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Abstract

Proteins associated with neurodegenerative diseases are highly pleiomorphic and may

adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a

coil in another, and rapidly polymerize in yet another one via divergent aggregation path-

ways that yield broad diversity of aggregates’ morphology. A thorough understanding of this

behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders.

Unfortunately, our present comprehension of folding and misfolding is limited for want of a

physicochemical theory of protein secondary and tertiary structure. Here we demonstrate

that electronic configuration and hyperconjugation of the peptide amide bonds ought to be

taken into account to advance such a theory. To capture the effect of polarization of peptide

linkages on conformational and H-bonding propensity of the polypeptide backbone, we

introduce a function of shielding tensors of the Cα atoms. Carrying no information about side

chain-side chain interactions, this function nonetheless identifies basic features of the sec-

ondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-

driven equilibria, relates binding affinities and folding rate constants to secondary structure

preferences, and manifests common patterns of backbone density distribution in amyloido-

genic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based

on those findings, a split-intein like mechanism of molecular recognition is proposed to

underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent asso-

ciation of dimers are outlined; a related mechanism is proposed to underlie formation of

PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway

oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point

mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid

interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary

nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
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Introduction

To understand protein folding, one needs to understand protein structure. And yet, in spite of

the considerable interest and effort, even the most rudimentary issues of proteins conforma-

tional behaviour remain unresolved: ‘Surprisingly, the field lacks a physicochemical theory of

protein secondary structure’ [1]. Indeed, for the chemist concerned to gain insight, protein

study is in want of a theory which would explain what local backbone interactions make a resi-

due a helix-breaker or a helix-former and how that propensity depends on the context—why a

residue which is a helix-breaker in water becomes a helix-former in lipid or vacuum or why a

residue which is a helix-former in the folding intermediate becomes a sheet-former in the

native state. Pressing puzzles such as why certain sequences of helix-breakers and helix-form-

ers may adopt an all-α fold in one environment, all-β fold in another, and collapse into a coil

in yet another one, are bound to remain elusive unless these questions are answered.

The need to address the problem of secondary structure is underscored by the emerging

evidence that ‘folding is an inherently digital process in which the formative interactions are

among backbone elements’ [2], and that, given the folding and refolding of liquid lipase and

gas-phase apomyoglobin, ‘the exigency of water in determining protein folding could possibly

be overstated in current models used to describe this phenomenon.’ [3–6] To understand con-

formational behaviour of proteins, this evidence suggests, one ought to take into account the

effects of main chain bonding—the backbone-backbone H-bonding but also the effects of

hyperconjugative interactions of peptide linkages which depend on backbone conformation.

The conceptual framework necessary for doing so is readily available in the modern physical

organic chemistry [7]. The internal rotation in simple organic molecules was long argued to

depend on the stereoelectronic as well as the steric and electrostatic effects [8,9]. The phenom-

ena such as the gauche effect or the anomeric effect are now commonly attributed, at least in

part, to hyperconjugation, and often satisfactorily described in terms of two-electron stabiliz-

ing interactions of the localized filled and vacant molecular orbitals [7–15]. Since the polypep-

tide chains comprise groups of orbitals whose through-bond and through-space interactions

are altered by the internal rotation, similar effects may also play a role in the conformational

equilibria of proteins. Hyperconjugative interactions of the peptide amide bonds have in fact

been proposed by a number of authors to contribute to the stability of oligopeptides and pro-

teins [16–22]. Thus, for the chemist to gain a sense of understanding, the theory of protein sec-

ondary structure may have to be rooted in the ‘qualitative orbital thinking’ [23,24] and the

perturbational molecular orbital (PMO) theory which is uniquely equipped to support that

way of thinking [7,25].

In this study, we attempt to construct such a theory. In a departure from the reigning para-

digm, we take into account the variation in electronic configuration of the peptide bonds and

the concomitant variation in the conformational and H-bonding propensity of the polypeptide

backbone. The classical theory of protein structure was born half a century ago out of recogni-

tion of the steric and electrostatic constraints imposed by the peptide amide bonds on the

internal rotation of the polypeptide chains [26,27]. The peptide linkages themselves, however,

are in this theory assumed to be chemically equivalent and any differences in their geometry

and bonding are disregarded. In contrast, we argue that the electronic configuration of the

peptide amide bonds, and therefore the distribution of backbone density, does vary in the

sequence and medium-dependent manner. This variation alters the balance between the back-

bone-backbone H-bonding and the polylactide-like backbone conjugation and thus underlies

the diversity of conformational behaviour of the polypeptide chains.

The relationship between the electronic configuration of the peptide amide bonds and the

torsional potential of the protein backbone was first considered in the context of modelling the
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relay of chiral information via the π-conjugated systems [16]. Subsequently, a theory was pro-

posed linking the secondary structure propensities of the Ala congeners (the Ala� amino

acids) to the inductive and resonance effects of the side chains and the stereoelectronic effects

[28–31]; the sense and relative importance of these effects was assumed to depend on the loca-

tion of the peptide amide bonds along the amide rehybridization/polarization path [32]. To

explore the theory’s implications, a quantum-mechanical investigation of the single-site substi-

tutions Ala!Lac (Lac�L-lactic acid) was carried out [33].

We now return to the basic ideas espoused in these earlier studies, taking again advantage

of the quantum-mechanical modelling of protein structure. However, we do not try to develop

an ab initio or DFT simulation of folding—even if successful ‘such an approach would enable

one to mimic nature but not necessarily understand her’ [34]. The PMO theory which under-

lies qualitative models of organic structure and reactivity, suggests the alternative approach:

‘The PMO treatment is concerned with differences in the properties of structurally related

molecules, rather than the absolute values of the quantities relating to the individual molecules.

Actually, by an appropriate choice of the reference system it will prove possible to obtain the

information we require directly, in a very simple and straightforward manner which preserves

a close understanding of the chemistry involved’ [35]. Following this protocol, we derive here

a theory of encoding the 3D structure of proteins that attempts to address the origin of second-

ary structure and the mechanism of assembly of its elements into tertiary structure. This effort

takes into account a wide range of phenomena such as divergent folding of highly homologous

proteins and convergent folding of non-homologous proteins, metamorphic equilibria of lym-

photactin, mitotic spindle protein Mad2 and E. coli virulence regulator RfaH, pH-driven tran-

sitions of viral fusion proteins and membrane translocation domains, acid-induced unfolding

and fibrillization of transthyretin, synergistic folding of split inteins, and coupled folding and

binding of molecular recognition features [36–39].

To be truly comprehensive, however, a theory of folding ought to address misfolding, and

not just as a matter of the theory’s elegance. One ‘pressing puzzle’ that presently tests our

understanding of protein structure and folding is conformational behaviour of highly pleio-

morphic proteins such as Aβ and tau proteins believed to play key role in genesis of Alzhei-

mer’s disease, α-synuclein (αS) associated with Parkinson’s disease, or prion proteins (PrP)

playing central role in genesis of transmissible spongiform encephalopathies (TSEs). Polymeri-

zation of Aβ, tau, αS or PrP presents especially demanding challenge given the divergence of

aggregation pathways, broad diversity of aggregates’ morphology, and apparent ease of pro-

teins’ transitioning through the entire secondary and supersecondary structure manifold.

Therefore, to probe the explanatory and predictive power of our theory, we apply its tenets to

develop a model for nucleate polymerization of these proteins. The model aims to account for

the structural features of oligomers, non-fibrillar aggregates and fibrils—such as annular and

tubular aggregation of paranuclei or the symmetry of protofilament assembly, and for the

effects of incubation conditions, isoform length, point mutations, assembly modulators, sur-

face catalysis, lipid-raft composition etc. In particular, we are interested in the effects of chiral-

ity on the rate and morphology of Aβ fibril formation on the surfaces of R(S)-cysteine-

modified graphene oxide and self-assembled monolayers of R(S)-N-isobutyrylcysteine on gold

[40,41], the differences between Aβ aggregation on hydrophilic mica and hydrophobic graph-

ite [42], and the mechanism of Aβ fibril-surface catalysis of secondary nucleation [43]. Ulti-

mately, however, our goal is to develop structure-based insights into the complexity of brain

proteinopathies.

A PMO theory of protein secondary and tertiary structure
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Computational methods

Our choice of the reference system for the PMO theory-informed analysis is a simplified struc-

ture of the polypeptide backbone which can be converted into a complete protein chain by

‘switching on’ three standard perturbations [44]: (1) the geometry perturbation (by changing

conformation); (2) the atomic substitution/electronegativity perturbation (by plugging in the

side chains); and (3) the intermolecular perturbation (by embedding backbone chain in polar-

izing or depolarizing environment and allowing for the interactions with co-solutes, other pro-

tein chains, surfaces of biopolyelectrolytes etc.). The simplified backbone structure comprises

the (-Cα-NH-C (=O)-)n chain and the localized MOs of the peptide amide bonds and their

ligands. It is assumed that the sterically-allowed regions of the ψ/φ space are approximately

equivalent in terms of energy unless the stereoelectronic and electrostatic interactions are

introduced [27,45]. The relative importance of those interactions—which ones actually

occur—depends on electronic configuration of the peptide amide bonds which in turn

depends on electronic effects of the side chains (atomic substitution/electronegativity pertur-

bation) and on the mutual polarization of the protein and the medium (intermolecular pertur-

bation). Given that each interaction of the peptide amide bonds is maximized in a specific

region of the ψ/φ space (geometry perturbation), the amino acid sequence and the medium

may determine conformational and H-bonding propensity of the polypeptide backbone by

‘switching on’ and ‘switching off’ certain combinations of those interactions. To assess the

effects of these perturbations, we employ (i) ab initio and DFT studies of secondary structure

(geometry optimizations; NBO analysis of the donor-acceptor interactions of the localized nat-

ural bond orbitals using Weinhold’s ΔE(2) energies [12]—the BLW-ED energies [46] are lower

but the qualitative trends are expected to be the same; SCRF modeling of solvent effects; GIAO

calculations of the NMR shielding tensors σ(Cα)Xaa of Cα atoms), and (ii) qualitative concepts

of two theories of solutions: the Onsager theory of solute-solvent polarization [47] and the

Debye-Hückel theory of dilute solutions of strong electrolytes [48]. First, to assess the side

chains’ effect on the distribution of backbone density, the NMR shielding tensors σ(Cα)Xaa of

the Cα atoms were calculated using the models of helix and sheet structures in gas phase (the

effect of the medium is treated as a separate perturbation). Thus, two oligopeptides, N-acetyl

hexaglycyl N-methylamide AcGGGGGGNHMe and N-acetyl pentaglycyl amide

AcGGGGGNH2, were initially optimized in the conformations corresponding to the hairpin

with the type Ib reverse turn, and 310-helix, respectively, at the B3LYP/D95�� level of the the-

ory. The protocol involved folding of the peptide chain into the starting conformer using the

standard φi and ψi values and subsequently an unconstrained optimization. The searches for

the minima were completed by the default convergence criteria of Gaussian 98, Revisions A.3,

A.7, A11.2 [49]. The sixth residue of the hexapeptide hairpin and the second residue of the

pentapeptide helix were then systematically varied to generate congener structures with the

canonical and covalently modified residues. The side chains were set into the conformations

trans and–gauche about the Cα-Cβ bond when needed, both in the neutral and ionized state

when appropriate, and a number of structures were partially constrained as noted in S1 Table.

Again, all the searches for the minima were completed by the default convergence criteria. The

calculations yielded the total of 141 AcGGGGGXaaNHMe and AcGXaaGGGNH2 structures.

Atomic coordinates of the obtained structures were used to compute the NMR shielding ten-

sors using the B3LYP/D95�� and GIAO (Gauge-Independent Atomic Orbital) methods (S1

Table). The mean values of the obtained shielding tensors of the Cα atoms were converted into

the folding constants σXaa as described in Results and Discussion. To assess the effect of geom-

etry perturbation on backbone conjugation and backbone-backbone H-bonding by examina-

tion of Weinhold energies ΔE(2) of the hyperconjugative interactions which differentiate the

A PMO theory of protein secondary and tertiary structure
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sterically-allowed regions of the Ramachandran map, the protocol described above was

employed to optimize five models of secondary structure 1–5 (B3LYP/6-31G�): the decapep-

tide AcAAAAAAAAANH2 1 in the 310-helix conformation, the pentadecapeptide AcAAAAAA
AAAAAAAANH2 2 in the α-helix conformation, the hexapeptide AcAAAAANHMe 3 in the

27-ribbon conformation, the ternary antiparallel complex of the tripeptide (AcAANHMe)3 4,

and the ternary parallel complex of the tripeptide (AcAANHMe)3 5. In addition, the binary

complexes of the oligopeptides (AcAAANHMe)2 6a-6d and (AcAAAAANHMe)2 7a-7b/8a-8c

were obtained by unconstrained optimization (as described above, at the B3LYP/6-31G� level

of the theory, completed by the default convergence criteria of Gaussian98). To assess the effect

of a polar dielectric on the distribution of backbone density in a globular protein molecule, the

model of TC5b: AcAAAAAAAAGGPAAGAPPPA-NH2 9, was obtained by the full unconstrained

optimization (HF/3-21G, gas phase) of the peptide chain placed in the conformation defined

by the φ/ψ angles reported for the NMR ensemble of TC5b [50]. The final gas-phase structure

9a was re-optimized in water taken as the continuous dielectric (HF/3-21G, the Onsager

model as implemented in the Gaussian suite with ε0 = 78.39 and the radius of the spherical sol-

vent cavity a0 = 8.43 Å) until the default convergence criteria were fully met again to obtain the

structure 9b. The Cartesian atomic coordinates and the total energies of all the secondary and

tertiary structure models (156 entries) are included in S1 Dataset.

Results and discussion

a. The PMO theory of the secondary and tertiary structure of proteins

(i) Electronic configuration of the peptide amide bonds and conformational and H-

bonding propensity of the polypeptide backbone. The question how the two-electron stabi-

lizing interactions relate to stability of protein structure can be addressed by considering how

backbone hyperconjugation and covalent contributions to backbone-backbone H-bonding

vary in the sterically allowed regions of the ψ/φ space, cf. Fig 1A. To maximize secondary

orbital overlap [10], backbone hyperconjugation involves primarily pairs of adjacent peptide

amide bonds where the ‘upstream’ i‒1/i bond is a donor and the ‘downstream’ i/i+1 bond is an

acceptor; the change in their mutual orientation, the ‘geometry perturbation’, changes the

nature and magnitude of the interaction. When the planes of these two bonds are approxi-

mately perpendicular, φi = −90˚±30˚, the fold ensures optimal orbital overlap for the

generalized anomeric effect [51,52] and the covalent contributions to the Ni� � �Ci = O and

Ci-1 = O� � �Ci = O interactions, see Fig 1B [17–20,33,53–58]; in contrast, orbital overlap for the

covalent contributions to backbone-backbone H-bonding is relatively poor [59]. When these

two peptide bonds are approximately coplanar, φi = −150˚±30˚, the situation is reversed. The

generalized anomeric effect and homohyperconjugation are diminished due to vanishing over-

lap and the significance of the alternative hyperconjugative stabilization is limited [21] while

the overlap for covalent contributions to backbone-backbone H-bonding is optimal [59]. The

estimated energies ΔE(2) of the corresponding donor-acceptor interactions in the secondary

structure models 1-5, cf. Computational Methods, are listed in S2 Appendix.

It follows that the peptide bonds which are good N lp donors and poor H-bond acceptors

should stabilize the φi = –90˚±30˚ fold while the peptide bonds which are poor N lp donors

and good H-bond acceptors should stabilize the φi = −150˚±30˚ fold. To refine this picture we

take into account computational and experimental evidence of wide variation in electronic

configuration of the amide bonds in carboxamides, lactams, oligopeptides and proteins

[7,32,60–63]. According to this evidence, one can describe bonding of peptide linkages in

terms of varying contributions of the five resonance structures I-V, see Fig 1C. The shift

I!II!III!IV!V has the following consequences for the ψ/φ space preferences:

A PMO theory of protein secondary and tertiary structure
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(1) The structure I contributes to the configuration of the least-polarized bonds which dis-

play positive rC = O vs. rC-N correlations [32], are relatively poor acceptors of H-bonds, form

largely ionic backbone-backbone H-bonds [64,65], and are good π/resonance N lp donors; it

is compatible with the PPII helix where backbone-backbone H-bonding is absent as well as the

φi = 180˚±30˚/ψi = 180˚±30˚ fold cf. Fig 1B(d) which is stabilized by the extended N lp hyper-

conjugation [21]. The least polarized backbone segment is therefore expected to exist as a sta-

tistical random coil unless molecular embedding turns it into an extended strand (the C5
�

strand) or a helix (PPII-helix or the α�-helix).

(2) The structure II contributes to the configuration of the moderately-polarized bonds

which are still relatively poor acceptors of H-bonds but good N lp donors. This configuration

is compatible with the 27-ribbon (the C7eq strand) since the φi = –90˚±30˚/ψi = 90˚±30˚ fold is

Fig 1. Electronic configuration of the peptide amide bonds and conformational and H-bonding

propensity of the polypeptide backbone. (A) The dependence of interactions of the adjacent peptide

amide bonds on location in theψ/φ space of the polypeptide backbone (the diagram is adapted from the ref.

[45]). The variation in φi changes mutual orientation of the peptide bonds: the bond planes are approximately

perpendicular to each other in the helical region 1 (φi = −90˚±30˚) and approximately coplanar in the extended

strand region 2 (φi = −150˚±30˚). The variation inψi changes the extent of backbone H-bonding in the helical

sub regions 1a–1c. (B) Two-electron stabilizing interactions of the peptide amide bonds, depicted using the

canonical amide MO’s: (a) the generalized anomeric effect π2(Ni–C’i-1 = O)!σ*(Cα
i–C’i) which is maximized

when the Cα
i–C’i bond, the best hyperconjugative σ acceptor at Cα

i, overlaps the Ni lp that is in the entire

helical region 1 (φi = −90˚±30˚), and homohyperconjugation n(C’i-1 = O)!π3*(Ni+1–C’i = O) maximized in

the α-helix region 1a (ψi = –30˚±30˚); (b) homohyperconjugationπ2(Ni–C’i-1 = O)!π3*(Ni+1–C’i = O),

maximized in the 27-ribbon (C7eq and C7ax) region 1b (ψi = 90˚±30˚); (c) homohyperconjugation n(C’i-1 = O)!

π3*(Ni+1–C’i = O) and n(C’i = O)!π3*(Ni–C’i-1 = O), maximized in the PPII-helix region 1c (ψi = 150˚±30˚); (d)

the extended (double) hyperconjugation π2(Ni–C’i-1 = O)!π(Cα
iRR’)!π3*(Ni+1–C’i = O) maximized in the C5

region 2 (φi = –150˚±30˚). (C) Modern resonance model of the amide bonding and the dependence of

conformational and H-bonding propensity of the polypeptide backbone on electronic configuration of the

peptide amide bonds, see the text section a.(i).

https://doi.org/10.1371/journal.pone.0180905.g001
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stabilized by the generalized anomeric effect as well as the homohyperconjugation, cf. Fig 1B

(a) and 1B(b), and by the relatively effective backbone-backbone H-bonding. Thus, the moder-

ately-polarized segments (largely II) can form β-sheets via assembly of the C7eq strands as

reported in Fig 2.

(3) The structure III contributes to the configuration of the polarized bonds which are still

good N lp donors and already good H-bond acceptors while being good C’ σ and π acceptors

as well. Thus, this configuration is unique in ensuring that the three major interactions which

stabilize the α-helix are sufficiently strong at the same time (the general anomeric effect and

Fig 2. Conformational diversity in the binary complexes of extended oligopeptide strands.

The geometries and energies obtained by quantum-mechanical modeling of the two-stranded β-sheets 6–8

(Computational Methods). The individual strands in these complexes optimize either to the C5 or the C7eq (27-

ribbon) geometries, and their conformations are same in the antiparallel complexes (C5"C5# or C7eq"C7eq#)

and mixed in the parallel complexes (C7eq"C5"); the antiparallel complexes with mixed strand conformations

(C7eq"C5#) are unstable in unconstrained optimizations. (A) The antiparallel complexes of the tetrapeptides

(AcNH-Ala3-NH2)2 displaying the edge-to-edge topoisomerism: the assembly creates either two or one large

H-bonded (HB) ring. 1a: the C5"C5# complex with two large HB rings; 1b: the C7eq"C7eq# complex with one

large HB ring; 1c: the C5#C5" complex with one large HB ring; 1d: the C7eq#C7eq" complex with two large HB

rings. (B) The parallel complexes of the hexapeptides (AcNH-Ala5-NH2)2 displaying the edge-to-edge

topoisomerism: here all the H-bonded rings are equivalent but complex formation involves the edges with

either two or three intrachain H-bonds. 2a: the C7eq#C5# complex involving the edges with two intrachain H-

bonds; 2b: the C5#C7eq# complex involving the edges with three intrachain H-bonds. The large difference in

the energy of the edge-to-edge topoisomers is not observed in the case of the binary complexes of the

oligopeptides with the odd number of the peptide bonds. (C) The relative energies of the 3a: C5#C5", 3b(�2a):

C7eq#C5#, and 3c: C7eq"C7eq# complexes of the hexapeptides (AcNH-Ala5-NH2)2. (D) The segments

comprising two consecutive strands form stable β-hairpins (antiparallel assembly) when the two strands are

either (a) both highly polarized (C5"C5#) or (b) both moderately polarized (C7eq"C7eq#) (color-coding as in Fig

1). In contrast, when one strand is highly polarized and the other is moderately polarized, these segments are

expected to form (c) β-solenoid coils (parallel assembly, C7eq"C5") or (d) unstable β-hairpins (antiparallel

assembly C7eq"C5#) which are prone to convert into β-arches; similarly (e) when one strand is highly polarized

and the other is least-polarized (the configuration described by a large contribution of the structure I, Fig 1C),

the segment may form a hairpin (C5"C5*#) which is also prone to convert into β-arch.

https://doi.org/10.1371/journal.pone.0180905.g002
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homohyperconjugation, Fig 1B(a), and the backbone-backbone C = O� � �H−N bonding). The

polarized segments (largely III) are therefore expected to form α-helices.

(4) The structures IV and V contribute to the configuration of the highly- and most-

polarized bonds which display negative rC = O vs. rC-N correlations [32], are good acceptors

and donors of H-bonds and form largely covalent H-bonds (including the backbone-

backbone C = O� � �H−C bonding [66,67]), but are poor π donors in the hyperconjugative

interactions of N. Thus, the highly-polarized backbone segments will stabilize the

φi = –150˚±30˚/ψi = 150˚±30˚ fold i.e. the C5 strands which readily assemble into β-sheets as

reported in Fig 2. However, the most-polarized segments may also stabilize the PPII-helix and

turn folds, vide infra, via the homohyperconjugation cf. Fig 1B(a) and 1B(c), and thereby desta-

bilize the C5 strands.

This analysis implies that the contribution of the energy of two-electron stabilizing interac-
tions (ΔE(2)stabilization [12]) to ΔGcoil!helix has one minimum with respect to charge polariza-
tion of the polypeptide backbone while the contribution to ΔGcoil!sheet has two such minima.

Assuming that the ΔE(2) contributions are significant, one expects ΔGcoil!helix and ΔGcoil!sheet

to be quadratic and quartic functions, respectively, of backbone polarization.

According to the data for the models of β structure 6-8 in Fig 2, the preferred mode of

assembly of the two-stranded β-sheets may also depend on charge polarization of the main

chain. The antiperiplanar assembly should be stabilized when two strands are either both

highly polarized, C5"C5#, or both moderately polarized, C7eq"C7eq# (backbone-polarization

‘symmetry’); the parallel assembly should be stabilized when one strand is highly polarized and

the other is moderately polarized, C5#C7eq# (backbone-polarization ‘asymmetry’). This model

implies that the segments comprising two consecutive strands form stable β-hairpins (antipar-

allel assembly) when the two strands are either both highly polarized (C5"C5#), Fig 2D(a), or

both moderately polarized (C7eq"C7eq#), Fig 2D(b). In contrast, when one strand is highly

polarized and the other is moderately polarized, these segments are expected to form β-sole-

noid coils (parallel assembly, C5"C7eq"), Fig 2D(c), or unstable β-hairpins (antiparallel assem-

bly C5"C7eq#) which may convert into β-arches, Fig 2D(d). Lastly, when one strand is highly

polarized and the other is least-polarized, the segment may form a hairpin (C5"C5
�#, see

Fig 1C) also prone to convert into β-arch, Fig 2D(e). Thus, in addition to β turns, β bulges, β
arcs and small H-bonded rings [68], it is the number, spacing and sequence of the C5, C5

�and

C7eq segments that may direct the polypeptide chains to fold into β structure of specific chiral-

ity and topology such as β meanders, up-and-down β barrels, Greek-key motifs and β-roll bar-

rels, β sandwiches, β solenoids or β arcades.

This analysis also suggests that the contribution of the energy of two-electron stabilizing

interactions to ΔGcoil!turn correlates with the change in charge polarization along the polypep-

tide backbone. The juxtaposition of the polarizing and depolarizing residues maximizes the

Ci-1 = O� � �Ci = O and Ci = O� � �Ci-1 = O interactions (the homohyperconjugation), Fig 1B(a)

and 1B(c). Consequently, a steep decrease in charge polarization along a short segment of the

polypeptide backbone is expected to stabilize the elements of secondary structure where such

interactions are likely to play a role: the 310- and PPII-helices as well as β turns, αRαL strands,

classic β bulges, and β spirals i.e. collagen and elastin among others. The large change in back-

bone polarization can be achieved either by introduction of the least-polarized segment (with

a large contribution of the structure I) or by introduction of the most polarized segment (with

a large contribution of the structure V). Thus, β turns are expected to have two distinct elec-

tronic markers similarly to β strands.

(ii) Primary sequence and the intrinsic pattern of polarization of the peptide amide

bonds: Folding potential FP of the polypeptide backbone. The intrinsic pattern of charge

polarization of the polypeptide backbone of a given protein is determined by the primary
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sequence as a result of the steric, field/inductive, and resonance effects of the side chains oper-

ating in the immediate vicinity of the Cα atoms—the ‘atomic substitution/ electronegativity

perturbation’. The NMR shielding tensors σ(Cα)Xaa of the Cα atoms, calculated using the hair-

pin with the type Ib reverse turn and the 310-helix as the models (the L-amino acid series, 141

entries in S1 Table) at the B3LYP/D95�� level of the theory (see the Computational Methods),

are taken as a measure of the cumulative effect of these interactions on the distribution of

backbone density. The folding constants σXaa, listed in Table 1, are derived from the linear nor-

malization of the σ(Cα)Xaa tensor values to the scale where the σPro constant for proline is –1

and the σGly constant for glycine is 1. The amino acid residues can thus be said to be polarizing

when σXaa<0 and depolarizing when σXaa>0; note that the polarizing effect depends on the

ionization state of the side chains i.e. on the polarity and pH of the medium.

Using the folding constants σXaa, we quantify the relationship between the side chains’ effect

and the conformational and H-bonding propensity of the polypeptide backbone by the magni-

tude and the slope of the folding potential FP. The folding potential at the residue i, FPi, is

defined as the averaged sum of the mean μi and standard deviation σi of the constants σXaa

within the three-(i–1, i, i+1) and five-(i–2, i–1, i, i+1, i+2)-residue windows, Eq. (1). The fold-

ing constants σXaa are averaged over two windows of different width to account for the neigh-

bouring residue effect, and the standard deviation terms are added to account for the effect of

juxtaposing the polarizing and depolarizing residues (the weight of the μi and σi terms is arbi-

trary at this point): FPi = ½[μi(σXaa
j; j = i–1, i, i+1)+σi(σXaa

j; j = i–1, i, i+1)+μi(σXaa
j; j = i–2, i–1,

i, i+1, i+2)+σi(σXaa
j; j = i–2, i–1, i, i+1, i+2)] (1).

The slope of the folding potential at the residue i, ΔFPi-1!i+1, is approximated by the differ-

ence of the folding potential at the residues i−1 and i+1: ΔFPi-1!i+1 = FPi+1 –FPi-1 (2). This def-

initions imply that proteins may tolerate the ‘inverted’ sequences [69].

Table 1. Folding constants σXaa of the canonical amino acids:a,b.

Xaa σXaa Xaa σXaa

A 0.1898 K −0.0772

C −0.4989 L −0.0441

C[SMe] −0.0403 M −0.2143

D 0.1293 N 0.0296

D- −0.1087 P −1

E 0.1889 Q −0.2485

E- −0.4847 R 0.1683

F −0.4289 S −0.4700

G 1 T −0.9066

H −0.2917 V −0.7703

H+ 0.2584 W −0.2704

I −0.7647 Y −0.3981

a Each tensor σ(Cα) is the average of the values obtained with two models of secondary structure, a hairpin

(AcGGGGXGNHMe/Ib) and a helix (AcGXGGGNH2/310), at the GIAO//B3LYP/D95** level of the theory.

The mean values for the trans and –gauche conformers of the side chain about the Cα-Cβ bond are taken

when appropriate.
b The σXaa constants for some covalently modified amino acids are: Ser Oγ-PO3

-2 –1.1584, Met S (=O)2 –

0.1101, Lys Nξ-COCH3 –0.2518, Val Cβ-CH3 –0.9993, Ala Cβ-F3 –0.4258, Phe -F5 –0.0829, Leu Cδ-F3/Cδ-F3

0.0049, Ala Cβ-CF3 0.2713, Ala Cβ-n-CH2CH2CH3 –0.2014, Thr Cβ-NγH2 –0.8477, Gly Cα-C�N 0.8893, Gly

Cα-C�NO 0.8500, Gly Cα-C�CH 0.6828.

σXaa = {[σ(Cα)Xaa(trans) + σ(Cα)Xaa(–gauche)] – [σ(Cα)Gly + σ(Cα)Pro]} / [σ(Cα)Gly – σ(Cα)Pro].

https://doi.org/10.1371/journal.pone.0180905.t001
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As shown in Fig 3, the folding constants σXaa account for a significant fraction of variation

in the averaged distances of backbone-backbone C = O� � �H−N bonds in the AcNHG(Xaa)

GGGNH2 310-helices (calculated at the B3LYP/D95�� level of the theory, cf. Computational

Methods). The correlation confirms that the σXaa constants, and hence the folding potential

FPi, provide a measure of the intrinsic pattern of backbone polarization of a given protein.

The examples of the FPi plots for the small soluble domains in Fig 4 suggest that the

sequences which support spontaneous formation of the archetypal elements of secondary

structure are marked by the specific values of the folding potential and the specific patterns of

its slope. For instance, for the solvent-exposed α-helices, the ΔGcoil!helix minimum seems to

occur in the range 0< FPi<0.3.

The expected ΔFPi-1!i+1 patterns for the archetypal ‘helix’, ‘strand’ and ‘turn’, and the cor-

responding FPi vs. ΔFPi-1!i+1 plots are shown in Fig 5, along with the illustrative examples of

such plots obtained for the autonomously folding models of β structure [71–75]. As discussed

earlier, the archetypal ‘strand’ and ‘turn’ elements have each two avatars: (i) the ‘C5 strand’

(highly-polarized segment, cf. structure IV in Fig 1) and the ‘C7eq strand’ (moderately-polar-

ized segment, cf. structure II in Fig 1, see also Fig 2), and (ii) the ‘ FPi>>0 turn’ (least-polar-

ized segment, cf. structure I in Fig 1) and the ‘ FPi<<0 turn’ (most-polarized segment, cf.

structure V in Fig 1). Since the optimal FPi values for each secondary structure element depend

on the medium’s capacity to polarize the protein, vide infra, the ordinates of the characteristic

clusters in Fig 5 will change with the environment, including microenvironment of molecular

embedding.

(iii) Polarization of the polypeptide backbone by the medium: Folding basin’s gradient

of permittivity and organization of tertiary structure. In addition to the side chains’

impact, electronic configuration of the polypeptide backbone is affected by the mutual polari-

zation of the protein and its environment—the ‘intermolecular perturbation’ [47]. The mutual

Fig 3. Folding constants σXaa and the energy of backbone-backbone H-bonding. The calculated average backbone-

backbone H-bond distance in the 310-helices AcNHG(Xaa)GGGNH2 (shown in the right hand panel, calculated at the

B3LYP/D95** level of the theory, cf. Computational Methods) vs. the folding constants σXaa for all except the ionized Xaa

residues listed in Table 1.

https://doi.org/10.1371/journal.pone.0180905.g003
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Fig 4. FPi plots for small all-α and all-β soluble proteins. The folding potential at the residue i (FPi,

calculated from Eq. (1)), is plotted (Y-axis) against the residue number i (X-axis). The multiple alignments are

taken from the SMART database (smart.embl-heidelberg.de) and the reference below. Note the characteristic

FPi profiles of the secondary structure elements and the variation in average FPi values of those elements,

FPi (α) or FPi (β): (A) VHP (villin headpiece) domain, accession SM00153; (B) WW domain, accession #

A PMO theory of protein secondary and tertiary structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0180905 September 18, 2017 11 / 71

https://doi.org/10.1371/journal.pone.0180905


polarization with a continuous dielectric engages peptide bond dipoles as well as molecular

electric moments e.g. the helix macrodipole. The interaction results, among others, in the

change in the free energy barrier to internal rotation about the amide C-N bond; this change

was shown to correlate with the dielectric constant function (ε−1)/(2ε+1) [76]. This correla-

tion implies that the helix or cross-β arrays of H-bonded peptide linkages become more polar-

ized upon the transfer from a non-polar to a polar medium, and our ab initio study of the

model of TC5b mini-protein [50] supports this conclusion, see Fig 6 and the Computational

Methods.

Thus, the polarization of those H-bonded networks is expected to increase with the increase

in relative permittivity of the surrounding medium in the order: gas phase, lipid matrix of the

phospholipid bilayer, the interior of a globular protein or DNA duplex [77,78], the interface of

a phospholipid bilayer, a micellar interface, nematic phase of unspun silk, ‘Teflon-coating’ of

the polypeptide chain in dilute water/(TFE or HFIP) solutions [79], the ~4 M in KCl cytosol of

extreme halophilic Archea [80], and the cytosol or blood serum under the standard physiologi-

cal conditions. The screening effect of the medium on the coulombic contribution to back-

bone-backbone H-bonding may be important in the case of the least-polarized backbone

segments that are akin to the low-MW secondary amides in terms of electronic structure. Both

experimental and computational evidence suggest that the enthalpy of H-bonding between

such amides goes nearly to zero in water [64,65]. However, covalent contribution to H-bond-

ing cannot be neglected even in the case of the water dimer in liquid water [81]. It seems rea-

sonable to expect that the screening effect is negligible in the case of largely covalent

backbone-backbone H-bonding of the polarized peptide bonds [12].

It follows that the secondary structure propensity is a function of both the intrinsic pattern

of main-chain polarization, defined here by the folding potential FPi, and the capacity of the

environment to polarize the polypeptide backbone. The expected trend is shown in Fig 7: as

the polarizing capacity of the environment increases on going from vacuum and lipids to aque-

ous buffers and cross-β structure, the values of FPi which are optimal for the stability of a given

element of secondary structure become more positive. For instance, the free energy

ΔGcoil!helix has one minimum with respect to the folding potential, cf. the FPi region color-

coded red in the diagram. It is expected that a negative value of FPi is required to ensure helix

stability in nonpolar environments, Fig 7(a) and 7(b), and that upon the transfer to an aqueous

medium the position of the ΔGcoil!helix minimum shifts to a positive value of FPi, Fig 7(c).

We propose that the tendency to maintain congruity of the folding potential, medium and

secondary structure drives the organization of the tertiary structure. Upon the collapse of the

polypeptide chain or its segment into a compact conformation, the emerging shell!core

depression or elevation of dielectric permittivity generates the folding basin FB. The position of

an element of secondary structure within the folding basin, i.e. either in the interior or on the

surface of the compact structure, depends on the deviation of its folding potential from the

optimal ‘helix’ or ‘strand’ value. For instance, in the aqueous buffers, the helix with the more

negative than optimal folding potential, e.g. incorporating the ‘C5 strand’ segment, will be sta-

bilized when it is buried in the compact structure’s interior which has lower relative permittiv-

ity than the bulk of the solvent (the folding basin is a depression of relative permittivity with

respect to the aqueous buffer). On the other hand, the helix with the more positive than optimal

folding potential, e.g. incorporating the ‘ FPi>>0 turn’ or ‘C7eq strand’ segment, will anchor

SM00456: (a) FPi (β1) > 0; (b) FPi (β1) < 0; (C) HOX (homeobox) domain: (a) FPi (α1) > 0; (b) FPi (α1) < 0

[70]; (D) Tudor domain, accession SM00333: (a) FPi (β1) > 0; (b) FPi (β1) < 0. The helical and extended

segments of the protein chain are shaded red, and yellow or light yellow, respectively.

https://doi.org/10.1371/journal.pone.0180905.g004
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Fig 5. FPi as a probe of the three-dimensional structure of proteins. (A) The patterns in the plots of

ΔFPi-1!i+1 (Eq. 2) vs. the residue number, characteristic of the archetypal ‘helix’, ‘strand’ and ‘turn’. (B)

Characteristic clusters of the data sets in the plots of FPi vs. the ‘slope’ of FPi, ΔFPi-1!i+1, which correspond to

the three archetypal elements of the secondary structure: e.g. the presence of the archetypal ‘helix’ will be

marked by a compact cluster of data sets in the center of the plot. The ordinate of this cluster will vary since

the optimal FPi value for ‘helix’ depends on the medium’s capacity to polarize the protein, vide infra. Note that

‘strand’ and ‘turn’ have each two avatars: (i) ‘C5 strand’ and ‘C7eq strand’, and (ii) ‘ FPi>>0 turn’ (defined here
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the structure in the matrix of the ionic atmosphere, vide infra. In the lipid environment, the

folding basin is an elevation of relative permittivity: the surface!core gradient of relative per-

mittivity associated with the compact structure of a transmembrane protein is opposite to that

associated with the soluble globules. Here the helix incorporating the ‘C5 strand’ segment will

be stable when it is exposed to the lipid bilayer while the helix incorporating the ‘ FPi>>0

turn’ segment will be stabilized when it is buried, e.g. by oligomerization. In this view, globular

fold of a soluble protein develops to bury backbone segment whose folding potential FPi is

fine-tuned to make a well-structured fold unstable in solvent but stable in a less polar environ-

ment of protein interior; architecture and stabilization of tertiary structure are brought about

by selective destabilization of secondary structure.

(iv) The effects of charge separation in the medium: Folding template and bounds of

tertiary structure. The effect of mutual polarization of the protein and its environment also

depends on the intrinsic charge separation in the medium which may act as the folding tem-
plate FT . The phospholipid bilayer can be thought of as such a folding template but beyond

the obvious effect of low-permittivity environment of the lipid matrix it is not clear how its

complex structural and physicochemical features would affect polarization of the polypeptide

backbone. On the other hand, charge separation in the medium of cytosol or blood serum etc.,

i.e. in the 1:1 electrolytes (e.g. KCl, NaCl) under the standard physiological conditions, is better

understood [82]. Here, the function of the folding template may be performed by the transient

quasi cubic lattice of ionic atmosphere with the constant of 7 Å, the length that the Bjerrum

distance and the Debye radius converge to in such solutions. The notion that the crystal-like

lattice persists in dilute salt solutions was introduced by Gosh a century ago to explain nonide-

ality of such solutions [83,84]. and was later refined by Debye and Hückel (see S1 Appendix)

[48], hence the said lattice is here referred to as the Ghosh-Debye-Hückel matrix. The protein/

electrolyte system is stabilized when the key surface charges are placed in the vertices of this

ionic matrix; two charges ei and ej ought to be separated by the distance [(7Δxij)
2+(7Δyij)

2+

(7Δzij)
2]1/2 (Å) to fit into the lattice, where Δxij, Δyij, Δzij are whole numbers and the sum |Δxij|

+|Δyij|+|Δzij| is odd if the ei, ej signs are opposite, and even if the ei, ej signs are same, see Fig 8.

The key surface charges may be the charges carried either by the ends of helices and cross-β
arrays of the H-bonded peptide bonds (capped by helix turns, reverse turns or β bulges), or by

the side chains (E–, K, R). Note the corollary inference that soluble globular proteins and their

environment may have evolved to take advantage of nonideality of dilute 1:1 electrolyte

as the three- or five-residue segment that incorporates Gly in the centre) and ‘ FPi<<0 turn’. (C) The presence

of the archetypal antiparallel ‘sheet’ would be marked by a circular distribution of data sets that combines the

‘C5 strand’/‘turn’ or ‘C7eq strand’/‘turn’ clusters while the presence of the parallel ‘sheet’ would be marked by a

combination of the ‘C5 strand’ and ‘C7eq strand’ clusters, cf. Fig 2. This is illustrated by examples of de novo

designed three-stranded antiparallel β-sheets (three-stranded βmeanders), two- and three-stranded parallel

β-sheets, and two-stranded parallel β-sheets embedded in left-handed coils from the C-terminal domains of

the penicillin binding protein PBP2x from Streptococcus pneumoniae, PDB ID 1k25: (a) KGEWTFVNGKYTV
SINGKKITVSI, ~50% in β structure, H2O, pH 3, 25˚C (C5"C5#C5"-meander) [71]; (b) TWIQNGSTKWYQN
GSTKIYT, 20–30% in β structure, H2O, pH 3.25, 10˚C (C5"C5#C5"-meander) [72]; (c) RGWSLQNGKYTL
NGKTMEGR, ~35% in β structure, 10%D2O/H2O or D2O, pH 5, 0–10˚C (C7eq"C7eq#C7eq"-meander) [73]; (d)

C5"C7eq"-parallel sheet, cf. the FPi plot. The C-termini of two strands are connected by the D-prolyl-

1,1-dimethyl-1,2-diaminoethane unit (diamine linker D-Pro-DADME), ~64% ‘folding-core’ residues (F5-V8 and

R11-L14) in β structure at 10˚C, 10%D2O/H2O, 100 mM sodium acetate buffer, pH 3.8 [74]; (e)

C7eq"C5"C7eq"-parallel sheet, cf. the FPi plot. The C-termini of strands 1 and 2 are connected by the diamine

D-Pro-DADME while the N-termini of strands 2 and 3 are connected by the diacid formed from (1R,2S)-

cyclohexanedicarboxylic acid (CHDA) and Gly, 4˚C, 10%D2O/H2O, 2.5 mM sodium [D3]acetate buffer, pH 3.8

[75]; (f) the C7eq strands from two C5"C7eq"-parallel sheets in the left-handed coils of PBP2x from

Streptococcus pneumoniae, PDB ID 1k25; (g) the C5 strands from two C5"C7eq"-parallel sheets in the left-

handed coils of PBP2x, PDB ID 1k25.

https://doi.org/10.1371/journal.pone.0180905.g005
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solutions. The hypothesis that “charged cytoplasmic macromolecules are stabilized electrostat-

ically by their ionic atmosphere” and that the geometrical dimensions of biopolyelectrolytes

and their polar functionalities may be related to the physiological ionic strength, was previ-

ously advanced in the context of modelling the organization of cytoplasm [86].

(v) Two-electron stabilizing interactions and the folding pathways of globular pro-

teins. Taken together, the results of our modelling studies and the inferences discussed above

suggest that the following factors define how an amino acid sequence ‘selects’ the backbone

fold: (1) the intrinsic pattern of backbone polarization imprinted by the side chains’ electronic

Fig 6. Effect of a polar dielectric on peptide bond polarization in a model of TC5b mini-protein. The

structure of the simplified model of TC5b, 9: AcAAAAAAAAGGPAAGAPPPA-NH2, obtained by full unconstrained

optimization (HF/3-21G, gas phase) of the peptide chain placed in the conformation defined by the φ andψ
angles reported for the NMR ensemble of TC5b; the final structure was re-optimized in water taken as a

continuous dielectric (the Onsager model as implemented in the Gaussian suite, cf. Computational Methods),

until the default convergence criteria were fully met again. The backbone torsion angles of the TC5b NMR

structure PDB ID 1l2y [50] and the ab initio structures 9a (in gas phase) and 9b (in a polar dielectric) are

compared in the table on the right-hand side of the panel. (B) Dependence of charge polarization of the

secondary peptide bonds Δe (the difference (au) in H and O Mulliken populations of the m peptide bond [33])

on m—that is on bond location along the polypeptide chain in the models 9a and 9b of the mini-protein TC5b.

The immersion of the TC5b model in a polar solvent results in the increase in Δe along the entire chain i.e. in a

considerable increase in charge polarization of the polypeptide backbone.

https://doi.org/10.1371/journal.pone.0180905.g006
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effects (FP), (2) the emerging shell!core elevation or depression of relative permittivity and

the placement and sequestration of side chains’ charges (FB), and (3) the constraints of an

ionic or lipoid matrix (FT). Each factor’s effect varies along the folding pathway in a manner

dependent on the contributions of the other factors, and each factor impacts the conformation

of the protein by controlling, directly or indirectly, electronic configuration and bonding inter-

actions of the peptide amide linkages. Thus, we propose that the pathway of folding of a globu-

lar protein comprises a sequence of conformational transitions driven by changes in the free

energy of the polypeptide backbone which, to a considerable degree, are determined by the

two-electron stabilizing interactions such as the generalized anomeric effect, homohypercon-

jugation of peptide linkages and covalent contributions to backbone-backbone H-bonding.

The well-studied folding of the small soluble helix-bundle domains presents a system which

seems to behave in this way: the ‘helix’ propensity of the domain, defined by the folding poten-

tial FPi, appears to have considerable impact on the folding rate constant kf
H2O, Fig 9 [87–100].

This is consistent with the transition state ensemble having an approximately native topology

but no fixed shell!core gradient of relative permittivity and no effective interaction with the

Fig 7. Folding potential, medium properties and secondary structure preferences of the polypeptide backbone.

(a) The FPi values that ensure stability of the periodic secondary structure in a non-polar environment such as the lipid

matrix of the bilayer membrane or vacuum: the optimal FPi range for the α-helix’ is –0.6-–0.3 (color-coding as in Fig 1) and

the optimal FPi ranges for β structure is <–0.6 (C5 strand) and –0.3–0 (C7eq strand). The less polarized segments are

malleable in a non-polar aprotic medium and may adopt helical (31-helix, PPII-helix, α*-helix) folds while the least polarized

segments of the polypeptide backbone, e.g. a sequence of consecutive ‘ FPi>>0 turns’ (Fig 5), may adopt the extended

(C5* strand) folds depending on molecular embedding. (b) The FPi values that ensure stability of the periodic secondary

structure in a moderately polarizing environment such as the bilayer membrane interface, the interior of a soluble protein

globule or the interior of the DNA duplex: the optimal FPi range for the α-helix’ is –0.3–0 and the optimal FPi ranges for β
structure is <–0.3 (C5 strand) and 0–0.3 (C7eq strand). (c) The FPi values that ensure stability of the periodic secondary

structure in a polar medium such as the physiological 1:1 electrolyte solution: the range of the optimal FPi values for the α-

helix is now 0–0.3 while the somewhat less and more polarized segments are likely to form β-sheets. The most polarized

segments are now likely to form ‘ FPi<<0 turns’ or PPII-helix. The sequence of consecutive ‘ FPi>>0 turns’ forms a random

coil in an aqueous buffer unless it is stabilized by molecular embedding in helical (31-helix, PPII-helix, α*-helix) or extended

(C5* strand) folds. (d) The FPi values that ensure stability of the periodic secondary structure in the hypothetical highly

polarizing environment such as the pre-organized ionic grid e.g. on the surface of a DNA or RNA strand (the sequence of

consecutive ‘ FPi>>0 turns’ is likely to form here an α*-helix), or the microenvironment of the extended β structure of β
solenoid or amyloid filament, vide infra.

https://doi.org/10.1371/journal.pone.0180905.g007
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transient lattice of the ionic atmosphere, so that the helices which incorporate the ‘strand’ and

‘turn’ segments are not fully stabilized in the transition state. Such a stabilization is eventually

achieved in the native state and the dependence of the free energy of folding ΔGU-F
H2O on

‘helix’ propensity is obscured.

b. Mechanism and principles of encoding the 3D structure of proteins:

Explanatory and predictive power of the PMO model

(i) Stability of secondary structure as quadratic or quartic function of the folding poten-

tial FP. To probe the dependence of the free energy ΔGcoil!helix and ΔGcoil!sheet on the elec-

tronic configuration of the polypeptide backbone, we examine a range of phenomena

including single-site mutagenesis, amide-ester substitution, amyloidogenic propensity, and

molecular recognition of PDZ domains. In Fig 10, thermodynamic secondary structure pro-

pensities [101–114] are plotted against the calculated tensors σ(Cα)Xaa (see the Computational

Methods); these plots are consistent with the expected quadratic and quartic dependence for

the α and β structure respectively.

In Fig 11, we test the average value of the FPi function, FPi , as a measure of the conforma-

tional and H-bonding propensity of a segment of the polypeptide chain. Several lines of evi-

dence confirm that the FPi values may indeed carry such information: (1) the plots of average

temperature factors Bi indicate one minimum of backbone mobility with respect to FPi in α-

helices, and two such minima in the strands of β structure, Fig 11A(a) and 11A(b) [115]; (2)

the Δ(ΔGf) data on the amide-to-ester substitutions suggest that the energy of backbone-back-

bone H-bonding in the β-sheet of Pin1 WW domain has two minima with respect to FPi at the

Fig 8. Folding potential, folding template and three-dimensional structure of soluble globular proteins. The insert

shows the plot of the folding potential FPi for the segment of the polypeptide backbone which has high helical propensity in

the aqueous environment: the 14-residue site which triggers coiled-coil formation in cortexillin I [85]. In the physiological 1:1

electrolyte solution, this segment is stabilized by the mutual polarization of the α-helix and the transient ionic matrix with the

lattice constant of 7 Å (the Ghosh-Debye-Hückel matrix, see the text and S1 Appendix). The effect of polarization is

maximized when the helix termini replace the corresponding salt ions in the vertices of the lattice which are separated by

the distances [(7Δxij)
2+(7Δyij)

2+(7Δzij)
2]1/2 (Å) where Δxij, Δyij, Δzij are whole numbers and the sum |Δxij|+|Δyij|+|Δzij| is odd.

Thus the ‘allowed’ α-helix is a vector whose length is defined by the |Δxij|,|Δyij|,|Δzij| combinations equal to: {1,0,0}/7 Å,

{1,1,1}/12 Å, {2,1,0}/15.6 Å etc. The length of the α-helix in the diagram is 21 Å which fulfils the above condition when the

helix fits into the matrix along the grid line (|Δxij|,|Δyij|,|Δzij| = {3,0,0}, |τmin| = 0˚), as shown here in both projections, or along

the diagonal of the 2×2 segment of 4 unit cells (|Δxij|,|Δyij|,|Δzij| = {2,2,1}, |τmin| = 48˚) (where |τmin| is the smallest vector/

grid-line angle).

https://doi.org/10.1371/journal.pone.0180905.g008
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site of substitution, Fig 11B [116,117]; and (3) amyloidogenic propensity of linear hexapeptides

appears to display two maxima with respect to the peptide FPi [118], Fig 11C.

The characterization of the conformational and H-bonding propensity of a segment of the

polypeptide backbone in terms of FPi may also be valid in more complex systems. The canoni-

cal binding of oligopeptides by the PDZ domains [119] involves extension of the domain’s β
structure: the oligopeptide is inserted into the binding pocket as the edge strand of the antipar-

allel β sheet. The plots of binding affinity ΔGb [120–123] against the average FPi value of the

peptide ligand, FPi (peptide), seem to confirm the expected quartic dependence of ΔGb with

respect to FPi , see Fig 12.

Lastly, the Δ(ΔGf) differences in stability of the large-to-small hydrophobic variants—used

to estimate the free energy of hydrophobic interactions [124], appear to stem in good part

from the changes in the conformational and H-bonding propensity of the main chain as well,

see Fig 13. The Xaa!Ala mutation (Xaa = F, I, L, M, T, V, W, Y) may destabilize the native

state by changing, among others, backbone’s folding potential FPi. The deleterious effect of

such a change is expected to be particularly significant when the mutation occurs in the region

of high congruence of the folding potential, environment and secondary structure, i.e. in the

well-ordered segment that anchors the fold. Thus, the difference Δ(ΔGf) in stability of the

Xaa!Ala hydrophobic variants should have one minimum with respect to FPi in α-helices but

two such minima in β-sheet strands. The available data seem to support this notion: the plots

Fig 9. Electronic configuration of the polypeptide backbone and rate of folding of helix-bundle

proteins. The folding rate constants ln kf (sec-1) vs. Nh/Nt (‘helix’- FPi fraction) where Nh is the number of

residues with the ‘helix’ FPi: 0±0.05–0.3±0.05, cf. Fig 7(c), and Nt is the total number of residues in the helix-

bundle domains, counted from the N-terminal residue of the first α-helix to the C-terminal residue of the last α-

helix as defined by the DSSP protocol implemented in the RCSB PDB database. The present set includes the

data for 16 small proteins with the natural, wild-type sequences and for 5 domains modified or engineered for

fast folding [87–100] Nt� ~80 aa, PDB ID’s: 1ayi, 1ba5, 1fex, 1imp, 1mbk, 1prb, 1ss1, 1st7, 1uzc, 1yrf, 2a3d,

2abd, 2jws, 2jwt, 2no8, 2wqg, 3kz3: ♦wild-type domains; ^ the domains modified/engineered for fast folding.

https://doi.org/10.1371/journal.pone.0180905.g009
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Fig 10. Electronic configuration of the polypeptide backbone and secondary structure propensity. (A)

Experimental α-helix propensities: (a) The averaged relative α-helix propensity data obtained in the site-

directed mutagenesis studies of both peptides and proteins, adjusted so that Δ(ΔGf) = 0 for Ala and Δ(ΔGf) = 1

for Gly [101–108], vs. the NMR shielding tensorsσ(Cα)Xaa (310-helix AcG(Xaa)GGGNH2; GIAO//B3LYP/

D95**, cf. Computational Methods and S1 Table): ♦ glycine and amino acids whose Cβ and Cγ are the methyl,

methylene or methine groups, r2 = 0.83;▲proline; ^ any other amino acids including three highly fluorinated

amino acids, r2 = 0.52 [107]; trendlines obtained by fitting 2nd order polynomial functions; (b) The Lifson-Roig

propagation free energies for the amino acids whose Cβ and Cγ are the methyl, methylene or methine groups,

in 88% methanol-water [109]; (c) The Lifson-Roig propagation free energies for the same set of amino acids in

40% (cyan) and 90% (navy) trifluoroethanol-water [109]. The propensities are determined at the sites in the

helices interior. (B) Experimental β-sheet propensities from site-directed mutagenesis (kcal mol-1, Δ(ΔGf) =

0 for Gly in (D) and Δ(ΔGf) = 0 for Ala in (E), (F) and (G)) vs. calculated NMR shielding tensorsσ(Cα)Xaa

(AcGGGGGXaaNHMe in β-hairpin (Ib turn); GIAO//B3LYP/D95**, cf. Computational Methods and S1 Table):

(a) zinc-finger β-hairpin, site 3, r2 = 0.89 (edge strand, the guest site is not H-bonded) [110]; (b) Ig binding B1

domain of streptococcal protein G, r2 = 0.83 (variant E42A/D46A/T53A, site 44, edge strand, the guest site is

H-bonded) [111]; (c) Ig binding B1 domain of streptococcal protein G, r2 = 0.84 (variant I6A/T44A/T51S/T55/

S, site 53, central strand) [112]; (d) Ig binding B1 domain of streptococcal protein G, r2 = 0.76 (I6A/T44A, site

53, central strand) [113,114]. Δ(ΔGf) for Pro in (b), (c) and (d) set at the minimum value of 3 kcal mol-1 [112];

trendlines obtained by fitting 4th order polynomial functions.

https://doi.org/10.1371/journal.pone.0180905.g010
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Fig 11. FPi as a measure of conformational and H-bonding propensity of the polypeptide backbone.

(A) FPi as a probe of backbone mobility: (a) The mean temperature factors Bi of the backbone N atoms in

α-helices vs. mean FPi of those helices, FPi (α), in the xylanase from Thermoascus auranticus, PDB ID 1i1wA

[115]. Helical residues are assigned according to the Swiss-PDBViewer: helix A 6–12, B 24–27, C 32–38, D

51-54, E 64–76, F 93–96, G 101–117, H 143–147, I 151–163, J 182–197, K 215–227, L 245–257, M 292-301;
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in Fig 13 show that Δ(ΔGf) has one minimum with respect to FPi at the mutation site in α-heli-

ces [87,125–128] (Fig 13A), and two such minima in β-sheets [125,129–131] (Fig 13B).

(ii) Stability of secondary structure as a function of environment: Continuous dielec-

tric. The plots of Lifson-Roig propagation free energies obtained in the 88%methanol-water

and 40% and 90% trifluoroethanol-water mixtures, Fig 10A(b) and 10(c), when compared to

the plots of α-helix propensities in water in Fig 10A(a), confirm that the expected shift of sec-

ondary structure propensity, cf. Fig 7, indeed takes place. These data are consistent with the

data for other nonpolar environments e.g. lipid micelles and vesicles [132], and the gas phase,

where Val and Ile are better helix-formers than Ala [133].

(iii) Stability of secondary structure as a function of microenvironment: Extended β
structure. Polarization of the polypeptide backbone, and therefore secondary structure pro-

pensity, will be affected by the interactions with charges and partial charges within molecular

embedding. Indeed, H-bonding interactions of the peptide amide bonds with ions e.g. within

the ‘capping’ motifs or within the pre-organized ionic grid/ionic atmosphere of the DNA

duplex surface [134,135], are expected to be highly polarizing. However, given the cooperativ-

ity of backbone-backbone H-bonding [136], the cross-β H-bonded arrays of extended β-struc-

ture elements, including asparagine and glutamine ladders, may also create a highly polarizing

environment; the extraordinary dielectric properties of low-MW secondary amides are attrib-

uted to the formation of such extended arrays in bulk liquids [137]. Investigations of the amide

I region in FTIR indicate that the microenvironment of amyloid fibrils does strengthen back-

bone H-bonding [138,139]; the maxima of amyloidogenic propensity, and especially the loca-

tion of the ‘helical’ region (the minimum) at the FPi (peptide) values between 0.25 and 0.50,

Fig 11C, suggest that the amyloid’s microenvironment is indeed highly polarizing, cf. Fig 7(d).

The canonical binding of oligopeptides by the PDZ domains [119] previously examined in

Fig 12, seems to be controlled by this effect. The data in Fig 12 are insufficient to fully define

the minima in all the plots of the binding affinity ΔGb vs. FPi (peptide) but the positions of the

ΔGb maximum are accurate enough to say that these maxima shift between the FPi (peptide)

values of ca. –0.25 and 0.25. We expect, cf. Fig 7, that the shift occurs because the binding

pockets of the PDZ domains differ in the capacity to polarize the peptide ligands; the correla-

tion of the FPi (peptide) values at the ΔGb maximum with the FPi of the PDZ cross-β structure,

see Fig 14 and S3 Appendix, validates this notion.

(iv) Stability of tertiary structure as a function of the folding potential FP and the fold-

ing basin FB. The architecture and stabilization of tertiary structure are brought about, we

(b) The mean temperature factors Bi of the backbone N atoms in β strands vs. mean FPiof those strands, FPi

(β). The strand residues are assigned according to the Swiss-PDBViewer and DSSP protocol implemented in

the RCSB PDB database: N 17–22, O 41–46, P 79–81, Q 124–127, R 132–134, S 138–140, T 168–173, U

202–206, V 208–210, W 232–236, X 239–242, Y 264–266, Z 279–281. The trendlines are obtained by fitting

2nd and 4th order polynomial functions. (B) FPi and the energy of backbone-backbone H-bonding. Δ(ΔGf)

vs. FPi for the single-site amide-to-ester X(i)ξ substitutions (Δ(ΔGf) = ΔGf,WT–ΔGf,X(i)ξ) in Pin1 WW domain.

The data shown for the mutants in which the perturbed amide donates, but does not accept, a hydrogen bond

(thermal, GdnHCl, pH 7.0; PDB ID 2kcf) [116,117]. The trendline is obtained by fitting 4th order polynomial

function. (C) FPi and the amyloid fibril-forming capacity of oligopeptides. The data for the total of 942

unique hexapeptide structures are taken from the WALTZ-DB database of amyloid forming peptides [118];

excluding the Pro-containing peptides, the sample comprises 240 amyloidogenic and 702 non-amyloidogenic

hexapeptides. The mean FPi of each hexapeptide, FPi (peptide), is defined as the mean of FPi of the two

central residues. The amyloid fibril-forming capacity of the hexapeptides with FPi within a specific 0.05 range

(–0.750±0.025 etc.) is defined as the frequency of the amyloidogenic peptides within this FPi range in the

entire amyloidogenic sample (240 entries), normalized by the frequency of both amyloidogenic and non-

amyloidogenic peptides within the same FPi range in the total hexapeptide sample (942 entries).

https://doi.org/10.1371/journal.pone.0180905.g011
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Fig 12. Electronic configuration of the polypeptide backbone and canonical peptide recognition by the PDZ domains.

Binding affinities ΔGb of the PDZ domains vs. mean FPi of the peptide ligands FPi (ΔGb in kcal mol-1, the width of the FPi averaging

window is given in the brackets). The data from S2 and S3 Tables in ref. [120] unless indicated otherwise, for 18 out of 33 PDZ

domains identified in the literature to bind at least a dozen or so peptides with Kd<100 μmol (no discernible dependence of ΔGb on

FPi in 3 cases, r2<0.25 in 11 cases, and in 1 case the fit depends on an outlier) [120–123]: (A) MAGI2 PDZ2, r2 = 0.52 (5); (B)

PTP-BL, r2 = 0.52 (5); (C) MAGI1 PDZ6, r2 = 0.32 (8); (D) Lin7C, r2 = 0.38 (8); (E) AF6, r2 = 0.42 (5) [121]; (F) SAP97 PDZ1,
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have proposed in section a.(iii), by selective destabilization of secondary structure that aims to

take advantage of the permittivity gradient of the protein’s folding basin FB. For instance, to

form a compact bundle of α-helices in an aqueous buffer, protein sequence ought to comprise

some backbone segments which have ‘helical’ ΔFPi-1!i+1 profiles and optimal ‘helical’ FPi val-

ues (0–0.3 in water, cf. Figs 5 and 7) and will fold into solvent-exposed helices. At the same

time, however, such a sequence also ought to incorporate backbone segments which have ‘heli-

cal’ ΔFPi-1!i+1 profiles but ‘non-helical’ depressed FPi values (�0, cf. Fig 7) and will fold into

helices only in a low-permittivity environment e.g. when they are buried in the protein inte-

rior. The presence of those ‘destabilized-helix’ segments is necessary to organize and stabilize

the tertiary structure of such a bundle.

Thus, as the complexity of the native fold and the order of oligomerization of soluble pro-

teins increase (the folding basin FB increases in size), backbone’s folding potential FP is

expected to become more negative so that the FPi averages for the major secondary structure

elements are expected to shift to lower values. In contrast, cf. section a.(iii) and Fig 7, in the

case of the integral membrane proteins, the FPi averages of those elements are expected to shift

to higher values as the complexity of structure and the size of the protein’s folding basin FB
increase. A survey of the representative soluble and membrane proteins seems to validate this

concept, see the FPi vs. ΔFPi-1!i+1 plots in Fig 15.

In principle, protein-ligand interaction may also be described in terms of reorganization of

the folding basin FB. The complex is likely to change backbone conformation and relative per-

mittivity of binding site’s environment, and the FPi s of the segments directly involved in the

binding may deviate from the optimal values to accommodate such change. The FPi variation

in chemokines, chromodomains, and bZIP proteins, is consistent with this notion, see Fig 16.

The chemokine and CHROMO domains have similar β1-β2-β3-α1 folds but the roles of the

N-terminal and C-terminal segments are reversed: chemokines use the helix to bind to GAGs

[140], while CHROMO domains use the β1-β2 hairpin to bind to N-Me3
+ Lys of histones

[141]. Accordingly, chemokines tend to have low-FPi helices which will be stabilized in a low-

permittivity environment and stable C5"C5# hairpins, Fig 16A(a), while chromodomains tend

to have stable solvent-exposed helices and low-FPi C7eq"C7eq# hairpins which will be stabilized

in a low-permittivity environment, Fig 16A(b).

The bZIP proteins are long helical dimers which bind to the major groove of DNA duplex:

the basic N-terminal segment interacts with DNA while the C-terminal leucine zipper domain

triggers formation of the coiled-coil structure [85] and stabilizes the dimer. The FPi plots for a

multiple alignment of bZIP proteins show how each function is related to a distinct FPi value,

see Fig 16B (the assignments based on Fig 7): (1) the N-terminal segment has the ‘C7eq strand’-

FPi i.e. the FPi of a helix that is stable in a highly polarizing environment rather than in water;

(2) the central segment has the ‘C5 strand’-FPi i.e. the FPi of a helix that is stable in a nonpolar

environment rather than in water and therefore drives the aggregation of the coiled coil; and

(3) the C-terminal segment has the ‘helix’-FPi i.e. it is expected to form a stable in water α-

helix which triggers formation of the coiled-coil structure [85].

(v) Stability of tertiary structure as a function of the folding template FT. As was

argued in section a.(iv), mutual polarization of the protein solute and the transient cubic lattice

r2 = 0.55 (8); (G) OMP25, r2 = 0.27 (8); (H) Scrb1 PDZ3, r2 = 0.31 (5); (I) PSD95 PDZ1, r2 = 0.77 (8); (J) Chapsyn110 PDZ2,

r2 = 0.60 (8); (K) MAGI3 PDZ1, r2 = 0.53 (8); (L) SAP102 PDZ2, r2 = 0.42 (8); (M) PSD95 PDZ2, r2 = 0.59 (8); (N) SAP97 PDZ2,

r2 = 0.53 (8); (O) Erbin, r2 = 0.40 (5) [121]; (P) TIAM1+TIAM2, r2 = 0.34 (5) [122]; (Q) γ-Syntrophin1, r2 = 0.42 (8); (R) RGS3,

r2 = 0.48 (5). The FPi regions associated with peptides’ propensities for the α-helix, C5 and C7eq folds are shaded red, yellow and

light yellow, respectively, cf. Fig 1; the regions shaded grey mark the putative ΔGb minima.

https://doi.org/10.1371/journal.pone.0180905.g012
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Fig 13. Electronic configuration of the polypeptide backbone and stability of large-to-small hydrophobic

variants. The figure presents the Δ(ΔGf) vs. FPi plots for the single-site Xaa(i)Ala mutations in helices and sheets (Δ
(ΔGf) = ΔGf,WT–ΔGf,Xaa(i)Ala, FPi = (FPi-1+ FPi + FPi+1); Xaa = F, I, L, M, T, V, W, Y). The ‘helix’ and ‘strand’ residues

are assigned based on the DSSP protocol implemented in the RCSB PDB database; the trendlines are obtained by

fitting polynomial functions [125–131]: (A) The Δ(ΔGf) data for the α-helices in: (a) staphylococcal nuclease (GdnHCl,

pH 7.0 [125], PDB ID 1nuc), villin headpiece subdomain (thermal, pH 7.0 [126], PDB ID 1yri, the data set of the
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of the ionic atmosphere in the physiological 1:1 electrolyte solution may stabilize the system if

the key surface charges of the protein replace the corresponding salt ions in the vertices of the

ionic matrix. For instance, in the case of globins, the protein/electrolyte system is likely to be

stabilized when the termini of the α-helices are placed in those vertices, while in the case of the

congeners of Borrelia spirochete antigen (outer surface protein A) the protein/electrolyte sys-

tem is likely to be stabilized when the alkyl ammonium ions of the lysine side chains replace

the salt cations in the vertices of the ionic matrix. The expected arrangement is indeed found,

highest FPi (shown) is not included in the calculation of the trendline), and acyl coenzyme A binding protein (GdnHCl,

pH 5.3 [87], PDB ID 2abd); (b) bacteriophage T4 lysozyme (thermal, pH 3.0 [127,128], PDB ID 2lzm, the complete

scattergram, including the four data sets of the highest FPi , is shown in the insert). (B) The Δ(ΔGf) data for the β-sheet

strands in: (a) fibronectin type III domains of human tenascin TNfn3 (3rd module, PDB ID 1ten) and fibronectin FNfn10

(10th module, PDB ID 1fnf) (thermal, urea, GdnHSCN, pH 5.0) [129,130]; (b) immunophilin FKBP12 (urea, pH 7.5

[131], PDB ID 2ppn, the data set of the highest FPi (shown) is not included in the calculation of the trendline); (c)

staphylococcal nuclease (GdnHCl, pH 7.0 [125], PDB ID 1nuc, the data set of the highest FPi (not shown) is not

included in the calculation of the trendline).

https://doi.org/10.1371/journal.pone.0180905.g013

Fig 14. Electronic configuration of the polypeptide backbone and canonical peptide recognition by the PDZ domains.

(A) Folding template FT and the 3D structure of the PDZ domains: the putative ‘key’ surface charges of the PDZ fold are the

termini of the α1 helix-[CO2
− loop] and the α2 helix arrays (!), and the cross-β arrays (»») capped by a reverse turn (G248 (C’ =

O)) and a bulge (T234 (C’ = O)/E235 (C’ = O)). The structure in the diagram is the second PDZ domain of syntenin, PDB ID 1r6j.

(B) The projected fit of the putative key surface charges δ+ and δ– into the Ghosh-Debye-Hückel matrix. (C) The predicted by

the folding-template model and the observed interatomic distances (Å) between the key surface charges δ+ and δ− (the average

distances to the T234 O/E235 O atoms in the bulge are used). (D) Two cross-β {β1-β6-β4-β3-β2} arrays of peptide bonds that

anchor the oligopeptide ligand via backbone-backbone H-bonds to N-H of the residue i = –2 and to C’ = O of the residue i = –4.

(E) The oligopeptide FPi values at the ΔGb maximum (determined from Fig 12 for the 14 entries with β sheet register confirmed

by the X-ray or NMR structure determination) plotted against FPi (PDZ/sheet) i.e. the average FPi values of the 15 residues

involved in the two cross-β arrays which are shown in the panel D. For a detailed account of the model of peptide recognition by

the PDZ domains see S3 Appendix.

https://doi.org/10.1371/journal.pone.0180905.g014
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Fig 15. Electronic configuration of the polypeptide backbone versus complexity of tertiary structure

and order of oligomerization in soluble and integral membrane proteins. The FPi vs. ΔFPi-1!i+1 plots, cf.

Fig 5, may characterize the relationship between distribution of backbone density and organization of globular

structure. For α-helices, narrow distribution of the folding potential values and the slope values, ΔFPi-1!i+1 ~0,

generates compact clusters of the data points. As the complexity of α structure increases and the exposure to
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see Fig 17 and S4 Appendix. The network of backbone-backbone H-bonding in PDZ domains

also appears to fit into this matrix, see Fig 14 and S3 Appendix.

(vi) Stability of tertiary structure and metamorphic equilibria: Refolding upon reorga-

nization of the folding basin FB. The preceding discussion implies in what circumstances

one amino acid sequence can support multiple folds. The ‘C5 strand’, ‘C7eq strand’ and ‘turn’

segments that are incorporated into the α-helices to organize and stabilize globular tertiary

structure or to ensure function-required mobility, may form bona fide elements of a stable β
structure. On the other hand, the ‘helix’ segments may form the ‘C7eq strands’ in a non-polar

environment or the ‘C5 strands’ in a highly polarizing environment. All such relatively short

segments would be identified as the chameleon sequences [142].

A much longer polypeptide chain can adopt more than one well-structured fold when a

molecule comprises ‘malleable’ backbone segments which (1) have ambiguous conformational

propensities (lack strong FPi bias), (2) are amenable to the polarizing/depolarizing effects of

the molecular embedding and the medium, and (3) are connected by a ‘hinge’ that controls

their mutual orientation. A change in the conformation of the ‘malleable’ segment may then

occur as a result of reorganization of the protein’s folding basin FB brought about by a change

in the conformation of the ‘hinge’. When these two conformational transitions are coupled,

the protein may exist in the metamorphic equilibrium [37]. The concept of the ‘hinge’-con-

trolled reorganization of the folding basin FB and the concomitant metamorphic equilibration

is illustrated in Fig 18.

In the first three cases [143–145], Fig 18A–18C, the common feature is the C-terminal seg-

ment which has ‘helical’ ΔFPi-1!i+1 profile but depressed FPi (�0) and may or may not be in

close contact with the N-terminal subdomain depending on the conformation of the preceding

the medium decreases, this clusters shift from FPi >0 to FPi <0 region in the case of soluble proteins, see the

panels in (A), and in the opposite direction, from FPi <0 to FPi >0 region in the case of integral membrane

proteins, see the panels in (B). The same trends are discernible in the FPi vs. ΔFPi-1!i+1 plots for the

antiparallel β sheets that assemble ‘C5 strands’ or ‘C7eq strands’ and ‘FPi>>0 turns’, panels (C) and (D),

even though large differences in the folding potential values and wide distribution of the slope values, from

ΔFPi-1!i+1 ~ –1 to ΔFPi-1!i+1 ~ 1, generate in this case circular distribution of data points. (A) (a) The

peripheral stalk helix of F0F1 ATP synthase from E. coli (b2 subunit in the top diagram in the right-hand panel),

UniProt # P0ABA0: residues A32-K122 (the hinge region, the dimerization region, and the C-terminal δ-

domain-binding region); (b) One of the two 160Å-long helices of colicin Ia (residues R351-K470) that span the

periplasmic space, linking the receptor-binding domain to the other domains, PDB ID 1cii; (c) The parallel α-

helical coiled coil cortexillin I, PDB ID 1d7m; (d) The Leu-zipper segment of the GCN4 bZIP protein PDB ID

2dgc: the ‘helix’ cluster is shifted to the FPi ~0 region; (e) The pattern of the multi-helix bundle which functions

as an enzyme within a heterooligomeric complex: the ‘helix’ cluster is partly shifted into the FPi<0 region. The

structure shown is the catalytic domain of the guanine nucleotide exchange factor (Ddl homology (DH)

domain) of human PAK-interacting exchange protein, PDB ID 1by1. (B) (a) Transmembrane segment of the

peripheral stalk of F0F1 ATP synthase from E. coli (b2 subunit in the diagram in the centre, color-coded

orange), UniProt # P0ABA0: residues A11-A31; (b) Transmembrane α-helices of human glycophorins A, B, C

and E: UniProt #’s P02724, P06028, P15421, and P04921. The glycophorin helices apparently are brought

together in the membrane by the dimerization of the extra-membrane domains; (c) The transmembrane α
subunit of the membrane associated acetylcholine receptor from Torpedo marmorata, PDB ID 2bg9; the five

transmembrane subunits of this receptor do not form a tight oligomer structure and are held in place by the

extra-membrane subunits; (d) Bacteriorhodopsin, a membrane protein (light-driven proton pump) from

Halobacterium salinarum; the biological assembly is the homotrimer, PDB ID 1fbb; (e) Glycerol facilitator

(GlpF), a membrane channel protein of the aquaporin family; the biological assembly is a homotetramer, PDB

ID 1fx8; (f) Subunit c of F0F1 ATP synthase from E. coli (color-coded blue in the diagram in the centre): the

biological assembly is a homodecamer, PDB ID 1ijp. (C) (a) The single-sheet protein, the central β-sheet

(residues A81-D205) of the Borrelia burgdorferi spirochete antigen, outer surface protein A (OspA), PDB ID

2g8c; (b) The β sandwich C-terminal domain of the α-amylase from Geobacillus stearothermophilus, PDB ID

1qho; (c) The strands βF(H88-A97) and βH(S115-T123) of the homotetramer of transthyretin, buried in the

tetramer interior, PDB ID 5l4j. (D) (a) 16-stranded β barrel, the monomeric integral outer-membrane porin

OmpF from E. coli, PDB ID 1opr; (b) 16-stranded β barrel, the trimeric integral outer-membrane porin OmpG

from E. coli, PDB ID 2f1c.

https://doi.org/10.1371/journal.pone.0180905.g015
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Fig 16. Electronic configuration of the polypeptide backbone versus complexity of tertiary structure

and order of oligomerization. (A) The histograms compare the distribution of the α-helix and β-sheet FPi in

the chemokine and CHROMO domains [140,141]. The βββα folds of these two domains are very similar but

the roles of the N-terminal and C-terminal segments are reversed: the chemokines use the C-terminal helix to

bind the substrates while the CHROMO domains use the N-terminal β-hairpin. The expected difference in the

FPi distribution is indeed found (β1 cyan, β2 light cyan, β3 yellow, α1 red): (a) In chemokines, the binding

function involves the C-terminal β3 and α1, and indeed the N-terminal β1 and β2 are the archetypal ‘C5

strands’ (FPi largely <0) and anchor the structure while the C-terminal α1 will only be stable when it is partially

buried (FPi tends to be <0, PDB IDs: 1b3a, 1cm9, 1dok, 1eih, 1el0, 1eot, 1esr, 1f2l, 1f9p, 1g2t, 1g91, 1ha6,

1il8, 1j9o, 1m8a, 1mgs, 1ncv, 1nr4, 1o80, 1qg7, 1qnk, 1rhp, 2hcc, 2kol, 2kum, 2l4n, 2q8r, 2ra4, 3n52, 3ona,

3tn2, 4hcs, 4hsv); (b) In the CHROMO domains (binding involves the N-terminal β1 and β2), the C-terminal α1

is the archetypal ‘helix’ (0<FPi<0.2) and anchors the structure while the N-terminal β1 and β2 strands (also

0<FPi<0.2) will be stabilized when they are either partially buried and therefore less polarized (turning C7eq),

or attached to a cross-β structure and therefore more polarized (turning C5) (PDB IDs: 1ap0, 1g6z, 1kna,

1pdq, 2b2v, 2d9u, 2dnt, 2dnv, 2dy8, 2ee1, 2epb, 2fgg, 2k1b, 2rsn, 2rso, 3fdt, 3gv6, 3i91, 3mts, 3r93, 3tzd).

(B) The FPi plots for bZIP proteins (PDB IDs: 1ci6, 1dgc, 1dh3, 1gd2, 1jnm, 1nwq, 1t2k, 1s9k, 2c9l, 2e43).
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‘hinge’. Consequently, this segment folds into the α-helix in a low-permittivity environment

i.e. when the C- and N-terminal subdomains are brought into close contact and the folding

basin FB increases in size, cf. section b.(iv); otherwise, it may be incorporated into β structure

or remain unstructured when exposed to solvent. In the fourth case, Fig 18D, the 56-residue

protein switches folds back and forth between β grasp (ββαββ) and helix-bundle (ααα), each

time as a result of replacement of a single residue in one of the two ‘hinges’ in the molecule

[146,147]. In the β grasp fold, Fig 18D(a), the N-terminal subdomain of this protein forms the

‘C7eq strands’ and β1-β2 hairpin, even though it lacks the ‘turn’ segment and has distinctly

‘helical’ ΔFPi-1!i+1 profile and optimally ‘helical’ FPi . To stabilize this fold: (1) the β1-β2 hair-

pin is placed in a low-permittivity environment by the contact with the mid-region α-helix

buried on its surface, which requires that the connecting ‘hinge’ (~residues 20–25) is suffi-

ciently long and stable; and (2) the β1-β2 hairpin is incorporated into extended β structure via

parallel C7eq"C5" alignment with the C-terminal β3-β4 hairpin. Thus, the A20L mutation,

(a)!(b) in Fig 18D, apparently shortens the ‘hinge’ so that the helical propensity of the N-ter-

minal segment prevails and prompts the transition to the three-helix-bundle fold; the compact

all-α fold is stabilized by the incorporation of the ‘C5 strand’ segments into the helices α2 and

α3. The I25T mutation, (b)!(c) in Fig 18D, stabilizes the required bend (increases the steep

change in FPi in the segment 20–25) and restores the β grasp fold. This fold, however, cannot

be stable without the stable C-terminal C5"C5# hairpin, and so the Y45L mutation that abol-

ishes the C5 propensity of β3 strand also prompts the conversion into the helix bundle, see

(c)!(d) in Fig 18D.

(vii) Stability of tertiary structure and metamorphic equilibria: Refolding of β structure

that involves reorganization of the folding basin FB and FP-directed molecular recogni-

tion. The last example in Fig 18 is the refolding of β structure of the spindle checkpoint pro-

tein Mad2 [148]. Mad2 comprises the ‘fixed’ {β3"β1#β2"}-sheet and the ‘malleable’ C-terminal

β-hairpin {β4"β5#} attached by an unstructured loop. The interconversion between two dis-

tinct folded conformations of Mad2 involves reconfiguration of the 7-residue segment

(S185-H191) which has highly negative FPi (<<0). Based on the assignments in Fig 7, these 7

residues may adopt the ‘C5 strand’ configuration in a low-permittivity environment i.e. when

they are buried, and the ‘FPi<<0 turn’ configuration when they are exposed to solvent. When

such a configuration switch occurs, the C-terminal hairpin shifts its position along the chain,

changing loop’s length and ‘strand’ propensities: it forms either (1) the ‘short loop’-C5"C5#

hairpin, Fig 18E(a), or (2) the ‘long loop’-C7eq"C7eq# hairpin, Fig 18E(b). The shift reorganizes

the folding basin FB because it determines how the {β3-β1-β2} and {β4-β5} fragments are

attached to each other. In the first case, the arrangement is {β4-β5}-{β3-β1-β2}: the S185-H191

residues are buried as a part of the β5 ‘C5 strand’ which is parallel to the proximal β3 (the pre-

ferred alignment C7eq#C5# for β3-β5 cf. Figs 2 and 5). In the second case, the arrangement is

{β3-β1-β2}-{β5-β4}: the S185-H191 residues are exposed to solvent as the ‘turn’ of the β4-β5

hairpin, while the β5 ‘C7eq strand’ is antiparallel to the distal β2 (the preferred alignment

C7eq"C7eq# for β2-β5). Thus, the reorganization of Mad2 β-sheet appears to be a case of the

FP-directed molecular recognition. The difference in the β-sheet organization is also consistent

with the difference in the loop’s reach (length).

The multiple alignment suggests that FPi and function of each distinct segment of bZIP helix are related.

Based on the assignments in Fig 7(c), the basic N-terminal segment has the ‘C7eq strand’ FPi , the mid-region

segment has the ‘C5 strand’ FPi , and the C-terminal segment has the ‘helix’ FPi . Thus, the folding potential

FPi of each segment appears optimized to ensure stability of the helical fold in three different environments

created in the complex of bZIP dimer and DNA duplex.

https://doi.org/10.1371/journal.pone.0180905.g016
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Fig 17. Folding template and tertiary structure of soluble globular proteins. (A) The interaction of sperm

whale apomyoglobin, PDB ID 1a6m, with the transient cubic lattice of the ionic atmosphere in the

physiological 1:1 electrolyte solution: mutual polarization of the polypeptide backbone and the Ghosh-Debye-

Hückel matrix stabilizes the protein/electrolyte system when the ends of the helices A-H of the globin fold

replace the corresponding salt ions in the vertices of the matrix with the 7 Å lattice constant. The ‘template
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(viii) Coupled folding and binding: Formation of α structure upon reorganization of

the folding basin FB. Molecular recognition features (MoRFs) [38,149], just like the ‘mallea-

ble’ segments of metamorphic proteins, can change conformation as a result of mere change in

environment’s capacity to polarize the polypeptide backbone. Transfer of a disordered protein

segment from water into a complex with another protein is one way to achieve such as change,

see Fig 19. The FPi vs. ΔFPi-1!i+1 plots show distinctly helical ΔFPi-1!i+1 profiles for the activa-

tion domain of CITED2 and the α-MoRF of the measles virus N protein but neither can fold

in solution since FPi is too low in the first case and too high in the second case, cf. Fig 19A(a)

and 19B(a) [150–152]. To form a well-folded helix, the CITED2 domain needs to be buried in

a protein ligand i.e. placed in a low-permittivity environment, and this is indeed found in the

complex with the TAZ1 domain of the transcriptional coactivator CREB-binding protein

(CBP) (Chart 11A(b), PDB ID 1r8u) [150]. In contrast, the viral MoRF, which forms a complex

with the nucleocapsid-binding domain of the measles virus P protein (PDB ID 1t6o), remains

bound in the polarizing environment of the protein surface/ionic atmosphere shell, Fig 19B(b)

[151,152]. The corresponding difference in the organization of tertiary structure of the two all-

α ligands is quite apparent in the FPi/ΔFPi-1!i+1 plots, see Fig 19A(c) and 19B(c). However,

both complexes seem optimally set up for the interaction with the transient lattice of ionic

atmosphere at the physiological conditions, see Fig 19A(d) and 19B(d).

(ix) Coupled folding and binding: Formation of β structure via FP-directed molecular

recognition. Coupled folding and binding may also involve formation of β structure. Auton-

omous folding of a stable β sheet requires precise location and matching of distinct ‘strand’

and ‘turn’ propensities, see Figs 2 and 5. Thus, a polypeptide chain which comprises mis-

matched or lacking strong FPi bias ‘strand’ and ‘turn’ segments will remain disordered unless

the anticipated ‘strand’ configurations are stabilized in an extended intramolecular or intermo-

lecular β structure. The synergistic folding of split inteins reveals a mechanism of molecular

recognition that is likely to underlie such processes, in this case formation of the two-stranded

antiparallel β-sheet βN"βC# that anchors the horseshoe-like fold [153]. The βN and βC segments

are 30-35 residue-long and remain disordered in solution but form upon binding an extensive

left-handed coiled-coil which is a variation of the common fold of two-stranded antiparallel

sheets expected to display ‘extraordinary flexibility’ [154]. In inteins, the coiled-coil has a non-

uniform twist so that each strand comprises four distinct segments, βNa’-βNa-βNb-βNb’ and

βCa’-βCa-βCb-βCb’, and has, in addition, a left-handed superhelical twist, Fig 20A. This archi-

tecture appears consistent with the intrinsic right-handed twist of the extended strands, distri-

bution of secondary-structure propensities and insertion of turn sequences, and length

limitations on the cooperativity of backbone-backbone H-bonding [155]. According to our

model, see Figs 2 and 5, molecular recognition in the assembly of the βN"βC# sheet should be

box’ has dimensions 42×42×21 (Å). (B) In the case of Alcaligenes euthropus flavohemoglobin, PDB ID 1cqxB,

the ‘template box’ has dimensions are 49×35×21 (Å) and it is polar along each Cartesian axis and so it is

chiral. (C) Manual search for the best fit of the termini of the A-H helices of both globins into the Ghosh-Debye-

Hückel matrix yields the coordinates shown in this panel (partial charges δ+ and δ− of the helix termini are

represented by the N and O atoms of the residues assigned as the terminal helix residues by the Swiss-

PDBViewer with one exception of the N terminus of the helix B in 1a6m where PDBViewer assignment is

erroneous; the Cartesian coordinate system is left-handed). (D) The calculated and the observed matrices of

the interatomic distances (Å) between the helix termini in: � sperm whale apomyoglobin, PDB ID 1a6m, and ^

Alcaligenes euthropus flavohemoglobin, PDB ID 1cqxB (based on the coordinates listed in the panel C). (E)

The calculated and the observed matrices of the interatomic distances (Å) between the Nξ atoms of the

‘reporter’ lysines in the congeners of Borrelia spirochete antigen OspA (PDB IDs 2af5, 2fkg, 2fkjA, 2fkjB,

2fkjC, 2g8c, 2hkd, 2i5v, 2i5z, 2ol6, 2ol7A, 2ol7B, 2ol8, 2oy1, 2oy5, 2oy7, 2oy8, 2oyb, 2pi3, 3ckaA, 3ckaB,

3ckf, 3ckg, 3ec5, 3eexA, 3eexB). See S4 Appendix for the definition of the plotted data.

https://doi.org/10.1371/journal.pone.0180905.g017
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Fig 18. Electronic configuration of the polypeptide backbone and metamorphic equilibria. (A) Chameleon sequence SASF2 attached to N-

terminal segments of λCro and p22 Cro repressors. When attached to the 35-residue N-terminal segments of p22 Cro (PDB ID 1rzs) or λ Cro (PDB

ID 5cro) repressors, the sequence SASF2 mimics the conformations of the native C-terminal segments of these repressors, folding into an α-helix in

the first case and into a β-hairpin in the second case [143]: (a) The FPi plot for the p22 Cro/SASF2 conjugate. The chameleon sequence SASF2 is

preceded by a flexible ‘hinge’ formed by the short C5 strand (W30-E32, FPi = –0.1080) and the PPII helix (V33-P35, FPi = –0.4542), which extends

back towards the helices α1, α2 and α3 (PDB ID 1rzs) so that the main chain makes U-turn placing SASF2 in the helix bundle; (b) The FPi plot for the λ
Cro/ SASF2 conjugate. The segment preceding SASF2 is the long helix α3 (S28-H35, FPi = 0.1787) (PDB ID 5cro) and the backbone cannot make U-

turn. (B) Human lymphotactin. Under physiological conditions, human lymphotactin exists in the equilibrium between the canonical chemokine

monomer PDB ID 1j8i and the homodimer of the Greek-key β-sheet PDB ID 2jp1 [144,145]: (a) The FPi plot for the monomeric chemokine-like

conformer. The misalignment of the antiparallel C5 and C7eq strands (β3 and β4) creates a flexible ‘hinge’ at the end of β4 so that the low-FPi helix α1

can bury itself on the concave surface formed by the β structure and the unstructured, ‘S-S attached’ N-terminal segment; (b) The FPi plot for the

dimeric Greek-key conformer of lymphotactin. The stabilization of α1 is not possible when the extension of the three-stranded β2#β3"β4# sheet into the

four-stranded one β2#β5"β4#β1" obliterates the ‘hinge’ (β4 is lengthened due to additional alignment of β1) and flattens the lymphotactin surface (the

N-terminal segment folds into β1). (C) E. coli transcription factor RfaH. The N-terminal (NTD) and C-terminal (CTD) domains of RfaH are connected

by a flexible linker which allows either for tight interaction or complete separation of the two domains. The arrangement determines the fold of CTD: (a)

The FPi plot for the CTD partially buried in the NTD, PDB ID 2oug; (b) The FPi plot for the autonomous CTD isolated in the aqueous environment, PDB

ID 2lcl. (D) GB98/GA98 variants of the streptococcal albumin- and immunoglobulin-binding proteins. The FPi plots for the 56-residue GB1

congeners and the alternation of folds produced in each case by the replacement of a single residue (mutation sites are marked by the green vertical

bars) [146,147]: (a) The FPi plot for the variant PDB ID 2lhe (GB98-T25I/L20A); (b) The FPi plot for the variant PDB ID 2lhg (GB98-T25I); (c) The FPi

plot for the variant PDB ID 2lhd (GB98); (d) The FPi plot for the variant PDB ID 2lhc (GA98�GB98-Y45L). (E) Human mitotic spindle protein Mad2
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aided by the ‘symmetry’ of backbone polarization of βN and βC, in particular by ‘matching’ of

the middle-segment pairs βNa-βNb and βCa-βCb. The FPi plots for the 15 inteins of known

three-dimensional structure, see Fig 20B–20D, do show such a trend: the complete ‘symmetry’

of backbone polarization of the βN"βC#middle segments is found in 9 structures, partial ‘sym-

metry’ in 2 structures (split inteins), and none in 4 structures, which yields the total of 20 FPi-
‘matching’ and 10 FPi-‘mismatched’ middle-segment pairs. In principle, complementarity of

the electrostatic charges carried by βN and βC could also aid folding of this coiled-coil as the

folding-template effect, and it was indeed invoked to explain the kinetics of split-intein folding

[156]. According to the present data, such assistance does appear to operate in some cases but

it is not required: the βN and βC strands carry complementary charges in 11 cases, in one case

both strands carry negative charge, and one or both strands are neutral in 3 cases. However, in

the split inteins PDB IDs 1zd7 and 2keq, complementarity of multiple charges is found in the

βNb-βCa segment pairs that lack the ‘symmetry’ of backbone polarization while in the symme-

try-wise ‘matching’ βNa-βCb segment pairs both segments are either neutral (1zd7) or both

carry negative charges (2keq), cf. Fig 20C. This trend is reproduced in the total sample: among

the 20 ‘matching’ βNa-βCb and βNb-βCa pairs, both segments carry the same charge in 4 cases,

in 11 cases one of the two segments is neutral, and the charges are complementary in 5 cases

(with just a single charge on one of the segments), Fig 20B and 20C. On the other hand,

among the 10 middle-segment pairs that lack the ‘symmetry’ of backbone polarization, the

charges are complementary in 8 cases (with multiple charges on both segments in 4 cases), and

only in 2 cases one of the two segments is neutral, Fig 20C and 20D. These findings are consis-

tent with the notion that the side chain-side chain interactions may facilitate the initial stages

of intein folding via the ‘electrostatic capture’ [156], or stabilize the 3D structure once the

backbone fold is established, but neither effect is necessary to assembly the two-stranded anti-

parallel β-sheet of inteins in the correct register. The discrete architecture of the βN"βC# sheet

seems to depend on the complex pattern of backbone polarization, and the ‘symmetry’ of

polarization of the βNa-βCb and βNb-βCa segments appears to be an important feature of this

pattern. For the detailed account of the discussed data see S5 Appendix.

(x) pH-Driven equilibria: Transformation of secondary structure. Conformational pro-

pensity of a backbone segment may be altered by the change in pH. For instance, amylin

adopts β-hairpin fold in a neutral or basic solution where the C-terminal segment has the

ΔFPi-1!i+1 profile ‘C5 strand’-‘turn’-‘C5 strand’, but it becomes helical in acidic solution

[157] where, due to the protonation of His-18, the entire N-terminal segment acquires ‘helical’

ΔFPi-1!i+1 profile (T9-N22: FPi = 0.1746), Fig 21A. On the other hand, the B-loop of influenza

hemagglutinin has a ‘helical’ ΔFPi-1!i+1 profile but very low FPi and is therefore unstructured

at pH>7, cf. Fig 21B. At low pH, however, B-loop residues do form a long helix [158] and

indeed the FPi vs. ΔFPi-1!i+1 plot at pH<5 reveals a considerable shift of its ‘helical’ cluster to

FPi> 0.

(xi) pH-Driven equilibria: Loss of tertiary structure and reorganization of the folding

basin FB. In the case of the α-pore forming diphteria toxin, the crucial unfolding of several

α-helices of its translocation domain T is triggered by the reduced pH in the endosomal lumen

(pH 4.5–5). By attenuating polarization of the polypeptide backbone, low pH may increase

mobility of the α-helices of the diphteria toxin and ‘neutralize’ the ‘C5 strand’ segments which

ought to be incorporated into these α-helices to stabilize the compact tertiary structure of the

[148]: (a) The FPi plot for the five-stranded β sheet of Mad2 with the C-terminal hairpin in the C5#C5" configuration, PDB ID 1duj; (b) The FPi plot for the

five-stranded β sheet of Mad2 with the C-terminal hairpin in the C7eq#C7eq" configuration, PDB ID 1s2h.

https://doi.org/10.1371/journal.pone.0180905.g018
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Fig 19. Electronic configuration of the polypeptide backbone and molecular recognition in formation

of α structure: Folding of α-MoRFs [149–152]. (A) The complex between the TAZ1 domain of the

transcriptional coactivator CREB-binding protein (CBP, the 4-helix-bundle IDP receptor) with the activation

domain of CITED2 (IDP), PDB ID 1r8u [150]: (a) The FPi vs. ΔFPi-1!i+1 plot for the activation domain of

CITED2. The domain is unstructured in the free form in aqueous solution as expected given its FPi/ΔFPi-1!i+1
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T domain bundle, cf. sections a.(iii) and b.(iv). The FPi vs. ΔFPi-1!i+1 plots in Fig 21C suggest

that this is indeed the underlying effect. In particular, the folding potential FPi of the two heli-

ces that completely unfold under the acidic conditions, TH3 and TH4 [159], shifts from FPi�0

(the α-helices which are stable in the interior of a compact structure) to FPi>0.3 (the α-helices

which are unstable except in a highly polarizing environment), see Fig 21C(d) and 21C(e).

It follows that the shift in backbone density distribution produced by protonation of D–, E–

and H may destabilize compact tertiary structure and trigger the transition into an ‘acid mol-

ten globule’ which can in turn initiate fibrillization of a globular protein. The acid-induced

unfolding and fibrillization of transthyretin illustrates this point. Based on the FPi plots, several

segments of the polypeptide backbone of transthyretin considerably change conformational

and H-bonding propensity at pH 4, see Fig 21D(a): (1) the FPi profile in the βB region becomes

‘helical’ due to the protonation of His-31, cf. similar ‘strand’!‘helix’ transition in amylin; (2)

the pronounced ‘C5 strand’ propensity of the βC, βE and βF strands is lost; (3) the high ‘turn’

propensity of the DE loop (D� segment) is lost (the C5-like, negative FPi of D� becomes posi-

tive and C7eq-like); (4) the high ‘turn’ propensity of the EF loop (E� segment) is lost [160,161].

These changes destabilize the outer β sheet of transthyretin and lead to step-by-step unravel-

ling of the β sandwich fold beginning with ‘unmasking’ of the βA strand. Subsequent ‘unmask-

ing’ of the βB strand, or alternatively the extrusion of the βB strand and insertion of the βD�

strand in its place, generate three other partially folded monomers as shown in Fig 21D(b).

The seemingly contradictory results of the solid state NMR [162–164], spin-labelling

[165,166], immunoreactivity [167], and H/D exchange (HXMS) [168,169] investigations can

be reconciled by assuming that all four putative aggregation intermediates are competent to

assemble into annular octamers [170–172], protofibrils and fibrils, see Fig 21D(c), and the

actual course of fibrillization depends on the incubation conditions.

c. The PMO theory of misfolding and aggregation of pleiomorphic

proteins associated with neurodegenerative diseases

Misfolding of several proteins is believed to play a key role in genesis of neurodegenerative dis-

eases including Alzheimer’s amyloid β (Aβ) and tau proteins, Parkinson’s α-synuclein and

TSEs’ mammalian prions. These proteins are highly pleiomorphic and readily undergo a series

of conformational transitions along the aggregation pathways [173]. Based on the preceding

considerations and findings, and taking into account extensive experimental evidence [173–

pattern: FPi<0; (b) The N-terminal segment of the activation domain of CITED2 is helical in the complex with

TAZ1 where it is deeply buried (cf. the helix within the green outline) while the C-terminal segment, exposed to

solvent, remains unstructured; (c) The FPi vs. ΔFPi-1!i+1 plot for the CBP TAZ1 domain shows pronounced

archetypal ‘helix’ propensity, cf. Fig 5. Note that the α-helices of this domain do not incorporate ‘C5 strand’

segments which would be expected to stabilize the bundle structure—in fact, the assembly is stabilized by the

chelation of three Zn2+ ions; (d) The projected fit of the putative key surface charges δ+ and δ− (the termini of

the five helices shown in the Swiss-PDBViewer projection) into the Ghosh-Debye-Hückel matrix, and the

correlation between the predicted by the folding-template model and the observed interatomic distances (Å)

between the charges δ+ and δ−. (B) The complex between the α-MoRF of the measles virus N protein and

nucleocapsid-binding domain of the measles virus P protein, PDB ID 1t6o [151,152]: (a) The FPi vs.

ΔFPi-1!i+1 plot for the α-MoRF. The FPi profile is helical (approximately constant FPi) but FPi ~0.3 is too high

for the aqueous environment and the domain is disordered in solution; (b) Given its FPi/ΔFPi-1!i+1 pattern, the

measles virus α-MoRF is expected to fold into a helix not when it is buried but when it remains in the solvent

shell of the binding protein, benefiting from the synergistic stabilization of the ionic matrix, and this is indeed

found in the complex, cf. the helix in the blue outline; (c) The FPi vs. ΔFPi-1!i+1 plot for the nucleocapsid-

binding domain shows pronounced ‘helix’ propensity characteristic of helix bundles, cf. Fig 15A; (d) The

projected fit of the putative key surface charges δ+ and δ− (the termini of the four helices shown in the Swiss-

PDBViewer projection) into the Ghosh-Debye-Hückel matrix, and the correlation between the predicted by the

folding-template model and the observed interatomic distances (Å) between the charges δ+ and δ−.

https://doi.org/10.1371/journal.pone.0180905.g019
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Fig 20. Electronic configuration of the polypeptide backbone and molecular recognition in formation

of β structure: Folding of inteins [153,156]. The FPi assignment of secondary-structure propensity vs.

distribution of side chain charges in the two-stranded antiparallel β-sheet βN"βC# of 15 inteins and intein-like

domains of the known 3D structure. (A) The architecture of the horseshoe-like fold of inteins: (a) the

antiparallel assembly of the 30–35 residue-long strands βN and βC into the βN"βC# sheet constitutes the major
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370], we develop here a model of pleiomorphism of these proteins focusing initially on the

best-documented case, the polymerization of Aβ.

(i) Antiparallel coiled-coil as a model of Aβ dimer structure. The Aβ fold strongly

depends on medium and molecular embedding, and the FPi plots in Fig 22A correctly antici-

pate this dependence: secondary structure propensities assigned according to Fig 7 are consis-

tent with the available data [174–194]. The ‘helix’ and ‘strand’ segments of Aβ lack the FPi bias

needed to stabilize the α or β structure in water, Fig 22A(c), and indeed the monomeric Aβ
exists in water as a collapsed coil devoid of secondary structure. However, the anticipated

‘strand’ configurations of Aβ may be stabilized in an extended intermolecular β sheet i.e. as a

result of oligomerization. Since the experimental evidence points to the importance of the sim-

plest oligomer, the Aβ homodimer, in aetiology of neurodegeneration [195–199], we assume

that this dimer is the basic building block of polymerization. The SAXS data for the stoichio-

metric Aβ1–42 complexes with 8-hydroxyquinolines suggest that such complexes involve spe-

cific extended dimers of Aβ1–42 which are at least partially folded [200], Fig 22B(a). The

technique does not allow to establish the mode of alignment; we propose below how such

extended dimers are aligned by invoking the FP-directed molecular recognition, cf. sections

a.(i) and b.(vii) and (ix), and the solid-state NMR data for the off-pathway Aβ oligomers

150±30 kDa [201,202].

Fig 22B(b) shows the ‘strand’ configurations in the homodimer that favor fibrillization

[203,204]. The sequence β0(C7eq)-β1(C5)-β2(C5
�)-β3(C5) is crucial to the FP-directed molecu-

lar recognition in dimerization and subsequent pleiomorphic behavior of Aβ. Some of the

observations consistent with this proposition are the following: (1) the FAD English H6R, Tai-

wanese D7H and Tottori D7N mutations which promote aggregation [205,206] would stabilize

the C7eq conformation of β0 while the A2T and A2V mutations which also influence aggrega-

tion [207–209] would stabilize the C5 fold; (2) the CHC mutations that stabilize the C5 confor-

mation of β1 (e.g. F19I/F20I shown here in the FPi plot) appear to increase the rate of primary

nucleation [210–213], although the evidence is not unequivocal [214], while the A21G mutant

(Flemish FAD) does not undergo standard fibrillization [215]; (3) conservative hydrophobic

mutations that preserve low permittivity environment required to stabilize the β2(C5
�) H-

bonding, cf. section a.(iii), do not seem to affect the initial oligomerization [216]; (4) VPV

feature of the HINT fold. Each strand comprises four segments, βNa’-βNa-βNb-βNb’ and βCa’-βCa-βCb-βCb’ (cf.

the labels color-coded blue and red, respectively), which are marked by the changes in the direction of the

main chain (produced by the inherent right-handed twist of the polypeptide backbone and the insertion of

turns); (b) the putative assembly of the full-length βN and βC strands into the βN"βC# sheet. The interactions of

the terminal-segment pairs, βNa’-βCb’ and βNb’-βCa’, may contribute to the stabilization of the correct register

in the initial stages of folding; (c) in the native state, the βN"βC# sheet comprises the middle-segment pairs

βNa-βCb and βNb-βCa since the C-terminal segments of both strands, βNb’ and βCb’, are folded towards the

protein interior. (B) The FPi assignment of secondary-structure propensity vs. distribution of the side chain

charges in the case of the full ‘symmetry’ of backbone polarization of the middle-segment pairs βNa-βCb and

βNb-βCa, shown within the green rectangles in the schematic representation of the βN"βC# sheet. The PDB

ID-labeled diagrams show FPi plots, DSSP assignments, and the sequences of the 30–35 residue-long βN

and βC strands with D, E marked by red squares and K, R marked by blue squares. The four segments of

each βN and βC strand are defined based on the DSSP/Swiss-Prot assignments and the inspection of the 3D

structures, and are shaded yellow or light-yellow in the FPi plots depending on the secondary-structure

preferences; the latter are assigned based on Figs 5 and 7. (C) The FPi assignment of secondary-structure

propensity vs. distribution of side chain charges in the case of the partial ‘symmetry’ of backbone polarization

of the middle-segment pairs βNa-βCb and βNb-βCa. The ‘matching’ βNa-βCb pairs are shown within the green

rectangles and the ‘mismatched’ βNb-βCa pair within the red rectangles in the schematic representation of the

βN"βC# sheet. (D) The FPi assignment of secondary-structure propensity vs. distribution of side chain charges

in the absence of the ‘symmetry’ of backbone polarization of the middle-segment pairs βNa-βCb and βNb-βCa,

shown within the red rectangles in the schematic representation of the βN"βC# sheet. For a detailed report on

the discussed data see S5 Appendix.

https://doi.org/10.1371/journal.pone.0180905.g020
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Fig 21. Effect of pH on conformational and H-bonding propensity of the polypeptide backbone. (A)

Conformational equilibria of islet amyloid polypeptide (amylin) [157]: (a) The FPi plot of amylin at high

pH and the putative β-sheet conformation of the peptide. Assuming σHis�σH˚ in Table 1, the segment L16-T30

has β-hairpin potential in the aqueous buffer: L16-N21 FPi = –0.0690 (C5 strand), N22-I26 FPi = 0.6667 (turn),

and L27-T30 FPi = –0.0964 (C5 strand); (b) The FPi plot for amylin at low pH and the putative helical
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mutations (including G38V) which considerably increase C5 propensity of β3, and increase

threefold stability of dimers [217]; (5) C-terminal extensions of the Aβ length that increase

C7eq/C5 propensity of β3 (e.g. in Aβ1–41, Aβ1–42, Aβ1–43 or Aβ1–46 cf. the FPi plots in the

panels A(a)-(d), are reported, albeit with some exceptions [218], to facilitate oligomerization

[219–228].

Thus, the first step of aggregation of Aβ is coupled folding and binding resulting in forma-

tion of the staggered antiparallel dimer, Fig 22B(c). By analogy to the two-stranded antiparallel

β-sheet that anchors the horseshoe-like fold of inteins, cf. section b.(ix) and Fig 20, the antipar-

allel Aβ dimer is expected to fold into a left-handed coiled-coil that has in addition a left-

handed superhelical twist. The antiparallel assembly is stabilized by matching the CHC and C-

terminal ‘C5 strand’ segments, and by H-bonding between the segments of consecutive ‘turns’

which may adopt the C5
� fold. The D1-K16 and E22-K28 segments are not involved in β struc-

ture of the homodimer, the first remaining ‘free’, as the unattached ‘C7eq’ strand, and the other

forming a loop. The intermolecular contacts of the C5
� segments implied by the dimer’s regis-

ter are observed in some Aβ aggregates as shown in the inserted diagram [201].

To ensure parallel dimerization of Aβ via FP-directed molecular recognition, the β1 and β3

segments would have to adopt the C7eq configuration while the β2 segments adopt the C5
� con-

figuration as shown in Fig 22B(d). This mode of assembly yields out-of-register parallel β-

sheets expected to fold with ease into parallel β-barrels. The intermolecular residue contacts

implied by this model, e.g. F19 vs. I31 or L34, are in fact observed in some Aβ oligomers and

conformation of the peptide. Assuming σHis�σH+ in Table 1, the segment T9-N22 has unambiguous α-helical

potential in the aqueous buffer, FPi = 0.1746. (B) Acid-induced loop-to-helix transition in influenza

hemagglutinin [158]. The trimeric glycoprotein hemagglutinin from influenza virus acts as a fusogen at low

pH of endocytic vesicles. The activity is contingent on a large-scale structural rearrangement crucial for

delivering the viral contents into host cells. The rearrangement involves inter alia conversion of B-loop of

hemagglutinin (residues 55–76) into a long α-helix: (a) The FPi vs. ΔFPi-1!i+1 plot for B-loop at high pH. The

segment has a helical FPi profile but very low FPi and it is accordingly unstructured; (b) The FPi vs. ΔFPi-1!i+1

plot for B-loop at low pH. The helical data cluster is now shifted into the stable ‘helix’ region, FPi > 0. (C)

Partial unfolding of the translocation-domain helices of the α-pore forming diphteria toxin at low pH

[159]. The toxin invades a cell by crossing the endosome membrane via the process mediated by the C-

terminal segment of the all-α domain T (translocation domain) and triggered by the reduced pH in the

endosomal lumen: (a) At the standard physiological pH, the toxin is well-structured and the C-terminal

segment of the domain T is buried under the helices TH1-TH4, PDB ID 1f0l; (b) At low pH, the TH2, TH3 and

TH4 helices become completely disordered, PDB ID 4ow6 [159]. As a result, the C-terminal helices are

exposed and can interact with the membrane; (c) The FPi vs. ΔFPi-1!i+1 plot for the domain T at the neutral

pH. The plot shows the characteristic pattern of a soluble multi-helix bundle, cf. Fig 15A(e), where α-helices

incorporate ‘C5 strand’ segments necessary to stabilize the compact tertiary structure; (d) The FPi vs.

ΔFPi-1!i+1 plot for the domain T at low pH: the folding potential FPi becomes more positive for the entire

domain (the ‘C5 strand’ segments are ‘titrated out’ which destabilizes the tertiary structure); (e)-(h) The FPi vs.

ΔFPi-1!i+1 plots for the α-helices TH3 and TH4 at the neutral pH, panels (e) and (g), and at the low pH, panels

(f) and (h). In both cases the folding potential shifts from FPi�0 in panels (e) and (g) (the α-helices which are

stable in the interior of a compact structure) to FPi�0.3 in panels (f) and (h) (the α-helices which are unstable

except in a highly polarizing environment cf. Fig 7). (D) Acid-induced unfolding and aggregation of

transthyretin [38,162–172]: (a) The superposed FPi plots for transthyretin at pH >7 and pH 4, and the DSSP

assignments for the native monomer (homotetramer subunit, β sandwich fold). The red and purple outlines

mark the strand and turn segments most affected by the reduction of pH: FPi of the V30-F33 segment (βB

strand) shifts from ‘C5 strand’ to ‘helix’ propensity, and the two ‘turn’ segments (D-E�D* and E-F�E*) are

destabilized. In addition, FPi of βC and βE segments shifts from ‘C5 strand’ to ‘C7eq strand’ propensity. These

changes destabilize the outer β sheet of transthyretin βC#βB"βE#βF"; (b) Putative amyloidogenic monomers

of transthyretin generated by step-by-step dismantling and rearrangement of transthyretin β sandwich

consistent with the destabilizing FPi shifts and the solid state NMR [162–164], spin-labelling [165,166],

immunoreactivity [167] and H/D exchange (HXMS) [168,169] studies; (c) The pathway of acid-induced

unfolding and aggregation of transthyretin [38], and the topology of annular octamers [170–172] and

protofibrils [169].

https://doi.org/10.1371/journal.pone.0180905.g021
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Fig 22. Electronic configuration of the polypeptide backbone and conformational behavior of Aβ
proteins. (A) Folding potential, medium effect and secondary structure of monomeric Aβ. The FPi

plots for Aβ peptides are juxtaposed with the color-coded bars representing medium effects cf. Fig 7 (note that

at pH 7, σHis is average of the H0 and H+ constants since pKa values of Aβ histidines are in the 6.8-7.0 range

[174,175]): (a) Nonpolar environment: e.g. bilayer membrane/lipid matrix (FPi plot for Aβ1–43). Elements of

the E11-E22 and C-terminal segments are expected to adopt the C7eq fold while the array of consecutive
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aggregates [202]. However, neither parallel dimer nor parallel barrel are likely to form and per-

sist in absence of a stabilizing molecular ‘template’.

(ii) A model for in vitro dimerization of Aβ peptides: Effects of concentration, small-

molecule modulators, and surface/interface support. Formation of the dimer described in

Fig 22B is contingent on the ‘unfolding’ of the collapsed-coil ensemble of Aβ. This transition

will be facilitated by transferring the protein from an aqueous solution to a less polar environ-

ment which drives the N-terminal half of Aβ into a helical conformation, cf. Fig 22A(b). Such

a transfer can be achieved in several ways, see Fig 23:

1. If Aβ concentration in an aqueous buffer is sufficiently high, c>c�, the protein initially

forms micelle-like aggregates, Fig 23A [229–231]. The protein is thus buried in a low-per-

mittivity folding basin FB and its N-terminal half adopts helical conformation which

‘unwinds’ the collapsed coil. Experimental evidence suggests that the α-helical Aβ
conformer is indeed an obligatory intermediate under these conditions [232,233]. Since the

D23-K28 segment forms a side loop in the two-stranded staggered antiparallel β-sheet, sta-

bilization of this loop by a lactam or a disulfide bridge will also facilitate dimerization

[234,235].

2. If Aβ concentration is too low to generate pseudomicellar aggregates, c<c�, dimerization

of Aβ may be catalysed by the detergents and detergent-like amphipathic co-solutes [236–

‘turns’ D23-M35 may be stabilized as the ‘C5* strand’; in contrast, the E3-D7 segment may adopt a helical

conformation. The G25-V39 segment of Aβ1–40 bound to DMPC bilayer (multilamella vesicles composed of

1,2-dimyristoyl-sn-glycero-3-phosphocholine, high P/L ratio) is indeed reported to fold into a parallel β
structure [176,177]. On the other hand, the E3-D7 residues buried in the CDR loops of the complexes with

monoclonal antibodies are found to be helical: PPII- (PDB ID’s 2ipu, 3bae) or 310- (PDB ID 4hix) [178]. (b)

Moderately polarizing environment: e.g. H2O/TFE (HFIP) solutions or micelle interfaces (FPi plot for

Aβ1-42). The E11-E22 and D23-M35 segments are expected to display α-helix and α*-helix propensities,

respectively; the E3-D7 segment is expected to remain disordered since it lacks a well-defined conformational

propensity. Several reports confirm that Aβ peptides adopt an all-α fold in the environments of micellar

interfaces or aqueous solutions of fluorinated alcohols (see e.g. PDB ID 1iyt) [179–184]. (c) Polar

environment: e.g. aqueous buffers (red FPi plot for Aβ1–40 at pH 7; cyan FPi plot for Aβ1–43 at pH 8–9). In

view of the FPi patterns, the E11-E22 and D23-M35 segments are expected to remain disordered in a neutral

aqueous buffer. However, the E11-E22 segment may sample helical conformations while the CHC (L17-A21),

E11-Q15, and C-terminal residues may sample either the C5 (pH 8, longer isoforms) or the C7eq

conformations. In agreement with these expectations, experimental evidence suggests that Aβmonomers

form in aqueous solution collapsed coils [185–188], devoid of secondary structure [189,190], but the evidence

of stabilization of residual secondary structure of Aβ in some conditions is also reported (e.g. PDB ID 2lfm and

2otk) [191–194]. (d) Highly polarizing environment: e.g. the environment within an amyloid fibril (FPi plot for

Aβ1-46). The E11-E22 and D23-M35 segments are now expected to adopt C5 and C7eq conformations

respectively. The distribution of amyloid-fiber forming capacities, cf. Fig 11C, is consistent with this

expectation. (B) Electronic Configuration of the Polypeptide Backbone and Aggregation of Aβ. (a) The

Aβ1-42 dimer obtained by modelling studies based on the SAXS data for the stoichiometric Aβ1-42 complexes

with 8-hydroxyquinolines [200]; (b) The FPi plot shows the anticipated ‘strand’ configurations in the Aβ
homodimer at pH 5-6 i.e. under the conditions that accelerate fibrillization (light blue curve H+/E−, blue curve

H+/E0) [203,204]; (c) The antiparallel coiled coil as a model of Aβ dimer structure: the favoured antiparallel

dimerization of Aβ in aqueous solutions matches the CHC and C-terminal segments that both adopt either the

C7eq or C5 conformations. The antiparallel assembly could in addition be stabilized by H-bonding between the

segments of consecutive ‘turns’ V24-G37 which may adopt the C5* fold in the dimer. The intermolecular

residue contacts implied by this model are observed in some Aβ aggregates as shown in the insert [201]. By

analogy to the two-stranded antiparallel β-sheet of inteins, cf. Fig 20, the antiparallel Aβ dimer is expected to

fold into a left-handed coiled-coil, shown in the diagram with a left-handed superhelical twist; (d) The parallel

coiled coil as a model of Aβ dimer structure: the favoured parallel dimerization of Aβ in aqueous solutions

would match the CHC and ‘turns’ segments, the C7eq and C5* folds respectively, in both combinations. This

mode of assembly yields out-of-register parallel β-sheets expected to fold with ease into parallel β-barrels.

The intermolecular residue contacts implied by this model, e.g. F19 vs. I31 or L34, are in fact observed in

some Aβ oligomers and aggregates [202]. However, neither parallel dimer nor parallel barrel are likely to form

and persist in absence of a stabilizing molecular ‘template’.

https://doi.org/10.1371/journal.pone.0180905.g022

A PMO theory of protein secondary and tertiary structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0180905 September 18, 2017 41 / 71

https://doi.org/10.1371/journal.pone.0180905.g022
https://doi.org/10.1371/journal.pone.0180905


Fig 23. A model for in vitro dimerization of Aβ peptides: Effects of concentration, small-molecule modulators, and surface/interface

support. Formation of the dimer described in Fig 22B is contingent on the ‘unfolding’ of the collapsed-coil ensemble of Aβ. This transition will be

facilitated by transferring the protein from an aqueous solution to a less polar environment which drives the N-terminal half of Aβ into a helical

conformation. Such a transfer can be achieved in several ways: (A) If Aβ concentration in an aqueous buffer is sufficiently high, c>c*, the protein

initially forms micelle-like aggregates [229–231]. The protein is thus buried in a low-permittivity folding basin and its N-terminal half adopts a helical

conformation which ‘unwinds’ the collapsed coil. (B) If Aβ concentration is too low to generate pseudomicellar aggregates, c<c*, dimerization may be

catalysed by the detergents and detergent-like amphipathic co-solutes [236–238]. E.g. SDS at submicellar concentrations is shown to form Aβ co-

aggregates [239] in which protein’s N-termini are assembled in the center of the aggregate while the C-terminal chain segments protrude into solution.

On the other hand, however, small-molecule co-solutes may also stabilize the collapsed-coil ensemble or the helical conformer of Aβ and thereby

prevent dimerization [240–246]. (C) Binding of Aβ in a water/micelle or water/lipid membrane interface transfers the protein from an aqueous buffer into

a less polar environment. The expected conformational transition is well documented, cf. Fig 22A(a) and 22A(b) [176,177,181–184], and may well

contribute to the catalysis of polymerization by membranes and lipid rafts [247–254]. (D) (a) The (S)-cysteine can bring together two Aβmolecules via

three-point binding of Asp-1, in spite of a degree of steric strain in either chelation mode; (b) The (R)-cysteine can tightly bind one Aβmolecule in a

complex free of strain, but bringing in the second Aβmolecule is impossible due to prohibitive steric hindrance; (c) Thus, the (S)-cysteine would
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238]. E.g. SDS at submicellar concentrations is shown to form Aβ co-aggregates [239] in

which protein’s N-termini are assembled in the center of the aggregate while the C-terminal

chain segments protrude into solution and may form either parallel or, more likely, antipar-

allel β-sheets, Fig 23B. However, small-molecule co-solutes may also stabilize the collapsed-

coil ensemble or the helical conformer of Aβ and thereby prevent dimerization [240–246].

3. Binding of Aβ in a water/micelle or water/lipid membrane interface transfers the protein

from an aqueous buffer into a less polar environment, Fig 23C. The expected conforma-

tional transition is well documented, cf. Fig 22A(a) and 22A(b) [176,177,181–184], and

may well contribute to the catalysis of polymerization by membranes and lipid rafts

[247–254].

Binding of Aβ on the cysteine-modified graphene oxide surface either accelerates or slows

down fibrillization depending on the chirality of cysteine [40]. The proposed model of Aβ
dimerization suggests that this effect can be explained by the difference in how the N-terminal

Asp residue (Asp-1) of ‘unfolded’ Aβ (in water/graphene interface) interacts with the (S)- and

(R)-cysteine, marked in blue and red respectively in Fig 23D. The (S)-cysteine can bring

together two Aβ molecules via three-point binding of Asp-1, in spite of a degree of steric strain

in either chelation mode, Fig 23D(a). On the other hand, the (R)-cysteine can tightly bind one

Aβ molecule in a complex free of strain, but bringing in a second Aβ molecule is impossible

due to prohibitive steric hindrance, Fig 23D(b). Thus, the (S)-cysteine would promote both

formation and release of the Aβ"Aβ# dimer and therefore accelerate polymerization (the blue

curve in the insert, Fig 23D(c)), while the (R)-cysteine would immobilize isolated Aβ molecules

on the graphene surface and therefore slow down polymerization (the red curve in the insert).

(iii) Aggregation of Aβ dimers into paranuclei by domain swapping. Several lines of

evidence support the notion of independent pathways of oligomerization and fibrillization of

Aβ proteins [237,255–262]. The staggered antiparallel structure implies that the initial associa-

tion of two Aβ dimers can proceed either (1) by domain swapping between twisted coiled-coil

conformers i.e. antiparallel interlocking of the ‘free’ N-terminal segments, Fig 24A(b), or (2)

by the edge-to-edge assembly of the extended conformers, Fig 24B(b). The difference in con-

formational behavior of the resulting tetramers gives rise to those independent pathways of

polymerization: domain swapping leads to parallel cross-β structure, Fig 24A(g), while edge-

to-edge assembly leads to antiperiplanar β barrel and antiparallel cross-β structure, Fig 24B(c)

and 24B(d).

The tetramers obtained by domain swapping are stabilised by the increased C7eq propensity

of these segments and by the terminal salt-bridges hence the domain-swapping pathway will

be favoured at low pH and low salt; these conditions were in fact shown to accelerate fibrilliza-

tion [202,203,263,269]. Further aggregation via domain swapping yields a disk-shaped hex-

amer—paranucleus [204,264–268], see Fig 24A(c). The key feature of this circular hexamer is

the superposition of two out of the three antiparallel coiled-coil dimers which produces a

wedge-like shape and the characteristic trapezoid appearance in the high-resolution AFM

images [266], see the insert in Fig 24A(c). The superposition places the C5
� strands, viz β/β'

and β''/β000 strands in the β structure diagram in Fig 24A(c), on top of each other in the parallel

alignment so that the paranucleus is stabilized by the ‘parallel steric zipper’ interface.

promote formation and release of the Aβ"Aβ# dimer and therefore accelerate polymerization (the blue curve in the insert), while the (R)-cysteine would

immobilize isolated Aβmolecules on the graphene surface and therefore slow down polymerization (the red curve in the insert).

https://doi.org/10.1371/journal.pone.0180905.g023
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Fig 24. A model for nucleated polymerization of Alzheimer’s Aβ proteins. (A) Domain swapping:

Paranuclei and fibrils comprising parallel β-sheets. (a) The mechanism of conversion of the Aβ collapsed

coils into out-of-register antiparallel dimers via split intein-like mechanism of molecular recognition, (1) at the

Aβ concentration greater than the critical micelle concentration c > c*, and (2) at the Aβ concentration c < c*,

in the presence of submicellar concentrations of SDS; (b) The staggered antiparallel Aβ dimer as the left-

handed coiled-coil that has in addition left-handed superhelical twist, and the Aβ tetramer obtained via
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Consequently, a rotation about the strand axis would be sufficient to convert the antiparallel

sheets β"β'# and β''"β000# into parallel sheets β"β''" and β'#β000#. This conformational conver-

sion would encounter a considerable activation energy barrier in spite of the positive entropy

of activation: ΔH‡>>0, ΔS‡>0 [202,203,269,270].

(iv) Aggregation of paranuclei, conversion of antiparallel β structure into parallel

cross-β-structure, and fibril-surface catalysis of secondary nucleation of Aβ. There are,

given the wedge-like profile of the disk-shaped paranucleus, two limiting modes of self-aggre-

gation of paranuclei that can be stabilized by the ‘steric zipper’ interfaces: the annular stacking

—all paranuclei ‘wedge out’ in the same direction, and the tubular stacking—the neighboring

paranuclei ‘wedge out’ in opposite directions. These limiting modes of stacking of the paranu-

clei yield either tubular (Aβ amyloid pore [271]) or annular aggregates (Aβ nanoglobules

[272]). The high-resolution AFM image of the initial stages of aggregation of the paranuclei,

shown in the central insert in Fig 24A(e), is consistent with this notion: ‘Features A, B, and C

indicate Aβ hexamers, and D, E, and F indicate Aβ dodecamers consisting of two stacked hex-

amers’, and the red arrow points to an annular aggregate [273]. The morphology of Aβ poly-

merization on mica [42], where the paranuclei would be held on the hydrophilic surface via

antiparallel association of the ‘free’ N-terminal segments (domain swapping); (c) Further aggregation via

domain swapping yields a disk-shaped hexamer—paranucleus [204,264–268]. The circular complex places

two dimers on top of each other. The characteristic trapezoid appearance of paranuclei in high-resolution

AFM images [266], see the insert, appears to be consistent with the wedge-like shape. The strands stacked

on top of each other are parallel; (d) The circular hexamer complex may also be stabilized by the edge-to-

edge H-bonding within a ‘jelly-roll’-like structure which may convert into a 6-stranded antiparallel β barrel; (e)

The limiting modes of stacking of the paranuclei which yield either tubular (Aβ amyloid pore [271]) or annular

aggregates (Aβ nanoglobules [272]). The high-resolution AFM image of the initial stages of aggregation of the

paranuclei shows stacking of disk-shaped hexamers and formation of a ring structure (red arrow). Catalysis of

fibrillization by the intercalating cations and anions e.g. methylene blue, calmidazolium chloride, orcein-

related O4 [276–278] suggests that conformational conversion of the antiparallel sheets β"β’# and β”"β”‘# of

the paranuclei into parallel cross-β structure occurs in such stacks; (f) Morphological diversity of

polymerization on mica support [42] appears to reflect two modes of paranuclei aggregation, and so does the

structure of protofibril ‘on-path’ intermediates of fibrillization in solution [279–282]; (g) The cryoEM-derived

structures of Aβ fibrils shows the expected assembly of two protofilaments comprising parallel cross-β sheets

and aligned in the antiparallel fashion [283,284]; (h) Mechanism of fibril-surface catalysis of secondary

nucleation [43,285,286]: formation of the Aβ dimers is facilitated by the binding of Aβmonomers along the

fibril edges via antiparallel interlocking of the N-terminal segments; (i) The trimeric fibril which may be formed

by remodeling of the fibril shown in panel (g) [288]. (B) Edge-to-edge assembly: Off-pathway oligomers,

self-replicating non-fibrillar aggregates and fibrils comprising antiparallel β-sheets. (a) The Aβ trimer

obtained by the edge-to-edge assembly. In contrast to the dimer, the trimer cannot fold into a coiled coil [154];

(b) Morphology of polymerization of Aβ on graphite [41] is consistent with the model of edge-to-edge

assembly and FP-directed molecular recognition, see the text. The edge-to-edge Aβ tetramer cannot fold into

a coiled coil either [154] but its polymerization via domain swapping may produce high-order oligomers that

retain the staggered antiparallel alignment of strands [261,289–291]. By a combination of twist, bend and rise,

such oligomers can fold into ‘jelly-roll’-like cylindrical structures; (c) Reversal of domain swapping and

fragmentation within the ‘jelly-roll’-like folds of higher-order oligomers can yield fibrils comprising antiparallel

cross-β structure [292,293]; (d) The alternative conversion of the ‘jelly-roll’-like cylinder involves reversal of

domain swapping and the edge-to-edge closing of a β barrel. The homotrimer of tetramers can form in this

way the 12-stranded antiparallel barrel which we believe represents the structure of the neuropathological Aβ
globulomer [258,294] also isolated as the brain Aβ*56 oligomer [262,295,296]; (e) The 12-stranded

antiparallel barrel can ‘capture’ Aβ dimers and tetramers via antiparallel interlocking of the ‘free’ N-terminal

segments. This is likely the mechanism of self-replication of the off-pathway Aβ oligomers as shown in the

diagram [260,297–299]. Note that the low-permittivity environment of the interior of a larger aggregate may

promote strand!helix conversion in reversal of the initial stages of dimerization of Aβ [301]; (f) The alternative

edge-to-edge aggregation of Aβ, the staggered (out-of-register) parallel assembly; (g) The 12-stranded

antiparallel barrel may also ‘capture’ Aβmonomers that form a staggered parallel assembly and fold into

6-stranded out-of-register parallel barrel. This type of aggregation would account for the formation of the off-

pathway Aβ oligomers 150±30 kDa [201,202] and the NU4-reactive Aβ oligomer ~80 kDa [300] (30-mer and

18-mer, respectively), and for the solid state NMR evidence of both antiparallel and parallel intermolecular

contacts in the 150±30 kDa oligomers [201,202].

https://doi.org/10.1371/journal.pone.0180905.g024
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backbone H-bonding i.e. bound upright, is also consistent with the two modes of paranuclei

stacking: the aggregates form either large ring structures or elongated bar structures, see the

inserts in Fig 24A(f).

Formation of a stack facilitates conformational conversion of the antiparallel sheets β"β'#
and β''"β000# of the paranuclei into parallel cross-β structure [272] which is stabilized within the

pre-organized architecture of the aggregates [274,275]. This process is also facilitated by the

intercalation of the aromatic cations or anions e.g. methylene blue [276], calmidazolium chlo-

ride [277] or orcein-related O4 [278], see Fig 24A(e), and the relatively low H-bonding pro-

pensity of the ‘C5
� strands’ i.e. the least polarized backbone segments.

Morphological diversity of the protofibril ‘on-path’ intermediates of fibrillization in solu-

tion [279–281] suggests that both paths of paranuclei assembly are also followed in the inter-

mediate stages of polymerization [282], Fig 24A(f). However, the annular aggregates of

paranuclei might more readily undergo the conformational conversion. Such a conversion

would yield fibrils consisting of two protofilaments that comprise parallel cross-β sheets in

antiparallel alignment and this arrangement is indeed observed in the cryoEM-derived struc-

tures of Aβ fibrils [283,284], Fig 24A(g). These fibrils can catalyze formation of the staggered

antiparallel dimers by ‘unwinding’ collapsed-coil Aβ monomers via antiparallel interlocking of

the N-terminal segments (domain swapping) along the fibril’s edges and by ensuring mono-

mers’ proximity [43,285,286], Fig 24A(h). Lastly, folding of the cross-β sheets shown in Fig

24A(g) into β arcades may initiate separation of the two protofilaments into monomeric fibrils

[287], and remodeling of those fibrils into the dimeric and trimeric fibrils [288], Fig 24A(i).

(v) Edge-to-edge assembly: Off-pathway oligomers, self-replicating non-fibrillar aggre-

gates and fibrils comprising antiparallel β-sheets. The alternative pathway of aggregation

of Aβ proteins [236–238,255–264,289–301] begins, we propose, as the edge-to-edge complexa-

tion of extended dimers and monomers to form staggered antiparallel trimers, Fig 24B(a) (the

trimer previously identified as a highly toxic oligomer [259] may have this structure), or tetra-

mers, Fig 24B(b). The morphology of polymerization of Aβ on graphite results from this type

of assembly: the extended Aβ chains are held on graphite by the sidechains’ interactions with

the hydrophobic surface and consequently assemble edge-to-edge via backbone H-bonding.

The long antiparallel monolayer stacks of Aβ are ~19 nm wide [42] i.e. the chains are staggered

(extended peptide is ~15 nm long). Thus, these stacks can catalyze alongside polymerization

via domain swapping; this could be the origin of the characteristic clusters of parallel stacks on

graphite, see the inserts in Fig 24B(b).

The oligomers obtained by the edge-to-edge assembly cannot fold into coiled coils [154]

but further polymerization via domain swapping may produce high-order oligomers that

retain the staggered antiparallel alignment of strands [261,289–291]. By a combination of

twist, bend and rise, such oligomers can fold into ‘jelly-roll’-like cylindrical structures. Frag-

mentation within the cylindrical folds of higher-order oligomers can yield fibrils comprising

antiparallel cross-β structure [292,293], Fig 24B(c). The alternative conversion of the ‘jelly-

roll’-like cylinder may involve the edge-to-edge closing of a β barrel and a concomitant rever-

sal of domain swapping. The homotrimer of tetramers can form in this way the 12-stranded

antiparallel barrel which we believe represents the structure of the neuropathological Aβ glo-

bulomer [258,294], also isolated as the brain Aβ�56 oligomer [262,295,296], Fig 24B(d). Class

III assembly modulators apparently promote the dissociation of such barrels while Class I

modulators promote the formation of pseudomicellar aggregates [276].

The proposed structure suggests a mechanism of self-replication of the off-pathway oligo-

mers [260,297–299]. The N-terminal segments of Aβ, which are protruding from the

12-stranded antiparallel barrel, are not expected to form stable in-register 6-stranded parallel

barrels. Thus, these N-terminal segments can ‘capture’ the staggered antiparallel Aβ dimers or
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tetramers via domain swapping and catalyze in this way the assembly of the identical

12-stranded barrel, Fig 24B(e).

In principle, the edge-to-edge aggregation of Aβ may also result in the staggered (out-of-

register) parallel assembly, Fig 24B(f). This type of β structure will have a tendency to form a

parallel β barrel, cf. Fig 22B(d), as long as it is stabilized e.g. by the antiparallel barrel serving as

a molecular ‘template’ as shown in Fig 24B(g). Here, the N-terminal segments on one side of

the 12-stranded barrel bind just 6 Aβ monomers which can then form stable 6-stranded out-

of-register parallel barrel. This type of aggregation would account for the formation of the off-

pathway Aβ oligomers 150±30 kDa [201,202] and the NU4-reactive Aβ oligomer ~80 kDa

[300] (30-mer and 18-mer, respectively), and for the presence of both antiparallel and parallel
intermolecular residue contacts in the 150±30 kDa oligomers [201,202]. Note that the low-per-

mittivity environment of the interior of such large aggregates may promote strand!helix con-

version in a reversal of the initial stages of dimerization of Aβ [301].

(vi) Morphology of Aβ aggregation on the NIBC monolayers on gold: Combined effects

of cysteine chirality and wedge-like shape of Aβ paranuclei. The notion of the wedge-

shape control of aggregation morphology may explain the effect of chirality on the assembly of

Aβ(1–40) on the self-assembled monolayers of R(S)-N-isobutyrylcysteine (NIBC) on gold [41].

By analogy to Aβ polymerization on mica, section b.(iv) and Fig 24A(f), aggregation of Aβ(1–

40) on NIBC monolayers produces large ring structures and elongated bar structures. How-

ever, the course of aggregation depends on the configuration of the amino acid: large rings

form on L-NIBC monolayers, and elongated bars form on D-NIBC monolayers, see the inserts

in Fig 25. Binding of the H14-K16 segment of Aβ to the cysteine monolayer, Fig 25(a), was

shown to be crucial to observe this effect [41]. Given that the NIBC monolayers comprise pairs

of long files of N-isobutyrylcysteines [302], Fig 25(b), we assume that the putative complex of

the Aβ paranucleus on the monolayer surface involves backbone H-bonding of the extended

H14-K16 segment to the isobutyryl carbonyls of one file of N-isobutyrylcysteines in the pair

(i.e. paranucleus is bound upright). The positively charged side chains of His-14 and Lys-16

extend on the same side of the strand and can stabilize the complex by binding to the isobu-

tyryl carbonyls of the second file of N-isobutyrylcysteines in the pair. On the surface of L-

NIBC monolayer [302], binding of the H14 side chain to the isobutyryl C = O of the neigh-

bouring row of cysteines is unimpeded; the K16 side chain encounters an impediment but its

length and flexibility make the binding possible, see Fig 25(c). Thus, the tight packing of para-

nuclei is achieved via parallel alignment of the H14-K16 segments which directs all the com-

plexed paranuclei to ‘wedge out’ in one direction and promotes annular stacking and

formation of large ring structures. In contrast, on the surface of D-NIBC monolayer [302],

H14 side chain cannot bind to the isobutyryl C = O of the neighbouring row of cysteines: it

encounters an impediment and lacks the flexibility and length needed to overcome the hin-

drance, Fig 25(d). Thus, the tight packing on this surface is achieved via antiparallel alignment

of the H14-K16 segments which directs the neighbouring paranuclei to ‘wedge out’ in opposite

directions and thereby promotes tubular stacking and formation of elongated bar structures.

(vii) Fibrillization of tau protein and α-synuclein via antiparallel coiled-coil pathway.

Tau is a highly soluble, intrinsically disordered protein [303,304]. Its sequence includes the

‘repeat domain’ which binds to lipid membrane surfaces [305,306] and microtubules [307,308]

via short helices, Fig 26A(a), folds into β-hairpins upon binding to β-wrapin TP4 [309], and

forms amyloid fibrils. The FPi profile of the ‘repeat domain’ construct K19 (R1-R3R4) at pH 7

shows Aβ-like pattern of backbone polarization which corresponds to the sequence C7eq-C5-

C5
�-C5 of anticipated ‘strand’ configurations, Fig 26A(b); the FPi-based assignment of second-

ary structure is consistent with the solid-state NMR data on the K19 amyloid fibrils [310]. The

FPi plot also shows that the ‘C5 strand’ propensity of the V337-E342 segment (VEVKSE) is lost
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at pH 2, and indeed K19 does not forms fibrils at low pH [310]. Thus, nucleated polymeriza-

tion, assumed to be the main pathway of fibrillization of tau [311–314], may involve the stag-

gered antiparallel dimers and disk-shaped hexameric intermediate analogical to the

paranucleus of Aβ. The annular assembly of the disk-shaped paranuclei and the subsequent

conformational conversion (antiparallel!parallel β-structure) would yield fibrils consisting of

Fig 25. Morphology of Aβ aggregation on the NIBC monolayers on gold: The combined effects of cysteine chirality and wedge-

like shape of Aβ paranuclei. (a) The putative complex of the Aβ paranucleus on the monolayer surface involves backbone H-bonding of

the extended H14-K16 segment to the isobutyryl carbonyls of N-isobutyrylcysteines [41]. The positively charged side chains of His-14 and

Lys-16 extend in the same direction. (b) The topology of the self-assembled cysteine monolayer on gold [302]: The monolayer comprises

pairs of long files of N-isobutyrylcysteines. (c) A model of the surface of L-NIBC monolayer [302], H14 and K16 side chain interactions with

the L-NIBC isobutyryl carbonyls, and the putative tight packing of two Aβ paranuclei. The binding of the H14 side chain to the isobutyryl

C = O of the neighbouring row of cysteines is unimpeded; the K16 side chain encounters an impediment but its length and flexibility make

the binding possible. Thus, the tight packing of paranuclei is achieved via parallel alignment of the H14-K16 segments which directs all the

complexed paranuclei to ‘wedge out’ in one direction i.e. promotes annular stacking and formation of large ring structures. (d) A model of

the surface of D-NIBC monolayer [302], H14 and K16 side chain interactions with the D-NIBC isobutyryl carbonyls, and the putative tight

packing of two Aβ paranuclei. Here the H14 side chain cannot bind to the isobutyryl C = O of the neighbouring row of cysteines; it

encounters an impediment and lacks flexibility and length needed to overcome the hindrance. Thus, the tight packing on this surface is

achieved via antiparallel alignment of the H14-K16 segments which directs the neighbouring paranuclei to ‘wedge out’ in opposite

directions and thereby promotes tubular stacking and formation of elongated bar structures.

https://doi.org/10.1371/journal.pone.0180905.g025
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Fig 26. Electronic configuration of the polypeptide backbone and molecular recognition in formation

of β structure: Mechanism of aggregation of tau, α-synuclein, human prion hPrP and HET-s PFD. (A)

Tau proteins: (a) The FPi plot and secondary structure of the 46-residue fragment of Tau(267–312) bound to

microtubules PDB ID 2mz7 [307]; (b) The FPi profile of the repeat domain construct K19 (R1-R3R4) at pH 7 is

similar to the FPi profile of Aβ at pH 5. The FPi-based assignment of secondary structure is consistent with the
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two protofilaments which comprise parallel cross-β sheets in the antiparallel alignment. The

solid-state NMR structure of β-sheet core of tau paired helical filaments confirms the expected

arrangement, Fig 26A(c) [315]; fracture, reassembly and growth of those fibrils may be the

source of polymorphism [316].

α-Synuclein is a highly pleiomorphic protein as well [317–323], Fig 26B. The FPi plot for

the ~35-40 residue-long amyloidogenic region of human α-synuclein which incorporates the

solid-state NMR data on the K19 amyloid fibrils [310]. Note that at pH 5 the V337-E342 segment (VEVKSE)

has α-helix propensity rather than C5 propensity required to stabilize the coiled-coil dimer, and K19 actually

does not aggregate at low pH [310]. Nucleated polymerization, assumed to be the main pathway of

fibrillization of tau [311–314], may involve disk-shaped hexameric intermediate analogical to the paranucleus

of Aβ; (c) The annular assembly of the disk-shaped paranuclei and the subsequent conformational conversion

(antiparallel!parallel β-structure) would yield fibrils consisting of two protofilaments which comprise parallel

cross-β sheets in the antiparallel alignment. The solid-state NMR structure of β-sheet core of tau paired

helical filaments confirms the expected arrangement [315]. (B) α-Synuclein: (a) The FPi plot shows

secondary structure assignment for a putative tetramer (colour shading reflects helix propensity based on

solution NMR data) [318,319], but the existence of such a tetramer is questioned [320,321]; (b) The micelle-

bound monomer is helical PDB ID 1xq8 [322,323]; (c) The FPi profile of the ~35–40 residue-long

amyloidogenic region of human α-synuclein which incorporates the NAC sequence essential to fibrillization of

this protein. The pattern of backbone polarization corresponds to the C7eq-C5-C5*-C5 sequence of the

anticipated ‘strand’ configurations. Thus, like Aβ and tau, α-synuclein is expected to form the antiparallel, out-

of-register, coiled-coil dimer shown in the diagram; (d) The tubular (amyloid pore) [271,324,325] and annular

(cf. the insert, diameter ~ 120 nm) [324,326] aggregates of α-synuclein may be formed by the stacking of the

wedge-like disk-shaped hexamers analogical to the paranuclei of Aβ. Persistent oligomers of MW ~80 kDa

and circular appearance (cf. the insert, diameter ~10 nm) are indeed observed during the polymerization in

the presence of heme [326]; (e) Conformational conversion (antiparallel!parallel β structure) within the

annular stacks of the paranucleus-like hexamers would yield fibrils consisting of two protofilaments which

comprise parallel cross-β sheets in the antiparallel alignment. A recently proposed model of α-synuclein

protofibril is consistent with this expectation [332]. (C) Prion proteins (PrP), conversion to parallel cross-β
structure: (a) The FPi plot for the recombinant polypeptide hPrP23-144 (a model for Y145Stop variant of

human prion, the mutation eliminates the entire α-helical region of hPrP) which undergoes a spontaneous

conversion from a monomeric disordered state to the in-register parallel cross-β fibrillar form [335–337].

Ignoring the palindromic segment, see the text, the anticipated β structure configuration of the amyloidogenic

region is the sequence C7eq-C5-C5*-C5 (β0-β1-β2-β3) by analogy to Aβ, tau, and α-synuclein. Thus, this

region may also form the antiparallel, out-of-register, coiled-coil dimers which assemble via domain swapping

into superhelical oligomers and yield fibrils comprising sheets of parallel cross-β structure; (b) The FPi vs.

ΔFPi-1!i+1 plots for the native helices of hPrP at high and low pH. The plots suggest that the helix α1 is

destabilized by reduction of pH while the helices α2 and α3 are becoming stable as the compact structure

unravels at low pH; (c) The putative pathway of assembly and structure of the octameric paranucleus obtained

at low pH [338–348]. The insert shows hPrP aggregates [349] which could be formed by tubular stacking of

such octamers or similar higher-order oligomers; (d) The single-sheet parallel in-register cross-β structure of

PrP [350,351]. (D) Prion proteins (PrP), conversion to β-solenoid fibrils. (a) The structure of fibrils of GPI-

anchorless PrP 27–30 [352,353]. The protofilaments are formed by stacking four-rung left-handed solenoids

that include nearly entire length of the protein; (b) The FPi plot for hPrP (omitting most of the N-terminal

domain) and the proposed four-rung solenoid structure. The assignment of the strands marked by the green

outlines follows the two-rung model [354] proposed as a revision of the original model of the left-handed β
helix [355]; the strands β7 through β12 are assigned based on the FPi minima indicating the ‘C5 strand’

propensity. The proposed structure places Cys179 and Cys214 in register (orange arrows) and all Pro

residues (brown arrows) in turns and loops. This structure is also consistent with the anticipated β structure

configuration of the amyloidogenic region which can be described as the sequence of two ‘asymmetrically’

complementary arrays of alternant incipient strands: C5-C7eq-C5* followed by C7eq-C5-C7eq (β1-β2-β3

followed by β4-β5-β6 i.e. including the palindromic segment); (c) The model of self-propagation of the

infectious prion: the head-to-tail domain swapping between the native conformer and the β solenoid

conformer that involves interlocking of the βΑ and βΩ strands (marked by red outlines in FPi plot) via

assembly of the parallel β sheet C7eq#C5#. (E) HET-s prion forming domain. (a) The superposed FPi plots

for HET-s prion forming domains from P. anserina and F. graminearum, and the two-rung left-handed β
solenoid fold that the domain from P. anserina adopts in amyloid fibrils [356–358]. The anticipated β structure

configuration of the P. anserina domain is the sequence of two ‘asymmetrically’ complementary arrays of

alternant incipient strands: C7eq-C5-C7eq-C5 followed by C5-C7eq-C5-C7eq (β1-β1’-β2-β3 followed by β4-β4’-

β5-β6); (b) The superposed FPi plots for the HET-s prion forming domain from P. anserina at low pH which

induces formation of a generic amyloid fold [363–367], and the M8 variant of this domain that forms toxic

amyloids comprising antiparallel β structure [368–370].

https://doi.org/10.1371/journal.pone.0180905.g026
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NAC sequence essential to fibrillization of this protein, is shown in Fig 26B(c). Again, the pat-

tern of backbone polarization corresponds to the familiar sequence of the anticipated ‘strand’

configurations C7eq-C5-C5
�-C5. Thus, like Aβ and tau, α-synuclein is expected to form the

antiparallel, out-of-register, coiled-coil dimer. The tubular (amyloid pore) [271,324,325] and

annular (cf. the insert, diameter ~120 nm) [324,326] aggregates of α-synuclein may be formed

by the stacking of the wedge-like disk-shaped hexamers analogical to the paranuclei of Aβ,

Fig 26B(d). Persistent oligomers of the expected MW ~80 kDa and circular appearance (cf. the

insert in Fig 26B(d), diameter ~10 nm) are indeed observed during the polymerization in the

presence of heme [326]. On the other hand, the available evidence also points to the existence

of independent alternative pathways of aggregation and antiparallel β-structure of oligomers

[327–331]. The annular assembly of the disk-shaped paranucleus-like hexamers and the subse-

quent conformational conversion (antiparallel!parallel β-structure) would yield fibrils con-

sisting of two protofilaments which comprise parallel cross-β sheets in the antiparallel

alignment. A recently proposed model of α-synuclein protofibril is consistent with this expec-

tation [332], Fig 26B(e); the β arcade fold of each protofilament may render the fibril prone to

dissociation and remodelling [333,334].

(viii) Fibrillization of prions via the antiparallel coiled-coil pathway. Fibrillization of

the disordered amyloidogenic region of mammalian prions appears to be controlled by the C-

terminal well-structured half of the molecule. This part of the molecule is altogether missing in

the recombinant polypeptide hPrP23-144 which corresponds to the human PrP Y145Stop var-

iant (the mutation eliminates the entire α-helical region of hPrP), and hPrP23-144 undergoes

a spontaneous conversion from the monomeric disordered state to a parallel, in-register,

cross-β fibrillar form. The C-terminal I138-F141 segment (red outline in the FPi plot in

Fig 26C(a)), is essential to this conversion but the palindromic M113-A120 segment (blue out-

line) is not [335–337]. Thus, the anticipated β structure configuration of the amyloidogenic

region can be described by the C7eq-C5-C5
�-C5 sequence of ‘strands’ by analogy to Aβ, tau, and

α-synuclein, see the β0-β1-β2-β3 strands in Fig 26C(a). This pattern suggests that hPrP23-144

also forms the antiparallel coiled-coil dimers which assemble via domain swapping into super-

helical paranuclei and yield fibrils comprising sheets of parallel cross-β structure.

In the full-length molecule, the same mode of folding can be induced by reduction of pH.

The FPi vs. ΔFPi-1!i+1 plots for the native helices of hPrP at high and low pH suggest that the

helix α1 is destabilized by reduction of pH while the helices α2 and α3 are becoming stable as

the compact structure unravels at low pH. Disruption of the native β-sheet and unfolding of

the helix α1 ‘unmasks’ the C7eq-C5-C5
�-C5 sequence, see the αi/A-state in Fig 26C(c). Thus, at

low pH, hPrP also forms the antiparallel coiled-coil dimers (B-state) which assemble via

domain swapping into superhelical paranuclei like the octamer (β˚) shown in Fig 26C(c) [338–

348]. The insert shows hPrP aggregates [349] formed, we believe, by tubular stacking of such

octamers or similar higher-order oligomers. The stacks of superhelical paranuclei may convert

to fibrils comprising two antiparallel sheets of parallel cross-β structure, and the dissociation

of such fibrils, combined with conversion of the helices α2 and α3 into extended strands, even-

tually yields the single-sheet parallel cross-β structure [350,351], Fig 26C(d).

(ix) Fibrillization of prions via the β solenoid pathway. The fibril of GPI-anchorless PrP

27-30 comprises a pair of protofilaments which are formed by stacking four-rung left-handed

solenoids that include nearly entire length of the protein [352,353], Fig 26D(a). Thus, the alter-

native direction of folding of hPrP involves realignment of the native two-stranded β-sheet,

and refolding of the three C-terminal helices into a β solenoid while the disulfide bond is

intact. The FPi plot for hPrP (omitting most of the N-terminal domain) suggests that there is

indeed the second way to describe the anticipated β structure configuration of the amyloido-

genic region, Fig 26D(b). The strands marked by the green outlines in the plot: {β1-β2-β3}
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followed by {β4-β5-β6} (i.e. including the palindromic segment) form the sequence of two

‘asymmetrically’ complementary arrays of alternant incipient strands: C5-C7eq-C5
� followed by

C7eq-C5-C7eq. Such a sequence is compatible with the intramolecular parallel rather than anti-

parallel assembly of β structure, cf. section a.(i) and Figs 2 and 5, and is expected to fold into a

two-rung β solenoid. The assignment of the strands marked by the green outlines actually fol-

lows the two-rung model [354] proposed as a revision of the original model of the left-handed

β helix [355]. The strands β7 through β12 (the ‘C5 strand’ segments in the FPi plot) complete

our assignment of the four-rung β solenoid structure which places Cys179 and Cys214 (orange

arrows) in register, and all Pro residues (brown arrows) in turns and loops. The assignment

implies that the strands β4 and β7 which form the antiparallel β sheet C7eq"C5# in the native

structure, do indeed realign into the more stable parallel β sheet C7eq"C5" in the solenoid. The

two strands marked by the red outlines, βΑ and βO, have the C7eq and C5 configurations. The

head-to-tail domain swapping between the native conformer and the β solenoid conformer

that produces parallel β sheet βΑ(C7eq)#βO(C5)# (FP-directed molecular recognition), may

underlie self-propagation of infectious strains of mammalian prions, see Fig 26D(c).

(x) Fibrillization of HET-s prion forming domains via β solenoid and antiparallel

coiled-coil pathways. The HET-s prion forming domain (PDF) from P. anserina adopts the

two-rung left-handed β solenoid fold in amyloid fibrils [356–358], Fig 26E(a). The FPi plot at

pH 7 confirms that the strands {β1-β1’-β2-β3} and {β4-β4’-β5-β6} of this fold constitute the

sequence of two ‘asymmetrically’ complementary arrays of the alternant incipient strands:

C7eq-C5-C7eq-C5 followed by C5-C7eq-C5-C7eq. As was argued previously, such a sequence is

compatible with the intramolecular parallel rather than antiparallel assembly of β structure,

and is expected to fold into a two-rung β solenoid as long as such a solenoid fold is supported

by the outer side chains’ ladders and interior side chains’ packing [359–362]. The PFD domain

from F. graminearum adopts the same fold in spite of limited sequence identity [362] and the

FPi plot reveals similar pattern of the incipient β structure propensity with one exception of

the strand β4.

In contrast, low pH induces formation of a generic amyloid fold of the P. anserina domain

[363–367] and the M8 variant of this domain forms toxic amyloids comprising antiparallel β
structure [368–370]. The FPi plots in Fig 26E(b) suggest that the wt PFD loses the ‘asymmetric’

complementarity of the ‘strand’ sequence, while its variant M8 loses both ‘asymmetric’ com-

plementarity and the asparagine (Asn) ladders [359–362]. Rather than fold into a solenoid, the

protonated or modified HET-s PFD is likely to behave like the C7eq-C5-C5
�-C5 sequence and

polymerize via aggregation of the antiparallel dimers [363–370].

Concluding remarks

The qualitative PMO theory of organic structure and reactivity provides simplified models

which, inevitably, sacrifice some aspects of reality. The folding potential function, FPi, that we

employed in this study is designed to capture the effect of distribution of charge density on the

conformational and H-bonding propensity of the polypeptide backbone; it does not carry any

information about the constraints introduced e.g. by the hydrophilic residues or by proline,

and obviously does not take into account any side chain-side chain interactions. Indeed, on

several occasions in the preceding discussion, it was clearly useful to complement the FPi plots

by showing distribution of the ionized side chains and potential ‘steric zipper’ segments or the

presence of proline and cysteine residues in the sequence. However, simplification may also

underlie the strength of the PMO theory models. And so, surprisingly, the FPi and FPi vs.ΔFPi-
1!i+1 plots are found to identify basic features of secondary and tertiary structure, establish

sequence correlates of metamorphic and pH-driven equilibria, relate binding affinities and
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folding rate constants to secondary-structure preferences, and manifest common backbone
polarization patterns in amyloidogenic regions of Alzheimer’s Aβ and tau, Parkinson’s α-synu-

clein and TSEs’ prions. Thus, by stripping away the side chain-side chain interactions, we dis-

cover that the main chain H-bonding and hyperconjugation, described in terms of two-

electron stabilizing interactions of the filled and vacant molecular orbitals [7–15], make signifi-

cant and sometimes decisive contributions to the stability of both native and transition states.

The new vocabulary and grammar of encoding the 3D structure of proteins which emerge

amidst these findings readily define hitherto elusive pathways of misfolding and aggregation

associated with brain proteinopathies. One cannot account, it appears, for a wide range of

folding phenomena without taking into consideration the stereoelectronic effects such as the

generalized anomeric effect and the homohyperconjugation of peptide linkages [16–22,28–

33,51–58]. This conclusion is in line with the arguments of backbone-based theory of protein

folding [2], and particularly concerns conformational behaviour of highly pleiomorphic pro-

teins associated with neurodegenerative diseases.
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