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Abstract

This mini review provides a concise overview of imaging techniques that are currently 
used to image the atheroscletoric plaque in the carotid artery in vivo. The main techniques 
include ultrasound imaging, X-ray imaging, magnetic resonance imaging and positron 
emission tomography imaging. Each technique has advantages and limitations and may 
be chosen depending on the availability, cost and clinical justification for its use. Common 
to all the imaging techniques presented here is the need for a skilled imaging professional 
to allow for high reliability and repeatability. While ultrasound-based imaging currently 
is regarded as a first line technique in clinical practice, the use of other techniques 
such as computed tomography angiography or magnetic resonance angiography need 
to be considered in the presence of significant stenosis with or without symptoms. 
Advancements in these two modalities, as well as in positron emission tomography 
imaging, are increasingly moving toward a better understanding of the risk-stratification 
and pre-interventional monitoring of patients at risk of plaque rupture as well as early 
identification of plaque development and better understanding of plaque composition (e.g. 
metabolic imaging).

Introduction

The study of the atherosclerotic plaque is of great 
interest for screening and assessment of patients at risk 
of cerebrovascular accidents (1). Several non-invasive 
imaging techniques can be used to study the atherosclerotic 
plaque. The plaque is typically composed of macrophage 
cells, fatty residue, calcium and fibrous connective tissue 
and debris, causing a narrowing of the vessel lumen. The 
technique and modality chosen should be optimized for 
the study in question. This mini review aims to provide an 
overview of the techniques used to image non-invasively 
the carotid plaque in vivo. A summary of the techniques 
discussed is shown in Fig. 1.

Ultrasound-based imaging

Ultrasound-based imaging has the advantages of being 
non-invasive, radiation free, not requiring contrast 
medium and associated to only minimal discomfort to the 
patient. The technique is cost-effective, widely available 
and allows both the visualization and the grading of the 
atherosclerotic plaque severity. Examples of ultrasound 
imaging are shown in Fig. 2.

Carotid intima-media thickness

Carotid intima-media thickness (CIMT) imaging uses a 
linear array transducer with a frequency of at least 7 MHz 
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in B-mode (2, 3). Lower frequencies are not sufficient to 
obtain near-field resolution for the imaging of superficial 
vessels such as the carotid artery. The transducer 
angle should be standardized by means of external 
landmarks and measures should be taken through at 
least two complementary directions. From such data, the 
maximum and mean thickness of intima-media can be 
taken, as well as measurements of the lumen diameter. 
It is recommended that semi-automated edge detection 
software be used to identify the borders (3, 4).

Thorough guidelines on the use and measurement 
of CIMT have been published, including percentile 
CIMT data by sex, age and ethnicity (3) allowing for 
standardization of the method as well as reference ranges 
to be calculated for smaller studies. CIMT imaging has 
been validated against in vitro histology (5, 6).

Success rates for imaging the common carotid is >90%, 
in the bifurcation is 64–77%, and in the internal carotid 
31–48% (7, 8). B-mode ultrasonography can more readily 
identify non-obstructive plaques than Doppler ultrasound,  

given that Doppler velocity does not increase significantly 
until >50% lumen obstruction is observed. However, it 
should be noted that while there is good agreement on 
the morphological evaluation of plaques, measurements 
of plaque thickness is subject to a higher incidence of 
measurement error (9).

3D ultrasound

Serial 2D ultrasound images can be computed to reconstruct 
the 3D volume. This requires specialized software and 
probes, but gives the advantages of reducing operator 
variability as well as allowing for the visualization of both 
the thickness and length of the plaque (10). 3D ultrasound 
is more sensitive to detect changes in plaque area (11).

Pixel distribution analysis (PDA)

A limitation of CIMT scans is that no reliable 
characterization of plaque composition, and therefore 

Figure 1
Summary of imaging techniques and relative advantages. MRI, magnetic resonance imaging; PET, positron emission tomography.

Figure 2
(A) Example of ultrasound-acquired images of the common carotid with B-mode non-contrast-enhanced ultrasonography and visualization of intima-
media thickness in the near wall (NW) and far wall (FW); (B) example of near wall and far wall visualization using contrast‐enhanced ultrasound imaging. 
Reproduced from Shah BN, Chahal NS, Kooner JS & Senior R; Contrast‐enhanced ultrasonography vs B‐mode ultrasound for visualization of intima‐media 
thickness and detection of plaques in human carotid arteries; Echocardiography 2017, volume 34, pages 723–730 (33). Copyright 2017 John Wiley and Sons.
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stability, is available. Nevertheless, such techniques 
are under development and are currently available for 
research purposes. For example, it has been shown using 
PDA that the necrotic core of an unstable plaque is closer 
to the lumen and appears hypoechoic (12). PDA uses 
gray-scale image segmentation to map pixel brightness 
ranges across normalized longitudinal images. The result 
is a percentage composition of tissue composition in the 
plaque, including calcium, lipid and fibrous tissue. PDA 
can also provide information on the lipid core size and 
location (13).

Contrast-enhanced ultrasonography

While most of the time US assessment of the carotid arteries 
is performed entirely non-invasively, image quality can 
be enhanced by the use of a contrast agent. For contrast-
enhanced ultrasonography (CEUS), the contrast is typically 
microbubbles of an inert gas stabilized by a phospholipid 
shell (e.g. sulfur hexafluoride or octafluoropropane). 
For carotid CEUS, the carotid lumen and adventitia are 
enhanced, making luminal irregularities more readily 
detectable. Late-phase enhancement (6 min after contrast 
administration) suggests an increased inflammatory cell 

load within the plaque, representing a possible marker for 
early plaque rupture (14, 15). Careful evaluation of the 
patient medical history is needed before administration of 
contrast given the range of contraindications (16).

X-ray based imaging

Computed tomography angiography

Computed tomography angiography (CTA) offers a fast 
acquisition (~10 s) imaging modality. With the advent 
of multi-detector row computed tomography (MDCT) 
the ability and quality of non-invasive angiograms has 
substantially increased; CTA has a spatial resolution of 
approximately 0.5–1 mm, but a relatively slow temporal 
resolution at 240–420 ms. However, newer dual-source 
CT (DSCT) scans may reduce the temporal resolution 
to ~65 ms, thereby making it near equivalent to that of 
magnetic resonance scans (17). Furthermore, DSCT allows 
for more accurate assessment of calcified plaque volume, 
as it uses two x-ray sources with different energies to 
achieve more detailed Hounsfield unit measurements (18). 
Plaques are typically imaged using bolus-tracking CTA. 
Calcification, lipid content and fibrous tissue are classified 

Figure 3
Example of plaque imaging by computed tomography angiogram in the common carotid artery with classification overlay to show non-calcified plaque 
(red) and calcified plaque (yellow). Reproduced from Ramanathan R, Dey D, Nørgaard BL, et al.; Carotid plaque composition by CT angiography in 
asymptomatic subjects: a head-to-head comparison to ultrasound; European Radiology, 2019 (34). Copyright 2019 John Wiley and Sons.
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based on voxel Hounsfield units (19). However, densely 
calcified plaques may result in beam-hardening artifacts. 
Histopathological comparisons to DSCT show high 
agreement for the AHA classification of plaques, although 
it should be noted that type I and II lesions were seen only 
in histopathological analyses (18). Risks associated with 
radiation exposure and iodinated contrast administration 
should be taken into account before performing CTA  
(20, 21). An example of CTA imaging is shown in Fig. 3.

Magnetic resonance-based imaging

Magnetic resonance angiography

A range of MR techniques have been developed with 
specific technical advantages for imaging of different 
components of the plaque (22). Examples of different MR 
imaging techniques are shown in Fig. 4. Visualization of 
head and neck vessels including the carotid arteries in the 
research setting is typically performed using time-of-flight 
MRA, but other non-contrast MR imaging sequences 
may be of interest. MR imaging has the ability not only 
to quantify vessel lumen but also to characterize plaque 
composition including the necrotic core and calcification 

(23), fibrous cap (24) and inflammation (25). A commonly 
used research technique for plaque imaging is the double 
inversion recovery or ‘black-blood’ method. This uses a 
fast spin-echo sequence with double inversion recovery 
preparatory pulses resulting in a high contrast between 
the lumen and vessel wall. Newer sequences allow for 
the 3D acquisition so that the entire cervical carotid 
artery can be covered at a <1 mm3 resolution in less than 
2 min (26). Moreover, fat suppression provides a clearer 
image and is essential for characterization of the plaque 
morphology. MRA can provide visualization of the vessel 
lumen, even when the vessel is highly calcified. However, 
the acquisition time is significantly longer than for CTA, 
and MRA has a relatively low spatial resolution (typically 
>1 mm). Nevertheless, MRA may be successfully used 
when CTA is contraindicated.

Recent advances in the application of T2 mapping 
techniques (27) have made high-resolution, non-
contrast-enhanced plaque lipid quantification possible 
across the whole plaque area. The technique maps 
the T2 decay on a voxel-by-voxel basis, is validated 
against histological samples and has been shown able 
to distinguish recently symptomatic plaque with high 
sensitivity and specificity (28).

Figure 4
Example of segmentation of magnetic resonance angiography (MRA) data of the internal carotid artery (different views, A and B), including 3D 
reconstruction to reveal carotid anatomy (C and D). Example of black blood imaging in the internal carotid, the red arrow indicating a region of 
intraplaque hemorrhage (E) (reproduced from Yu et al. under the terms of the original Creative Commons CCBY Attribution License (35)). Example of T2 
mapping of atherosclerotic carotid plaque, the red arrow indicating a region of intraplaque hemorrhage (F) (reproduced from Qi H, Sun J, Qiao H, et al.; 
Simultaneous T1 and T2 mapping of the carotid plaque (SIMPLE) with T2 and inversion recovery prepared 3D radial imaging; Magnetic Resonance in 
Medicine, 2018 volume 80, pages 2598–2608 (36); copyright 2018 John Wiley and Sons), which is shown mapped in (G).
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Contrast-enhanced magnetic resonance angiography

Contrast-enhanced magnetic resonance angiography 
(CE-MRA) is a contrast-enhanced technique, typically 
using gadolinium or iron oxide-based contrast media 
(rather than iodine-based contrast used in CTA). Contrast 
MR may provide a clearer image of vessel morphology 
and plaques than non-contrast MR. To achieve this, 
calculations on the arrival time of the bolus is essential; 
imaging too early would yield an inadequate visualization 
of the vascular tree, whereas imaging too late may cause 
some contrast to spill into the venous system thereby 
adding noise to the anatomy under investigation (29). 
CE-MRA in the research setting may also be used to study 
preclinical and molecular imaging of the plaque. For a 
comprehensive review of CE-MRA see Makowski and 
Botnar (30).

Other imaging techniques

Positron emission tomography-based imaging

Positron emission tomography (PET) uses targeted radio-
tagged molecular probes, which undergo beta-decay. While 
PET scans have traditionally suffered the same limitations 
as MRA, that is, long acquisition time and limited spatial 
resolution, newer hybrid PET-CT and PET-MR scanners 
have made PET imaging an option for studying plaques 
in further depth, combining the anatomical and/or 
metabolic images with specific markers, for example, for 
inflammation and hypoxia (31, 32).

Summary

This mini review has briefly presented the main non-
invasive imaging techniques to visualize the carotid plaque 
in vivo. Each technique has advantages and limitations 
and may be chosen depending on the availability, cost 
and clinical justification for its use. Common to all the 
imaging techniques presented here is the need for a skilled 
imaging professional to allow for high reliability and 
repeatability. While ultrasound-based imaging certainly is 
considered a first-line technique in clinical practice, the 
use of CTA or MRA needs to be considered in presence of 
significant stenosis with or without symptoms. MRA, CTA 
and PET are moving us toward a better understanding of 
the risk-stratification and pre-interventional monitoring 
of patients at risk of plaque rupture as well as early 
identification of plaque development.
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