gene in this sam-
ple. Then, according to the overlapped genes appearing in
the three datasets of PD, all the samples under the three
datasets were merged together. After merging, in order to
reduce the difference caused by the merging of samples from
different batches, ComBat method in the sva package (ver-
sion 3.15) [29] of R was used to perform batch correction
on the merged data. Finally, 427 PD disease samples and
136 healthy samples were acquired. For PRAD and PD data-
sets, the genes from the dataset whose expression value is 0
in more than half of the samples were deleted.

2.4. Differentially Expressed Gene Analysis. For the PD data-
set, the “limma” package (version 3.15) of R project [30] was
used to perform the differentially expressed gene analysis,
and genes with p value<0.05, |log2(FC)|≥1 were differen-
tially expressed genes. For the PRAD, the “ limma” package
of R project was used for analysis, and genes with p
value<0.01, |log2(FC)|≥1 were selected as differentially
expressed genes.

2.5. The m6A-Related Cross-Talk Gene between in PRAD and
PD. To identify the m6A-related cross-talk genes between
PARD and PD, the m6A-related genes, DEGs of PRAD
and DEGs of PD, were merged together. The common genes
among m6A-related genes, DEGs of PRAD and DEGs of
PD, were the potential m6A-related cross-talk genes between
PRAD and PD. Finally, 7 genes (ALKBH5, FMR1, IGFBP3,
RBM15B, YTHDF1, YTHDF2, and ZC3H13) were acquired.

2.6. Tumor Mutation Burden (TMB) Analysis of m6A-
Related Cross-Talk Genes in PRAD. Tumor mutational bur-
den (TMB) refers to the total number of somatic mutations

Table 2: The detailed function of 23 m6A RNA methylation-
related genes in RNA metabolism.

Name of 23 m6A methylation
genes

Function in RNA
metabolism

METTL3 Writers

METTL14 Writers

METTL16 Writers

WTAP Writers

VIRMA Writers

ZC3H13 Writers

RBM15 Writers

RBM15B Writers

YTHDC1 Readers

YTHDC2 Readers

YTHDF1 Readers

YTHDF2 Readers

YTHDF3 Readers

HNRNPC Readers

FMR1 Readers

LRPPRC Readers

HNRNPA2B1 Readers

IGF2BP1 Readers

IGF2BP2 Readers

IGF2BP3 Readers

RBMX Readers

FTO Erasers

ALKBH5 Erasers
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per Mb base in the exon coding region of the genome in a
tumor sample. The more mutated genes in tumor tissue,
the more likely it is to produce more abnormal proteins,
and tumors may also have a greater impact on the whole
body. At the same time, the more easily these abnormal pro-
teins are recognized by the immune system, thereby activat-
ing the body’s anticancer immune response, so the efficacy
of tumor immunotherapy is better. By calculating the Simple
Nucleotide Variation dataset downloaded by TCGA, the
TMB score for each sample in PRAD was obtained. Accord-
ing to the TMB score, all samples were divided into a high
score group and a low score group according to the median
of TMB score. After grouping the samples, survival analysis
was performed on the samples based on clinical information
to see the 3-year survival outcome. Meanwhile, the expres-
sion values of 7 different m6A key genes in PRAD samples
were extracted, and the correlation analysis of these genes
was conducted based on Pearson’s coefficient combined with
TMB scores.

2.7. Survival Analysis of m6A Cross-Talk Gene Was
Performed. Since there was no survival data for periodontitis,
the survival risk of 7 m6A cross-talk genes in PRAD was ana-
lyzed. First, we extracted the expression values of 7 m6A cross-
talk genes in PRAD tumor samples. Then, each gene was
regarded as a variable, and a Cox proportional risk regression
model (COX-PH) [31] was established for each variable using
the “survival” package (version 3.4-0) [32] of R project to per-
form the univariate analysis. Based on a univariate COX-PH
model, the risk score for each gene for all tumor samples was
obtained, and then the samples into the high-risk and low-
risk groups were divided based on the median risk score. “sur-
vival” package (version 3.4-0) of R project was used for sur-
vival analysis of the two risk groups, and “survminer”

package (version 0.4.9) [33] of R project was used for showing
survival analysis results.

In order to study whether the overall expression of 7
m6A cross-talk genes had an impact on survival, the expres-
sion values of 7 genes were used for multivariate analysis
followed by univariate analysis. Firstly, 7 variable genes were
used to establish COX-PH for multivariate analysis, and
then the risk scores of each gene in all tumor samples were
obtained. According to the median risk scores of the sam-
ples, the samples were divided into a high-risk group and a
low-risk group for survival analysis. According to the results
(HR, 95% CI, p value) obtained by univariate and multivar-
iate cox regression analysis, two forest plots were plotted by
using the ggplot2 package (version 3.3.3) [34] in the R pro-
gram (version 3.6.3). Every HR (hazard ratio) represents a
relative risk of death that compares one instance of a binary
feature to the other instance reference. An HR>1 indicates
an increased risk of death, while an HR<1 represents a
decreased risk of death.

A predictive nomogram for prostate cancer by combin-
ing the expression values of seven m6A methylation regula-
tor genes with clinical variables has not been reported.
Therefore, we constructed a prognostic nomogram by inte-
grating clinical factors and gene expression using the
TCGA-PRAD dataset. The nomogram was plotted by using
the rms package (version 6.2-0) [35] and survival package
(version 3.2-10) [32] in R program (version 3.6.3) and by
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Figure 2: PCA analysis results of PD batches before (a) and after (b) rectification.

Table 3: DEG counts for PRAD and PD.

PRAD PD

DEG up 4500 7153

DEG down 4355 7195

Total DEG 8855 14348
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following the Cox regression statistical analysis. Overall sur-
vival (OS) was chosen as the prognostic type. The included
variables were T stage, N stage, M stage, primary therapy
outcome, race, age, residual tumor, and PSA (ng/ml), as well
as the expression of seven m6A methylation regulator genes.
The number of M1 subgroup (nðM1Þ = 3) of the M stage
variable is too less and therefore cannot be included to be
the analysis of nomogram plot.

2.8. Functional Analysis and Gene Filter Analysis of m6A-
Related Cross-Talk Gene. To analyze the biological functions
regulated by m6A-related cross-talk gene, the clusterProfiler
package (version 3.15) [36] of R project was used for con-
ducting GO Biological process and KEGG pathway analysis.
In order to further screen m6A-related cross-talk gene that
plays a regulatory role in PRAD and PD, the LASSO regres-
sion model was built to screen these 7 m6A-related cross-
talk genes. Firstly, the expression values of 7 m6A-related
cross-talk genes in PRAD and PD samples were extracted,
including the case and control groups. Based on these two
groups, LASSO models were established to acquire the key
m6A-related cross-talk gene with PRAD and PD dataset,
respectively. After obtaining the key m6A cross-talk genes
of PRAD and PD, respectively, the intersection genes, which
are the risk m6A cross-talk genes that are more critical for
regulating PRAD and PD, were obtained.

2.9. Protein-Protein Interaction Network for m6A-Related
Cross-Talk Genes. The m6A-related cross-talk genes
screened by LASSO analysis and those obtained by univari-
ate analysis were combined, and then the expression values

of the combined genes in disease samples in PRAD and
PD were obtained. The high confidence level regulation
m6A gene for PRAD in the RMVar database (https://
rmvar.renlab.org/) [37] was extracted; afterward, the genes
expression in PRAD was obtained. The correlation between
the predicted m6A gene obtained by RMVar database and
the cross-talk genes were analyzed; and the GENIE3 package
(version 3.15) [38] of R project was used to calculate the
weight relationship among genes. The predicted results
according to the weight value were sorted, and the relation-
ship pairs with the TOP 25% of the weight were screened as
the high confidence level of the protein interaction pair.
Then, the genes in these high confidence level relationship
pairs and their expression values in PD were extracted, and
the GENIE3 package (version 3.15) was used to predict the
weight of these genes based on PD dataset. The TOP 25%
relationship pair as the final Target m6A-Otherm6A PPI was
acquired.

In addition, to analyze the role of m6A-related genes in
the entire biological network, the protein-protein interaction
(PPI) relationship pairs of m6A-related gene interactions
were obtained from the Human Protein Reference Database
(HPRD) (http://www.hprd.org/index_html) [39] and BIO-
GRID (http://thebiogrid.org/) [40]. Then, the expression
values in PRAD and PD for the interacted gene were
obtained, and the high confidence level pairs (Target m6A-
Othernon-m6A PPI) with the GENIE3 package of R project
were acquired. Finally, the Target m6A-Otherm6A PPI and
Target m6A-Othernon-m6A PPI were combined to build a
PPI network regulated by m6A-related cross-talk gene using
Cytoscape software.
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Figure 3: Volcano plot of DEGs in PRAD (a) and PD (b). (a-A) shows all DEGs deregulated in PRAD, (a-B) shows the jlogFCj≤10 of DEGs
deregulated in PRAD. (b) shows all DEGs deregulated in PD.
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3. Results

3.1. Data Preprocessing. After merging all the samples in the
three datasets related to PD according to their common
genes, then the ComBat method in the sva package of R

was used to perform batch correction on the combined data
and perform PCA analysis on the corrected results
(Figure 2). The results show that there is a certain difference
between the three datasets without correction, and this dif-
ference has been significantly reduced after correction.
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Figure 4: The gene expression of m6A-related cross-talk gene. (a) The relationship among DEG of PRAD, DEG of PD, and m6A genes; (b
and c) the gene expression of m6A-related cross-talk genes in PRAD and PD; (d and e) the expression difference of m6A-related cross-talk
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p > 0:05, ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤ 0:001, and ∗∗∗∗p ≤ 0:0001.
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3.2. Differential Expression Analysis. For the PRAD, the
genes with p value <0.01, |log2(FC)|≥1 were regarded as dif-
ferentially expressed genes (DEG), where genes with
log2(FC)≥1 indicates upregulated genes, and genes with
log2(FC)≤-1 indicates downregulated genes. For the PD
dataset, the genes with p value<0.01 and |log2(FC)|>0 are
acted as differentially expressed genes, where log2(FC)>0
was an upregulated gene and log2(FC)<0 was a downregu-
lated gene. The counts of DEG are shown in Table 3. 8,855
DEGs including 4,500 upregulated DEGs and 4,355 down-
regulated DEGs were identified to be deregulated in prostate
cancer. 14,348 DEGs consisting of 7,153 upregulated DEGs
and 7,195 downregulated DEGs were deregulated in peri-
odontitis. Figure 3 uses volcano plots to show the differential
expression of DEGs in prostate cancer (Figure 3(a)) and
periodontitis (Figure 3(b)).

3.3. m6A-Related Cross-Talk Gene between in PRAD and PD.
The common genes among 4855 DEGs of PRAD, 14348
DEGs of PD, and 23 m6A-related genes were obtained
(Figure 4(a)). 7 common genes (ALKBH5, FMR1, IGFBP3,
RBM15B, YTHDF1, YTHDF2, and ZC3H13) were acquired
which was acted as the m6A-related cross-talk gene. We
extracted the expression values of 7 m6A-related cross-talk
genes in PRAD and PD datasets and demonstrated the
expression of these genes in PRAD and PD by using pheat-
map package of R project (Figures 4(b) and 4(c)).

In addition, the Wilcoxon test was used to examine the
differences of 7 m6A-related cross-talk genes between the
disease group and the normal group (Figures 4(d) and
4(e)). The smaller the p value of the test result, the more sig-
nificant the sample comparison result. Figures 4(d) and 4(e)
showed that the 7 m6A-related cross-talk genes were differ-
entially expressed in both the diseased and healthy control
groups.

Table 4 shows the expression pattern of 7 m6A-related
cross-talk genes in diseased samples compared with healthy
control samples. This table also shows whether the expres-
sion patterns of 7 crosstalk genes were consistent between
periodontitis and prostate cancer. Table 4 shows that the
expression patterns of three genes (FMR1, IGFBP3, and
ZC3H13) in prostate cancer and periodontitis were consis-
tent by showing their downregulation in diseased samples
compared with healthy control samples. However, the
expression patterns of the other four genes (ALKBH5,
RBM15B, YTHDF1, and YTHDF2) in prostate cancer and
periodontitis were not consistent.

3.4. Tumor Mutation Burden (TMB) Analysis of m6A-
Related Cross-Talk Genes in PRAD. After obtaining PRAD’s
Simple Nucleotide Variation dataset from TCGA, the muta-
tion of 23 m6A regulator genes with maftools of R project
was observed (Figure 5(a)), and 7 m6A-related cross-talk
genes were found. It can be seen that the 7 m6A-related
cross-talk genes are mutated. Then the Simple Nucleotide
Variation dataset is calculated to obtain TMB score. All sam-
ples are divided into a high score group and a low score
group according to the median of TMB score. Survival anal-
ysis was performed on the grouped samples (Figure 5(b)). As
can be seen from Figure 4(b), the survival rate of the high
score group was lower than that of the low score group with
the increase of time, indicating that tumors may have a
greater impact on the whole body in patients with high
TMB scores. Meanwhile, the expression values of 7 m6A-
related cross-talk genes in PRAD samples were obtained,
and Pearson correlation analysis was conducted on these
genes combined with TMB scores of the samples
(Figures 5(c)–5(i)). The results showed that RBM15B,
YTHDF1, and YTHDF2 were highly positively correlated
with TMB, while ZC3H13 was negatively correlated with
TMB.

3.5. Survival Analysis of m6A Cross-Talk Gene. The expres-
sion values of 7 m6A-related cross-talk genes were obtained
from PRAD tumor samples and then established COX-PH
model for univariate analysis of each gene. Risk scores were
obtained for all samples based on univariate analysis, and
the samples were divided into a high-risk and low-risk
groups by median risk scores, followed by survival analysis
(Figures 6(a)–6(g)). As can be seen from Figure 6, FMR1
was significant in survival and had a good prognosis, while
other genes had no significant effect on survival.

To investigate whether the overall expression of 7 m6A-
related cross-talk genes influenced survival, the multivariate
analysis of these genes was performed by using a COX-PH
model. According to the median of risk score, the samples
were divided into a high-risk group and a low-risk group
for survival analysis (Figure 7(a)). As can be seen from
Figure 7(a), the survival analysis effect of multivariate Cox
model is not significant. In addition, tumor samples of
PRAD were grouped according to their pathological charac-
teristics, and then the survival analysis with the 7 m6A-
related cross-talk genes was performed. The sample risk
score and pathological features obtained from multivariate
analysis were combined to examine the sample risk and

Table 4: The expression pattern of 7 m6A-related cross-talk genes in diseased samples compared with healthy control samples.

ALKBH5 FMR1 IGFBP3 RBM15B YTHDF1 YTHDF2 ZC3H13

Prostate cancer Downregulated Downregulated Downregulated Upregulated Upregulated Upregulated Downregulated

Periodontitis Upregulated Downregulated Downregulated Downregulated Downregulated Downregulated Downregulated

If the expression
patterns were
consistent

Not consistent
Consistent,

both
downregulated

Consistent,
both

downregulated
Not consistent Not consistent Not consistent

Consistent,
both

downregulated
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the effect of pathological features on survival. A COX-PH
model was built using “rms” package of R project, and
nomograms were plotted to see the relationship between
pathological features and survival (Figure 7(b)). From
Figure 7(b), it can be obtained that age, Stage_T, and

Stage_N have an impact on survival, and the influence of
age on survival is larger.

Clinical information and corresponding sample numbers
are shown in Table 5. In Table 5, sex and Stage_M patholog-
ical features are not used because the difference between the
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Figure 5: Tumor mutation burden (TMB) analysis related of m6A-related cross-talk genes in PRAD. (a) The mutation for m6A-related
genes in PRAD. The horizontal axis represents samples, and the vertical axis represents genes; (b) survival status of TMB high and low
group; (c–i) correlation analysis between TMB with ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13.
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Figure 6: Continued.
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groups with the two feature was too great. A total of 402
valid samples were obtained from the five pathological fea-
tures of OS, OS_Event, age, Stage_T, and Stage_N.

In order to verify the prediction effect of COX-PH model
established by RMS package, three methods were used to
verify. Firstly, the calibrate method in the rms package was
used to calculate and draw a diagram to show the calibration
curve of the model for 3 years and 5 years (Figures 7(c) and
7(d)). The result showed that the similar between the model
predicted results and the sample true results are more than
95%, and the nomogram had favorable predictive power
for the 3-year and 5-year survival of patients with PRAD.
The C-index value of the model was also calculated, and
the result shows that C-index value is 0.8064 and the model
has a good effect. Finally, the timeROC package of R project
is used to calculate the ROC of the model for 3, 5, and 8
years. Based on the ROC curve (Figure 7(e)), it can be seen
that the model prediction accuracy is good in the 3-period
survival time range.

Table 6 and Figure 8(a) shows that a hazard ratio of 0.197
for FMR1 low expression group means that prostate cancer
patients who were detected with the low expression of FMR1
gene have a decreased risk of death compared to prostate
cancer patients who were detected with the high expression of
FMR1 gene (p = 0:041). The results of univariate Cox regres-
sion analysis indicated that several factors (e.g., M0 stage
(p < 0:001), primary therapy outcome (PR&CR) (p = 0:006),
PSA≥4ng/ml (p = 0:001), and FMR1 high expression
(p = 0:041 < 0:05)) were negative predictor for overall survival
outcome in prostate cancer patients; however, the other six
genetic factors were not shown to be significant predictors for
the overall survival outcome in prostate cancer patients.

Table 7 and Figure 8(b) show the results of the multivar-
iate Cox regression analysis, indicating that M1 stage
(p = 0:011) was negative predictor for overall survival out-
come in prostate cancer patients; however, the seven genetic
factors were not shown to be significant predictors for the
overall survival outcome in prostate cancer patients.

A nomogram plot (Figure 8(c)) was constructed to pre-
dict the 1-, 3-, and 5- year survival probability of prostate
cancer patients by integrating the expression level of and
independent clinical variables. Total points were calculated
by adding the points of the genetic score, age, and TNM
stage. A worse prognosis was represented by a higher total
number of points on the nomogram.

Through model evaluation, it was found that age, Stage_
T, and Stage_N pathological characteristics all had certain
influence on survival. Therefore, we first grouped the sam-
ples under the 7 m6A-related cross-talk genes according to
different pathological characteristics, and the grouped sam-
ples were analyzed by using the survival package of R project
for COX-PH model. The samples were divided into high-
risk groups and low-risk groups for survival analysis accord-
ing to the median risk score of the samples (Figures 9(a)–9(f
)). The results showed that the survival of 7 m6A-related
cross-talk gene was significant in age ≥60, STAGE_T3-T4,
and Stage_N1 groups, and the survival rate of the high-risk
group was lower than that of the low-risk group.

3.6. Functional Analysis and Gene Filter Analysis of m6A-
Related Cross-Talk Gene. With the clusterProfiler of R pro-
ject, the m6A-related cross-talk genes were found to be
enriched into several GO biological process and KEGG path-
ways, and the functions with p value<0.05 were significant
(Figures 10(a)–10(b)). The results showed that m6A-
related cross-talk gene mainly regulated the regulation of
mRNA metabolic process, regulation of translational initia-
tion, and RNA modification (Figure 10(a)). Meanwhile,
m6A-related cross-talk gene takes part in p53 signaling
pathway, growth hormone synthesis, secretion and action,
cellular senescence, and transcriptional misregulation in
cancer (Figure 10(b)).

To further screen m6A-related cross-talk genes that play
a key role in both PRAD and PD, lasso regression analysis
was used for screening. First, the expression values of 7
m6A-related cross-talk genes were extracted in PRAD and
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Figure 6: Univariate survival analysis of seven m6A-related cross-talk genes.
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PD. Then based on the disease and normal group, the
LASSO model was established to analyze PRAD and PD,
respectively (Figures 11(a)–11(d)). Finally, four genes
(ALKBH5, IGFBP3, RBM15B, and ZC3H13) were obtained
in PRAD and four genes (ALKBH5, IGFBP3, RBM15B,
and YTHDF2) were obtained in PD. Three genes were both
screened in PRAD and PD, which were ALKBH5, IGFBP3,
and RBM15B. The expression values of these 3 genes in

PRAD and PD were obtained, and ROC analysis was per-
formed to analyze the prediction accuracy of the genes
(Figures 11(e) and 11(f).

3.7. Protein-Protein Interaction Network for m6A-Related
Cross-Talk Genes. From the RMVar database, 409 predicted
PRAD-related m6A genes were obtained. After lasso analysis
and univariate survival analysis, we finally obtained four risk
m6A-related cross-talk genes (ALKBH5, IGFBP3, RBM15B,
and FMR1). To predict the correlation between four key
m6A genes and the predicted m6A gene of PRAD, the
expression values of these genes from PRAD were extracted,
and then the weight relationship between them was pre-
dicted by using GENIE3 packages of R project. The weights
in descending order were sorted, and then the TOP 25% of
the relationship pairs (PPI_pair1) and the genes in the rela-
tionship pairs (gene_list1) were obtained. The expression
values of the gene_list1 in PD were obtained, and then the
GENIE3 package was used to predict the weights of the 4
m6A genes and gene_list1. The relationship pairs in PD in
descending order were obtained, and the relationship pairs
with a weight of TOP 25% (PPI_pair2) were filtered. The
PPI_pair1 and PPI_pair2 common relationship pairs were
obtained, and then 152 relationship pairs (Target m6A-
Otherm6A PPI) were acquired.

In addition, the correlations from HPRD and BIOGRID
and combined gene expression correlation in PRAD and PD
were derived, and 39 PPI relationship pairs (Target m6A-
Othernon-m6A PPI) for m6A-related gene interactions were
obtained. The Target m6A-Otherm6A PPI and Target m6A-
Othernon-m6A PPI were combined to construct the PPI net-
work of m6A-related cross-talk genes, which included 183
nodes and 185 edges (Figure 12(a)).
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Figure 7: (a) Kaplan-Meier curves of seven m6A-related cross-talk genes in PRAD using multivariate COX-PH model; (b) nomogram of
pathological features and survival relationship; (c–d) a calibration curve of nomogram for 3 years and 5 years; (e) ROC curve with time
dependence.

Table 5: Clinical information and corresponding sample numbers.

Group Sample(known)

Age
≥60 296

<60 204

Sex
Male 500

Female 0

OS

Within 3 years 292

Within 5 years 413

Overall survival 500

OS_Event
Alive 490

Dead 10

Stage_T
T1-T2 382

T3-T4 115

Stage_N
N0 348

N1 79

Stage_M
M0 457

M1 3
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From the network, FMR1 interacts with more proteins
throughout the network and is highly correlated with the
other 3 m6A-related cross-talk genes (ALKBH5, IGFBP3,
and FMR1). FMR1 affects more biological functions by reg-
ulating interacting proteins.

From the m6A cross-talk genes-related PPI network, a
total of 183 genes were obtained. These 183 genes interact
with each other and play a potential regulatory role in the
biological functions associated with PRAD and PD. To this
end, the clusterProfiler package of R project was used to per-
form the function enrichment of 183 genes and p value
<0.05 as a significant function. The results showed that 183
genes significantly regulated histone modification, peptidyl-
lysine modification, regulation of ubiquitin-protein transfer-
ase activity, and so on (Figure 12(b)). Moreover, 183 genes
involved in the ubiquitin-mediated proteolysis, mismatch
repair, p53 signaling pathway, and DNA replication
(Figure 12(c)).

4. Discussion

Seven m6A-related cross-talk genes (ALKBH5, FMR1,
IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were
differentially expressed in both PC and PD. These genes
were significantly enriched in several signaling pathways,
such as the pathways involved in pathogenic Escherichia coli
infection, nucleocytoplasmic transport, ubiquitin-mediated
proteolysis, p53 signaling, growth hormone synthesis, secre-
tion, and action, cellular senescence, and transcriptional
misregulation in cancer. Except for RBM15B, the other six
cross-talk genes examined in the current study have been
strongly studied in previous literature.

AlkB homolog 5 (ALKBH5), also known as m6A
demethylase, provides the eraser function for m6A methyla-
tion by mediating m6A methylation reversal [41, 42].
ALKBH5 expression was significantly lower in healthy con-

trols compared to patients with PC. Patients with
castration-resistant prostate cancer (CRPC) with bone
metastasis also showed less ALKBH5 downregulation com-
pared to patients with CRPC with lymph node metastasis.
Additionally, ALKBH5 was found to be negatively related
to the Gleason score [43], which supports ALKBH5’s role
as a prognostic indicator for PC [43].

According to the current study, ALKBH5 mRNA expres-
sion was not related to overall survival in PC (Figure 5(a)).
However, a previous bioinformatics study found that
patients with PC with a copy number gain of ALKBH5 had
worse relapse-free survival (RFS) rates. This indicates that
ALKBH5 copy number variation patterns is significantly
associated with RFS rates in PC [44]. In comparison,
ALKBH5 was found to be upregulated in PD samples com-
pared to healthy controls. A recent study found that mono-
cytic infiltration in PD was directly proportional to ALKBH5
expression, indicating a positive correlation between
ALKBH5 and monocyte levels in PD [45].

The expression of fragile X mental retardation (FMR1)
protein was downregulated in both PD and PC (Table 3).
Adamsheck et al. found that men with low CGG repeat
lengths in the FMR1 gene had significantly higher rates of
PC in the family (p = 0:007) [46]. However, there is minimal
research on the role of FMR1 in regulating cancer biology.
Another study demonstrated that exosomal FMR1-AS1
played a role in maintaining the dynamic interconversion
state of cancer stem-like cells in female esophageal carci-
noma through the activation of the TLR7-NFκB signaling
axis. However, there is still no research regarding the role
of the FMR1 gene in regulating PC [47].

The current study showed that there was a significant
association between FMR1 and overall survival in PC
(p = 0:024, Figure 5(b)). The prognostic value of FMR1 was
also determined for other cancers, such as esophageal squa-
mous cell carcinoma [48], glioma [49], and aggressive breast

Table 6: The univariate survival analysis results regarding the seven m6A methylation regulator genes in predicting the overall survival risk
of prostate cancer.

Characteristics (univariate analysis) Total(N) HR (95% CI) p value

T stage (T3&T4 vs. T2) 492 3.294 (0.612-17.727) 0.165

N stage (N1 vs. N0) 426 3.516 (0.778-15.896) 0.102

M stage (M1 vs. M0) 458 59.383 (6.520-540.817) <0.001
Primary therapy outcome (PD&SD vs. PR&CR) 438 7.689 (1.808-32.694) 0.006

Race (Asian & Black or African American vs. White) 484 0.619 (0.118-3.244) 0.570

Age (>60 vs. ≤60) 499 1.577 (0.440-5.648) 0.484

Residual tumor (R1&R2 vs. R0) 468 2.598 (0.696-9.694) 0.155

PSA(ng/ml) (≥ 4 vs. <4) 442 10.479 (2.471-44.437) 0.001

ALKBH5 (low vs. high) 499 0.958 (0.277-3.318) 0.946

FMR1 (low vs. high) 499 0.197 (0.041-0.936) 0.041

IGFBP3 (low vs. high) 499 1.402 (0.391-5.031) 0.604

RBM15B (high vs. low) 499 3.704 (0.786-17.460) 0.098

YTHDF1 (high vs. low) 499 0.800 (0.230-2.781) 0.726

YTHDF2 (high vs. low) 499 1.577 (0.437-5.698) 0.487

ZC3H13 (low vs. high) 499 3.165 (0.659-15.211) 0.150
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cancer [50]. While there is still no information on the role
of the FMR1 gene in PD, Muzzi found that FMR1-
associated fragile X syndrome is not significantly associ-

ated with PD [51, 52]. A previous study demonstrated that
overexpression of FMR1 protected cardiomyocytes against
lipopolysaccharide-induced myocardial injury by reducing
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Figure 8: The forest plot and nomogram plot showing the relationship between seven m6A methylation genes and overall survival of
prostate cancer. (a) The forest plots showing the univariate regression analyses results of seven m6A methylation regulator genes and
clinicopathologic parameters with overall survival (OS) in prostate cancer patients. (b) The forest plots showing the univariate regression
analyses results of seven m6A methylation regulator genes and clinicopathologic parameters with overall survival (OS) in prostate cancer
patients. (c) The nomogram plot for predicting probability of patients with 1-, 3-, and 5-year overall survival based on the various
clinicopathological features and the expression levels of seven m6A methylation genes.

Table 7: The multivariate survival analysis results regarding the seven m6A methylation regulator genes in predicting the overall survival
risk of prostate cancer.

Characteristics (multivariate analysis) Total (N) HR (95% CI) p value

M stage (M1 vs. M0) 458 102.095 (2.876-3624.550) 0.011

Primary therapy outcome (PD&SD vs. PR&CR) 438 4.976 (0.921-26.888) 0.062

PSA (ng/ml) (≥ 4 vs. <4) 442 2.563 (0.325-20.233) 0.372

FMR1 (low vs. high) 499 0.366 (0.055-2.425) 0.297

RBM15B (high vs. low) 499 2.486 (0.382-16.195) 0.341
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Figure 9: Continued.
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oxidative stress and apoptosis [53]. This supports the the-
ory that FMR1 upregulation may be a novel strategy for
PD treatment.

Research has also implicated the insulin-like growth fac-
tor pathway in the development of PC. Insulin-like growth
factor-binding protein-3 (IGFBP-3) is a potent apoptotic
molecule that is regulated by p53. It is significantly sup-
pressed in various types of cancers, including PC [54]. Previ-
ously, Perry et al. reported that IGFBP-3 methylation may
play a role in early PC development [55]. A large prospective
cancer screening trial found that there was no association
between IGFBP-3 and the risk for PC [56]. Seligson et al.

conducted a study on 226 patients and found that high
nuclear IGFBP-3 expression was a very strong predictor of
cancer recurrence in patients with low-grade PC [57].
Another study supported this finding by demonstrating that
prediagnostic IGFBP-3 levels (Hazard Ratio = 0:93; 95%
Confidence Interval = 0:65 – 1:34) were not associated with
overall survival outcomes in PC. The current research simi-
larly supports these findings (p = 0:59, Figure 5(c)). The cur-
rent study also used GEO datasets to analyze the role of
IGFBP-3 in PD. The upregulation of IGFBP-3 in human gin-
gival fibroblasts increased IGF transport and enhanced peri-
odontal wound healing and regeneration [58]. There was no

p=0.047

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10
Time (years)

O
ve

ra
ll 

su
rv

iv
al

Risk model survival
(stage_T3−T4, sample= 97)

High (N=48)
Low (N=49)

(e)

p=0.026

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
Time (years)

O
ve

ra
ll 

su
rv

iv
al

Risk model survival
(stage_N1, sample=78)

High (N=39)
Low (N=39)

(f)
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correlation between IGFBP-3 levels in gingival crevicular
fluid with periodontal parameters (e.g., probing depth and
gingival index) [59].

The YTHDF family genes (YTHDF1, YTHDF2, and
YTHDF3) can recognize bases undergoing m6A methyla-
tion, as well as bases participating in downstream transla-
tion, mRNA degradation, and mRNA exit rate acceleration
[60]. Previous studies have demonstrated that PC samples
expressed higher levels of YTHDF1 and YTHDF2 mRNA
compared to healthy tissue [61, 62]. Upregulation of
YTHDF1 and YTHDF2 promotes PC cell proliferation, inva-
sion, and migration [61, 62]. In particular, YTHDF2 modu-
lated PC phenotypes by regulating the expression of its
significantly positively correlated gene, tripartite motif-
containing 44 (TRIM44) [61]. YTHDF2 may exert this
action by binding to m6A modification sites on tumor sup-
pressor genes, such as LHPP and NKX3-1. This negatively
affects mRNA levels, which promotes AKT
phosphorylation-induced tumor progression [63]. To date,
there is no data on the role of YTHDF1 and YTHDF2 in
PD. However, YTHDF2 knockdown in RAW264.7 cells,
and primary bone marrow-derived macrophages does
upregulate osteoclast-related gene expression and proin-
flammatory cytokine secretion [64]. It can be speculated that
downregulation of YTHDF2 enhances osteoclastic activity in
PD, as well as promotes inflammation.

ZC3H13 positively regulates latent membrane protein 1
(LMP1)-induced nuclear factor in kappa beta (NF-κB) path-
way activation [65, 66]. The potential role of ZC3H13 in PD

and PC is based on the role of the NF-κB pathway in inflam-
mation and cancer. The NF-κB signaling pathway is one of
the most strongly activated pathways in PD-derived inflam-
mation [67, 68]. The activation of this pathway increases
osteoclast mediated-periodontal bone resorption in PD
[69]. The constitutive activation of NF-κB transcription fac-
tors promotes tumor-cell survival by inhibiting the apoptosis
of PC cells [70]. NF-κB nuclear expression also strongly pre-
dicted biochemical recurrence following radical prostatec-
tomy with positive surgical margins. As such, NF-κB
nuclear expression can be regarded as an independent
molecular marker for stratifying risk in patients with PC
[71]. In addition, ZC3H13 has been identified as an onco-
gene in kidney clear cell carcinoma. ZC3H13 activates the
NF-κB signaling pathway in patients with this condition to
promote tumor proliferation and invasion [72]. However, a
separate study showed contrary evidence and identified
ZC3H13 as an upstream regulator of the Ras-ERK signaling
pathway. In this study, ZC3H13 suppressed colorectal cancer
invasion and proliferation by inactivating Ras-ERK signaling
[73]. There remains no data on the role of ZC3H13 in PC
pathogenesis.

Among the signaling pathways activated by the seven
cross-talk genes, the pathogenic E. coli infection pathway
obtained our particular interest. E. coli in PD can produce
genotoxic toxins that promote carcinogenesis. This poten-
tially explains the epidemiologic data suggesting an
increased risk for PC among patients with PD [74]. E. coli
infection can increase the risk for PC through two proposed
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Figure 11: The risk m6A-related cross-talk genes in PRAD and PD. (a) and (b) are the results of LASSO analysis. Each line in the figure
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mechanisms. One mechanism involves bacterial migration
from periodontal pockets to the peripheral blood and pros-
tate tissue. E. coli was found in significantly large numbers
in the expressed prostatic secretions and seminar fluid of
subjects with PC compared to subjects with benign prostatic
hyperplasia [75]. The other mechanism involves increased
systemic inflammation secondary to E. coli infection in the
peripheral blood of patients with PD. E. coli lipopolysaccha-
ride (LPS)-stimulated peripheral blood mononuclear cells
(PBMCs) obtained from the peripheral blood of subjects
with chronic PD demonstrated higher levels of proinflam-
matory cytokine (TNF-α and IL-6) release compared with
healthy subjects (p < 0:05) [76]. Increased levels of inflam-

matory markers in the peripheral bloodstream may promote
carcinogenesis and a TME [77].

In summary, the majority of cross-talk genes identified
in the current study played significant roles in the pathogen-
esis of PC and PD. This research has several limitations.
First, the data analyzed in this study was derived from the
gingival and cancer tissues of patients with PD and PC,
respectively. The ideal analysis should utilize peripheral
blood or PBMC samples; however, we were unable to obtain
the GEO datasets of the peripheral blood samples of patients
with PD, with and without PC. If we had such data, the
genetic or methylation biomarkers obtained through
sequencing assays may be used to evaluate the risk for PC
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in male patients with PD by examining the expression levels
of these biomarkers in peripheral blood. Second, we were
unable to validate the data in the current study. Additional
experiments should be designed to examine the mRNA
and methylation levels of the identified cross-talk genes in
PD pathogen/P. gingivalis-derived LPS-stimulated PC cells
compared with unstimulated PC cells. While this study has
certain limitations, it still provided theoretical foundations
for the potential genetic mechanisms that link PC and PD.

The current study can contribute to future research in
several ways. From the viewpoint of precision medicine
and drug development or repurposing, experimental and
clinical studies that focus on these candidates may help iden-
tify shared susceptibility, exaggerated pathogenic mecha-
nisms, genetic biomarkers, and potential therapeutic targets.

5. Conclusion

To conclude, seven m6A methylation regulator genes
(ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2,
and ZC3H13) were identified as cross-talk genes that medi-
ate the pathogenesis of PC and PD. These genes may be used
to quantify the risk for PC among patients with PD, as well
as be utilized as therapeutic targets for either condition.
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