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In 671 mother–child (49% male) pairs from an epidemiological birth cohort, we investigated (a) prospective
associations between DNA methylation (at birth) and trajectories (ages 7–13) of oppositional defiant disorder
(ODD), and the ODD subdimensions of irritable and headstrong; (b) common biological pathways, indexed
by DNA methylation, between ODD trajectories and attention deficit hyperactivity disorder (ADHD); (c)
genetic influence on DNA methylation; and (d) prenatal risk exposure associations. Methylome-wide signifi-
cant associations were identified for the ODD and headstrong, but not for irritable. Overlap analysis indicated
biological correlates between ODD, headstrong, and ADHD. DNA methylation in ODD and headstrong was
(to a degree) genetically influenced. DNA methylation associated with prenatal risk exposures of maternal
anxiety (headstrong) and cigarette smoking (ODD and headstrong).

Oppositional defiant disorder (ODD) is defined by
the ICD (WHO, 1992) and Diagnostic and Statistical
Manual of Mental Disorders (DSM; American Psychi-
atric Association, 2013) as a recurrent pattern of
defiant, disobedient, and hostile behavior beginning
in childhood or adolescence. Together with atten-
tion deficit hyperactivity disorder (ADHD) and con-
duct disorder, ODD is one of the leading reasons
for referral and continued involvement in youth
services (Burke, Mulvey, & Schubert, 2015). The
worldwide lifetime prevalence rate of ODD is 10%
and among those with ODD, the majority meet
criteria for at least one other concurrent psychiatric
diagnosis, including both internalizing (depression,
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anxiety) and externalizing (ADHD, conduct disor-
der, substance use) problems (Nock, Kazdin,
Hiripi, & Kessler, 2007). Beyond concurrent comor-
bidity, ODD in childhood is also highly predictive
of a range of adult difficulties (Burke, Rowe, & Boy-
lan, 2014).

Given its high prevalence rate and the associa-
tion with a wide range of adjustment difficulties, it
has been proposed that ODD may represent a com-
plex and multidimensional psychiatric category
(Stringaris & Goodman, 2009). Evidence indeed
suggests that ODD can be seen as including both
an irritable (i.e., temper outbursts, easily annoyed,
angry/resentful) and a headstrong (i.e., argued with
grown-ups, rule violations, purposefully annoy
others, blame others) subdimension (Stringaris &
Goodman, 2009), which show high discriminant
validity. Although these two subdimensions are
correlated, numerous studies have now shown
that the irritable subdimension is prospectively
associated with internalizing difficulties (i.e.,
depression), whereas the headstrong subdimension
is prospectively associated with externalizing diffi-
culties (Whelan, Stringaris, Maughan, & Barker,
2013). As a result, the DSM–V (American Psychi-
atric Association, 2013) now recognizes the irritable
and headstrong subdimensions, and a recommen-
dation has been made for irritable as a specifier to
ODD in the ICD–11 (Lochman et al., 2015).

Despite the clinical relevance of ODD and its
subdimensions, however, surprisingly little is
known about (a) respective biological influences
and (b) the extent to which these influences are
shared or distinct—both within and between disor-
ders. For example, a number of twin studies have
not only shown that ODD symptoms in general
have a strong heritable basis (Barker, Cecil, Walton,
& Meehan, 2017), but also that ODD shares sub-
stantial common genetic variance (Tuvblad, Zheng,
Raine, & Baker, 2009) and environmental influence
(Burt, Krueger, McGue, & Iacono, 2001) with
ADHD and other behavior problems. Hence,
genetic as well as familial and contextual influences
can contribute to the comorbidity between ODD
and ADHD. With regard to the ODD subdimen-
sions, only one twin study (Stringaris, Zavos,
Leibenluft, Maughan, & Eley, 2012) has examined
the contribution of genetic and environmental influ-
ences and reported that irritable and headstrong
subdimensions share substantial common genetic
influence (rg = .66), but little common environmental
influence. Moreover, irritable shared common influ-
ence with depression (rg = .70), whereas headstrong
shared common influence with delinquency

(rg = .80). To our knowledge, no published genome-
wide association study has focused on ODD; how-
ever, a recent study attempted to contrast irritable
and headstrong, but did not identify genome-wide
significant loci (Aebi et al., 2015). Candidate gene
studies that have examined ODD have often tar-
geted genetic variability in the serotonergic and
dopaminergic system, which are also implicated in
ADHD and conduct problems (Malmberg, Warge-
lius, Lichtenstein, Oreland, & Larsson, 2008). No
published candidate gene studies have compared the
irritable and headstrong subdimensions. Hence,
although twin studies show heritable biological
influence, the extent to which (a) ODD and the sub-
dimensions share specific influences and (b) how
these specific influences may associate with comor-
bid externalizing problems (ADHD, conduct prob-
lems) has largely not been elucidated (e.g., Harvey,
Breaux, & Lugo-Candelas, 2016).

Research has begun to demonstrate the poten-
tial of epigenetic processes for understanding bio-
logical processes that associate with child and
adolescent psychiatric disorders (Mill & Heijmans,
2013). Animal models and human studies indicate
that genetic and environmental effects known to
coact on early psychiatric problems are likely to
intersect via epigenetic modifications. Epigenetic
processes are essential for normal cellular develop-
ment and differentiation, and allow the long-term
regulation of gene function through nonmutagenic
mechanisms (Henikoff & Matzke, 1997). Data
show that epigenetic processes are responsive to
both genetic and environmental influences. With
regard to genetic influences, twin research has
shown that DNA methylation, the most researched
type of epigenetic process in humans, is highly
heritable in the promoter regions of genes (Kamin-
sky et al., 2009), and that variability in DNA
methylation over time can be partially attributable
to heritable factors (e.g., between 20% and 97%
across different genes; Heijmans, Kremer, Tobi,
Boomsma, & Slagboom, 2007). Molecular studies
also report that genetic influence on DNA methy-
lation can be be present at birth and be somewhat
stable across the life course (Gaunt et al., 2016).
These methylation quantitative trait loci (mQTL)
have been found to associate with gene expression
and may serve as markers for genetic influence on
gene regulation.

With regard to environmental effects, DNA
methylation has been shown to vary as a function
of numerous nutritional, chemical, physical, and
psychosocial exposures (Szyf & Bick, 2013). The
methylation of CpG sites, overrepresented in CpG
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islands and often located in the promoter regula-
tory regions of many genes, disrupts the binding of
transcription factors and can have important effects
on normal gene function, hence providing a poten-
tial mechanism for long-term alterations (and main-
tenance) in phenotype (Meaney, 2010). DNA
methylation is proposed as a mechanism by which
exposure to early adverse conditions during critical
periods of development can result in long-term
vulnerability for disease (Gluckman, Hanson,
Spencer, & Bateson, 2005). To date, much of what is
known about DNA methylation is based on animal
research where variability in DNA methylation in
response to prenatal risk exposures and teratogens
has been examined in highly controlled experimen-
tal research (Roth, 2013). Animal findings are begin-
ning to be validated in observational studies in
humans using peripheral samples (i.e., blood, buccal
cells). For example, prenatal maternal depression,
anxiety, nutrition, and toxin exposure (e.g., cigar-
ettes smoking) associates with changes in DNA
methylation in the cord blood of newborns (e.g.,
Binder & Michels, 2013; Richmond et al., 2015).

It is important to note that animal studies offer
the ability to examine tissue-specific DNA methyla-
tion with central nervous system (CNS) function
and to experimentally validate a casual mechanistic
role in disease etiology. In living humans, the study
of DNA methylation is often limited to peripheral
samples, which may not necessarily be a surrogate
of CNS activity or be mechanistically involved in a
disease. For example, although certain studies with
living children/adolescents have attempted to bio-
logically characterize the identified DNA methyla-
tion associations by testing whether effects replicate
across multiple tissues (Dadds, Schollar-Root, Len-
root, Moul, & Hawes, 2016), associate with gene
expression (Ruggeri et al., 2015), or even the struc-
ture or function of the brain (Walton et al., 2017),
the mechanistic role of peripheral DNA methylation
in the etiology of psychopathology is largely
unknown. In fact, it is equally possible that DNA
methylation can function as a noncausal biomarker
of environmental risk exposure and/or stress-
related disorders. Here, differences in DNA methy-
lation may be a consequence of disease etiology
(e.g., risk exposure, genetic vulnerability, and/or
psychopathology) rather than a causal mechanism
within the disease process. In etiologic epidemiol-
ogy, this is termed “reverse causality” (Ladd-Acosta
& Fallin, 2015). Yet even in this situation DNAm
can still serve as an important biomarker of disease
and have clinical utility. For example, epigenetic
patterns have already been shown to be useful in

cancer detection, prognosis, and even predicting
response to treatment (Ladd-Acosta & Fallin, 2015).

In humans, DNA methylation has indeed been
discussed as a potential biomarker (e.g., Barker,
Walton, & Cecil, 2017; Szyf, 2015) indexing not only
early risk exposure(s), but also vulnerability for
behavioral and/or emotional problems, both in
prospective birth cohorts—starting as early as birth
(Rijlaarsdam et al., 2017)—and cross-sectional clini-
cal samples in childhood (Dadds, Moul, Hawes,
Mendoza Diaz, & Brennan, 2015), adolescence, and
adulthood (Frodl et al., 2015). Some of these DNA
methylation studies have targeted prespecified can-
didate genes, selected on the basis of known biolog-
ical and functional relevance to the risk exposure
and the psychiatric disorder in question. Indeed,
research is beginning to examine both prenatal
risk, DNA methylation at birth, and subsequent
vulnerability for psychiatric disorder (Barker,
Walton, et al., 2017). For example, Rijlaarsdam et al.
(2017), interested in the comorbidity between con-
duct problems and ADHD, reported that prenatal
unhealthy diet (fast food, sweets) associated with
higher insulin-like growth factor 2 gene (IGF2)
methylation at birth (i.e., cord blood), which, in
turn, associated with higher ADHD symptoms for
children with early onset conduct disorder. The
study focused on IGF2 due to its role in metabolic
function, placental and fetal growth, and the devel-
opment of brain regions that associate with ADHD
(Heijmans et al., 2008).

When the pathophysiology of a disease is
known, it can be straightforward to define candi-
date genes. However, for complex and multiply
determined disorders, such as ODD (and its subdi-
mensions), the exact pathophysiology is not yet
known, therefore candidate genes—such as IGF2—
are not likely to explain the majority of variance of
a disorder (Salvatore & Dick, 2018). Hypothesis-free
scans of DNA methylation across the genome (i.e.,
the methylome) allow for discovery of novel biolog-
ical correlates, which can aid in the development of
more accurate and holistic etiologic knowledge. A
recent methylome-wide analysis study by Walton
et al. (2016), for example, reported a developmental
trajectory of high ADHD symptoms (ages 7–15)
associated with DNA methylation (at birth) in 13
genetic loci. Of interest, one of the methylome-wide
significant loci was linked to ZNF544, previously
shown to associate with ADHD (Lasky-Su et al.,
2008). Walton et al. (2016) did not assess the extent
to which DNA methylation loci were influenced by
genetic influence and/or prenatal environmental
stress exposures or if the ADHD loci associated
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with ODD—despite research previously described
showing genetic and environmental influences on
both DNA methylation (Gaunt et al., 2016; Rijlaars-
dam et al., 2017) and the comorbidity ODD and
ADHD (Barker, Cecil, et al., 2017).

Using prospective data drawn from a large pop-
ulation-based sample, featuring DNA methylation
at birth and ODD trajectories spanning childhood
to adolescence, the current study had four overall
research aims. First, we conducted hypothesis-free,
methylome-wide analyses of trajectories of ODD
and the subdimensions of irritability and head-
strong, respectively (while controlling for each
other). The second overall aim was to examine
genetic overlap between DNA methylation of the
ODD and the subdimensions with a recent methy-
lome-wide association study of trajectories of
ADHD (Walton et al., 2016). In reminder, twin
studies suggest that the phenotypic correlation
between ODD and ADHD is substantially
explained through shared genetic influence (Tuv-
blad et al., 2009) and phenotypic studies show that
both ODD and headstrong associate with ADHD
(Stringaris & Goodman, 2009). However, existing
research has yet to identify specific biological path-
ways that might underlie the shared genetics of
ODD and ADHD (Harvey et al., 2016). Further-
more, recent research suggests that epigenetic
effects on the development of psychiatric disorder
can be time specific, with DNA methylation at birth
indexing early biological vulnerability (Cecil, Wal-
ton, et al., 2016). Walton et al. (2016) utilized the
same youth as the present study, and all methy-
lome-wide significant associations were identified
at birth, which makes for an optimal framework to
compare early biological pathways shared between
ODD, the ODD subdimensions, and ADHD. The
third aim was to assess genetic influence (i.e.,
mQTL) on the methylome-wide significant ODD
and subdimension DNA methylation loci. The
fourth aim was to examine associations between
methylome-wide significant ODD and subdimen-
sion loci and prenatal risk exposures. Here, we
examined maternal anxiety, depression, cigarette
smoking, and socioeconomic risks.

Method

Participants

Participants were drawn from the accessible
resource for integrated epigenomics studies (ARIES,
www.ariesepigenomics.org.uk; Relton et al., 2015),
containing DNA methylation data for a subset of

1,018 mother–offspring pairs and nested within the
Avon Longitudinal Study of Parents and Children
(ALSPAC). ALSPAC is an ongoing epidemiological
study of children born from 14,541 pregnant
women residing in Avon, United Kingdom, with an
expected delivery date between April 1991 and
December 1992 (85% of eligible population; Fraser
et al., 2013). Informed consent was obtained from
all ALSPAC participants and ethical approval was
obtained from the ALSPAC Law and Ethics Com-
mittee as well as Local Research Committees. The
original ALSPAC sample is representative of
the general population (Boyd et al., 2012). Note that
the study website contains details of all the data
that are available through a fully searchable data
dictionary: http://www.bris.ac.uk/alspac/researc
hers/dataaccess/data-dictionary/. For this study,
we included youth from ARIES who had available
data on ODD symptomatology ratings (ages 7–13)
as well as epigenetic data at birth (n = 671, 49%
male). The cohort profile of ARIES by Relton et al.
(2015) compared a selection of maternal characteris-
tics in ARIES (n = 1,018) to the rest of the ALSPAC
sample. ARIES versus ALSPAC mothers were more
ethnically homogenous (% White: ARIES = 100% vs.
ALSPAC = 97.4%), slightly older (Mage: ARIES =
29.2 vs. ALSPAC = 28.2), less likely to have a manual
occupation (ARIES = 14% vs. ALSPAC = 20.5%), and
less likely to have smoked throughout pregnancy
(ARIES = 9.7% vs. ALSPAC = 19.4%). Otherwise, the
subsample was considered to be reasonably represen-
tative of the main ALSPAC population.

Measures

ODD symptomatology was assessed via mater-
nal ratings at ages 7, 10, and 13 years, using the
well-validated Development and Well-Being Assess-
ment interview (DAWBA; Goodman, Heiervang,
Collishaw, & Goodman, 2011). The DAWBA was
administered via computer-based package of ques-
tionnaires, interviews, and rating techniques used
to assess adolescent psychopathology based on
DSM–IV criteria. We examined the seven symptoms
of ODD that tap the irritable and headstrong subdi-
mensions. Each question was introduced with the
stem: “over the last 6 months, and as compared
with other children the same age, has s/he often
. . . .” followed by the specific clause. Response cat-
egories were 0 = no, 1 = a little more than others,
2 = a lot more than others. Following the lead of
Stringaris and Goodman (2009) and as we have
done in prior research (Whelan, Leibenluft, String-
aris, & Barker, 2015; Whelan et al., 2013), we
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defined ODD irritable by the average of the follow-
ing three symptoms: (a) has temper outbursts, (b)
has been touchy or easily annoyed, and (c) has been
angry or resentful. ODD headstrong was defined
by the average of the following four symptoms: (a)
argued with grown-ups, (b) taken no notice of
rules/refused to do as she or he is told, (c) seemed
to do things to annoy other people on purpose, (d)
blamed others for his or her own mistakes or bad
behavior.

Prenatal Risk Exposures

Maternal symptoms of depression and anxiety
were measured by self-reports (at 18 and 32 weeks
gestation) on the Edinburgh Postnatal Depression
Scale (Cox & Holden, 2003) or the Crown Crisp
anxiety scale (Birtchnell, Evans, & Kennard, 1988).
Cigarette smoking was assessed during pregnancy
by mothers reporting on the number of cigarettes
smoked per day in the first 3 months of pregnancy
and the number of cigarettes smoked per day in the
last 2 weeks of pregnancy. These two measures
were significantly correlated (r = .826, p < .0001).
Poverty was coded via the Registrar General’s
social class scale at 32 weeks gestation. We
compared mothers in Classes IV and V (low socioe-
conomic status) with those in Classes I, II, and III.
Age of mother (M = 24.34; SD = 4.99) was dichoto-
mized to contrast mothers who gave birth to
the study child during the teens (e.g., age 19
and younger, coded 1) with all older mothers
(coded 0).

DNA Methylation Data

Genomic DNA (500 ng) from blood (cord at birth)
was bisulfite converted using the EZ-DNA methyla-
tion kit (Zymo Research, Orange, CA, USA). DNA
methylation was quantified using the Illumina
HumanMethylation450 BeadChip (HM450k; Illu-
mina, San Diego, CA, USA) with arrays scanned
using an Illumina iScan (software version 3.3.28).
Samples or probes that failed quality control (> 1%
probes/samples with background detection p ≥ .05)
were excluded from further analysis. Sex checks
were performed using X/Y chromosome methyla-
tion. Genotype probes on the HM450k were com-
pared between samples from the same individual
and against single nucleotide polymorphism (SNP)-
chip data to identify and remove any sample mis-
matches. Samples were quantile normalized using
the dasen function within the wateRmelon package
(version 1.4.0) in R (Vienna, Austria; http://www.R-

project.org). Normalization performance was evalu-
ated using all three testing metrics in wateRmelon
(genki assessing single-nucleotide polymorphism
(SNP)-related probes, dmrse assessing imprinted
probes and seabi assessing gender differences).
Methylation levels were then indexed by beta values
(corresponding to the ratio of the methylated signal
divided by the sum of the methylated and unmethy-
lated signals). Probes known to be cross-reactive or
polymorphic (Chen et al., 2013; Price et al., 2013)
and SNP (i.e., “rs”) probes were removed. We also
removed participants with non-Caucasian or missing
ethnicity (based on self-reports), leaving a total of
671 samples after quality control. Cell-type propor-
tions (CD8 T lymphocytes, CD4 T lymphocytes, nat-
ural killer cells, B lymphocytes, monocytes, and
granulocytes) for each participant were estimated
using the reference-based approach detailed in
Houseman et al. (2012).

Analyses

Step 1a: ODD Trajectories

We first estimated trajectories for the irritable
and headstrong subdimensions, respectively. Given
that DSM–V includes both irritable and headstrong
behaviors in the ODD symptom area (American
Psychiatric Association, 2013), we created the ODD
trajectory by combining the groups from the trajec-
tories of irritable and headstrong to represent two
groups of youth: those high on both subdimensions
(i.e., high/high ODD group) versus those low on
both subdimensions (i.e., low/low group).

Trajectories were estimated through longitudinal
latent profiles using Mplus v7.11 (Muth�en &
Muth�en, 1998–2016). This type of analysis describes
classes of children who may follow different devel-
opmental patterns of ODD (e.g., high vs. low levels
at differing ages). A series of models were fitted
beginning with a one-class model and moving to a
five-class model. As we estimated the different tra-
jectory models, we assessed entropy and evaluated
the overall percentage of youth estimated in the dif-
ferent trajectories. We took this strategy as we were
ultimately interested in assessing covariate effects
(i.e., methylome-wide analyses) and therefore
needed to be sure that the standard errors associated
with covariate effects were precise (i.e., low in bias)
and that we would have enough youth in the
different trajectories to perform a methylome-wide
analysis. With regard to examining covariates in
latent class models, through simulation and use of
epidemiological data, Heron, Croudace, Barker, and
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Tilling (2015) found little detriment to assessing
covariates (i.e., low bias) when using a hard classify
approach with high levels of entropy (≤ .91) and
high class separation (i.e., low overlap in class mem-
bership). This is important, as currently (to our
knowledge) there is no software program that can
both estimate mixture models and to perform
bias-adjusted methods within a methylome-wide
association analysis. Hence, as we estimated the tra-
jectories in Mplus and then ran the methylome-wide
association analyses in R, we paid close attention to
potential bias that could affect confidence in the
results.

Steps 1b and 1c: Methylome-Wide Analysis

Methylome-wide analysis tests of the association
between neonatal DNA methylation (407,462
probes) and trajectories of ODD (Step 1b) and the
subdimensions (Step 1c) were performed at birth,
using a general linear model. All analyses were
performed in R (version 3.0.2) using the package
CpGassoc (Barfield, Kilaru, Smith, & Conneely,
2012), controlling for sex, cell type, and batch
effects. Methylome-wide analyses on each subdi-
mension were also controlled for the other subdi-
mension. Differentially methylated probes (DMPs)
were considered significant if they passed a false
discovery rate (FDR) correction of q < 0.05. To inves-
tigate the robustness of our findings, we winsorized
significant FDR-corrected probes to reduce the influ-
ence of potential outliers (> 3 SD) and repeated the
analysis. Winsorizing was performed using the
corresponding function in the DescTools R package
with default settings. Only probes that passed
FDR correction and windsorizing are reported in the
results.

Step 2: Overlap of ODD Trajectories and ADHD

We examined the overlap between loci associ-
ated with ODD (and its subdimensions) versus
ADHD, based on a previous methylome-wide anal-
ysis of ADHD in this sample (Walton et al., 2016).
We first examined cross-over in the methylome-
wide significant (i.e., FDR corrected) top hits. We
then examined enriched biological pathways for
genes that were associated with both phenotypes
(i.e., “shared” pathways of ODD and ADHD).
Using an optimized gene ontology method (see
Cecil, Smith, et al., 2016) that controls for a range
of potential confounds, including background probe
distribution and gene size (see Table S4, for details),
genes were considered “shared” if probes annotated

to them were associated with both ODD and
ADHD (p < .001 consistently across both).

Step 3: Genetic Influence Underlying the Top Hits

We examined the degree to which the top hits (if
identified) for ODD and the irritable and head-
strong subdimensions were associated with genetic
variants. As our sample size was underpowered to
carry out genetic analyses, we did not include in
the study genetic data. Instead, we used the
mQTLdb resource (http://www.mqtldb.org/) to
search for known mQTLs associated with our
DNAm sites of interest. The mQTLdb database
contains the results of a large-scale study based on
the ARIES sample in ALSPAC (from which our
sample is derived), characterizing genome-wide sig-
nificant cis effects (i.e., SNP within 1 million base
pairs of the DNAm site) and trans effects (i.e.,
beyond �1 million base pairs) on DNAm levels
across Illumina 450k probes at five different life
stages, including cord blood DNAm at birth (Gaunt
et al., 2016). Here, we searched for mQTLs based
on results from a genome-wide complex trait
conditional analysis, which was used to identify
mQTLs with the most representative, independent
effect on each DNAm site in order to account for
linkage disequilibrium (Gaunt et al., 2016).

Step 4: Prenatal Risk Associations With Top Hits

Finally, we examined associations between ODD
(and subdimension) top hits and prenatal expo-
sures. Because of the large number of significant
probes, for the purpose of this analysis, we grouped
all top loci for ODD and headstrong into respective
cumulative methylation risk scores, instead of test-
ing each probe individually. Specifically, as we
have done previously (Cecil, Walton, et al., 2016),
we applied a method used for cumulative (poly-
genic) risk scores (Shah et al., 2015), where we mul-
tiplied the methylation loci by their respective
standardized regression betas (i.e., weights), and
then summed these together into a single DNA
methylation risk score. This approach enabled us to
reduce the volume of our methylation data, while
the use of weights ensured that the DNA methyla-
tion loci maintained their relative predictive impor-
tance (i.e., as opposed to alternative approaches such
as averaging DNA methylation levels across loci).
Once calculated, we examined Pearson’s bivariate
correlations with prenatal maternal depression and
anxiety symptoms, smoking, alcohol use, and demo-
graphic risks (e.g., poverty, teen mother).
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Missing data. Of the 1,018 families within the
ARIES resource, 914 had methylation data available
at cord. Twenty-five samples at birth failed quality
control (> 1% probes/samples with background
detection p ≥ .05) and were excluded from further
analysis. From the resulting cord blood sample of
889, participants with non-Caucasian or missing
ethnicity were removed (n = 61). This resulted in a
final total of 828 at birth. We included participants
with complete data for ODD and DNA methyla-
tion. This resulted in a sample of 671 youth. We
compared the 671 to the 828 of the study variables
(i.e., prenatal risks and ODD symptoms) and found
no significant differences.

Results

Step 1a: Trajectories of ODD and the Subdimensions
Between Ages 7 and 13

Trajectory analyses of the ODD subdimension
symptom scores yielded a two-trajectory solution
(Figure 1) for both irritable and headstrong subdi-
mensions (see Table S1 for fit indices). In each case,
there were clearly discernible “high” and “low”

groups between ages 7 and 13 years. There were
n = 50 children in the high irritable trajectory (nlow-

irritable = 621) and n = 43 in high headstrong trajec-
tory (nlow-headstrong = 628). Approximately 50% of
youth high in one subdimension were also high in
the other subdimension. Hence, when we combined
the youth high in both of the ODD subdimensions
versus youth low in both of the subdimensions for
the overall ODD trajectory, there were n = 23 in the
high/high ODD group and n = 601 in the low/low
ODD group.

Step 1b: Methylome-Wide Analysis of the Overall ODD
Trajectories

We identified 30 DMPs between high versus low
overall ODD trajectories after FDR correction
(q < 0.05; Table 1 and Figure 2). There was little
evidence of inflation of test statistics (k = 1.003).
Additionally, all reported probes remained signifi-
cant after winsorizing to reduce the influence of
outliers. Absolute mean percent methylation differ-
ence between the high and low trajectory groups
for the 30 DMPs passing FDR correction was 2.5%
(range = 5%–1%), which are small in effect size
difference.

Cg14867569, the most significant DMP (p = 2.21E-
10; q = 9.01E-05), was hypermethylated in the high
overall trajectory, and is annotated to NKX2-1, a

gene involved in the regulation of thyroid-specific
genes (Iwatani, Mabe, Devriendt, Kodama, & Miike,
2000; Veneziano et al., 2014). Other DMPs of interest
were located in genes such as KCNG1 (cg19478343;
p = 6.22E-08; q = 0.01), coding for a voltage-gated
potassium channel (Gutman et al., 2005), and
GABRA5 (cg22081933; p = 1.76E-06; q = 0.03), a
GABA A receptor (Wingrove et al., 1992). Also of
interest was a probe associated with several genes in
the PCDHA family, which are involved in forming
cell–cell connections in the brain (Wu & Maniatis,
1999). For further details, see Table S8.

Step 1c: Methylome-Wide Analysis of Irritable and
Headstrong ODD Subdimensions

To investigate potential associations specific to
each ODD subdimension, we carried out a methy-
lome-wide analysis on each dimension, separately.
While no probe associated with irritability after
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Figure 1. Trajectory of the subdimensions of irritable (above)
and headstrong (below). [Color figure can be viewed at wileyon-
linelibrary.com]
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FDR correction (Table S2), 10 probes were prospec-
tively associated with headstrong after correction
(Table 2). Absolute mean percent methylation dif-
ference between the high and low trajectory groups
for the 10 DMPs passing FDR correction was 2.1%
(range = 4%–1%), which are small in effect size dif-
ference. Only one probe—cg19478343, linked to
KCNG1—was also associated with the high ODD
trajectory. Table S3 contains functional information
for loci associated with the headstrong and ODD
trajectories.

Step 2: Overlap Between ODD, Headstrong, and
ADHD

Irritable was not examined further due to the
lack of methylome-wide significant loci. We did
examine the overlap in DNA methylation of loci
associated with ODD and headstrong and ADHD
in two ways: (a) overlap in top FDR corrected hits
between the two phenotypes, and (b) a gene ontol-
ogy overlap analysis based on loci that were signifi-
cant at p < .01 for each construct.

There were no overlapping probes (or genes)
between ODD, Headstrong, and ADHD above FDR

correction (see Table S4). With respect to the biolog-
ical pathways analysis, we found that 108 genes
(see Table S5 for complete list) overlapped between
ODD and ADHD (p < .001 across both pheno-
types). The most enriched biological process (see
Figure 3A) shared between ODD and ADHD
related to processes such as cell adhesion
(p = 3.32E-48). Core genes in that pathway included
FAT4 and other members of the protocadherin fam-
ily, important in the establishment and function of
specific cell–cell connections in the brain (Wu &
Maniatis, 1999). Other pathways of interest
included axon regeneration (p = 2.51E-10), hormone
and insulin signaling pathways (p = 1.25E-07), and
a pathway related to insulin receptor signaling
(p = 3.21E-06).

With regard to headstrong, we found that 57
genes (see Table S6 for complete list) overlapped
with ADHD (p < .001 across both phenotypes).
The most enriched biological process (see complete
list Table S6) shared between headstrong and
ADHD (see Figure 3B) related to maternal placen-
tal development (p = 3.19E-10), followed by regu-
lation of long-term neuronal synaptic plasticity
(p = 1.54E-09). Of note, enriched cellular compo-
nents included postsynaptic density (p = 7.10E-07),
while the most enriched molecular function related
to glutamate receptor binding (p = 3.83E-05). Three
genes featured most predominantly among these
pathways: (a) GRIN1, encoding a member of the
ionotropic class of glutamate receptors, implicated
in learning and memory, as well as intellectual
disability and schizophrenia; (b) CAMK2B, a gene
also involved in glutamate signaling, synaptic
plasticity, and dendritic remodeling; and (c)
SHANK2, involved in the organization and struc-
ture of excitatory synapses, including glutamate
receptors, which has been previously associated
with autism and psychosis susceptibility (Homann
et al., 2016).

We also examined the overlap of the 108 ODD–
ADHD genes and 57 headstrong–ADHD genes. A
total of 15 genes (see Table S7 for complete list)
were common between ODD, headstrong, and
ADHD. These 15 genes account 14% of the total
ODD–ADHD overlap and 20% of the total head-
strong–ADHD overlap.

Step 3: Genetic Influence Underlying Top Hits for
ODD and Headstrong

DNA methylation sites identified for ODD (see
Table 1) and headstrong (see Table 2) were carried
forward to explore associations with potential genetic

Figure 2. Manhattan plot of methylome-wide results on high
oppositional defiant disorder (ODD) trajectory. CpG chromo-
some positions are plotted against �log10 p values. The dotted
line indicates false discovery rate (FDR)-corrected significance
threshold, the solid line indicates Bonferroni-corrected level of
significance. Results were derived using a general linear model
between DNA methylation (407,462 probes at birth, cell type,
and batch and sex corrected) and ODD trajectories. Only FDR-
corrected probes that also survived winsorizing are reported in
the tables and followed forward. [Color figure can be viewed at
wileyonlinelibrary.com]
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influences. Based on mQTLdb search, we found that
3 of the 30 top hits for ODD and 2 of the 11 hits for
headstrong were associated with mQTLs, suggesting
that DNA methylation levels across these sites are
likely to be influenced by known genetic polymor-
phisms, at birth.

Step 4: Prenatal Risk Associations

Bivariate correlations between prenatal risk expo-
sures and the cumulative DNA methylation scores
for ODD and headstrong are shown in Table 3. As
can be seen, for ODD, smoking during pregnancy
positively associated with the cumulative DNA
methylation score (cord blood at birth). For head-
strong, maternal anxiety symptoms (18 weeks),
smoking, and teen pregnancy associated positively
with the cumulative DNA methylation score (cord
blood at birth). Table S8 contains the correlations
for prenatal exposures by individual ODD and
headstrong loci.

Discussion

In the current study, we aimed to examine (a)
methylome-wide associations (at birth) for trajecto-
ries of ODD and the subdimensions of headstrong
and irritable (ages 7–13), (b) potential biological

overlaps—as indexed by DNA methylation—
between these ODD trajectories and a recent methy-
lome-wide study of trajectories of ADHD (Walton
et al., 2016), and (c) genetic and (d) prenatal influ-
ences on the DNA methylation. Prior to discussing
findings relevant to these research aims, we first
discuss the ODD trajectories with respect to the
existing literature.

We identified two trajectories (high and low) for
both irritable and headstrong subdimensions of
ODD. Each high trajectory constituted 7%–8% of
the sample (nirritable = 50; nheadstrong = 43). Children
classified into the high trajectory in both irritable
and headstrong made up 4% of the sample and
formed our ODD group (nODD = 23). The shapes of
our trajectories and proportions of youth estimated
to follow them largely fall in line with previous
ODD symptom studies that have used similar
analytic techniques. For example, van Lier, Van der
Ende, Koot, and Verhulst (2007), using a large
(n = 2,076) cohort from the Netherlands, identified
6% of the sample followed a similar high and
chronic trajectory (4–18 years of age). Ezpeleta,
Granero, de la Osa, Trepat, and Dom�enech (2016)
followed Spanish preschoolers (n = 622; ages 3–5)
and reported that 3.5% of the sample were in a
high and chronic trajectory of ODD irritability. Of
note, these trajectory studies support epidemiologi-
cal results that also have identified an early onset

Table 2
FDR-Corrected Probes That Associate With Oppositional Defiant Disorder Headstrong Subdimension, Ranked by Birth p Values

Headstrong (low = 628, high = 43)—simple Epigenome-Wide Association controlling for irritability

Probe Gene Chr Position F p q

Mean � SD

%
Diff

Hedge’s
g mQTL

Low
headstrong
(n = 628)

High
headstrong
(n = 43)

cg21633052 C4orf38 4 184018637 42.54 1.37E-10 5.56E-05 0.09 � 0.01 0.10 � 0.04 2 0.93 —

cg09482780 KDM6B 17 7756609 30.06 5.95E-08 0.01 0.95 � 0.02 0.93 � 0.07 2 0.79 —

cg05509777 C11orf21;
TSPAN32;
C11orf21

11 2322517 29.85 6.59E-08 0.01 0.07 � 0.02 0.09 � 0.04 2 0.79 cis (rs2521269)

cg07150166 LCLAT1 2 30669952 29.82 6.69E-08 0.01 0.07 � 0.03 0.10 � 0.07 3 0.80 cis (rs829657)
cg01681367 SPN 16 29676071 28.96 1.03E-07 0.01 0.05 � 0.01 0.06 � 0.05 1 0.78 —

cg19478343 KCNG1 20 49620679 28.49 1.29E-07 0.01 0.95 � 0.02 0.92 � 0.07 3 0.99 —

cg09057954 21 32935546 26.24 3.96E-07 0.02 0.90 � 0.02 0.88 � 0.07 1 0.59 —

cg19414383 1 17528238 25.73 5.09E-07 0.02 0.27 � 0.05 0.31 � 0.07 4 0.78 —

cg23137936 11 45724816 24.94 7.58E-07 0.03 0.89 � 0.02 0.87 � 0.05 2 0.74 —

cg19542816 HOXD1 2 177053295 24.52 9.33E-07 0.03 0.07 � 0.01 0.08 � 0.01 1 0.68 —

Note. Chr = chromosome; p = uncorrected p value; q = FDR-corrected value; mQTL = methylation quantitative trait loci; FDR = false
discovery rate.
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and stable group of children showing high ODD
symptomatology (Costello, Mustillo, Erkanli, Keeler,
& Angold, 2003).

Our first novel finding is that we extended previ-
ous ODD trajectory studies by examining methy-
lome-wide significant associations. We note that
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Figure 3. Overlap analyses for oppositional defiant disorder (ODD) and attention deficit hyperactivity disorder (ADHD; A) and head-
strong and ADHD (B). Significantly enriched biological processes for genes shared between ODD, headstrong, and ADHD, based on
gene ontology (GO) analysis. Circles represent GO terms that survive false discovery rate correction. The x-axis represents �log(10) p
values. The opacity of the circles indicates level of significance (darker = more significant). The size of the circles indicates the percent-
age of genes in our results for a given pathway compared to the total number of genes in the same pathway (i.e., larger size = larger
%; range = 3.39%–20%). [Color figure can be viewed at wileyonlinelibrary.com]

Table 3
Associations Between Prenatal Exposures and Cumulative DNA Methylation at Birth

Prenatal environment

Maternal
depression
18 weeks

Maternal
depression
32 weeks

Maternal
anxiety 18

weeks

Maternal
anxiety
32 weeks

Smoking
(number per
day, months
1 through 3)

Smoking
(number per

day last
2 weeks) Poverty

Teen
pregnancy

Cum DNA methylation:
ODD

�0.041 �0.007 �0.002 �0.040 0.087
p = .025

0.09242
p = .017

0.315 0.027

Cum DNA methylation:
headstrong

0.043 0.046 0.116
p = .005

0.051 0.094
p = .016

0.118
p = .002

0.001 0.100
p = .011

Note. Cum = cumulative; p = statistical probability; ODD = oppositional defiant disorder.
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our data preclude the possibility of clarifying
whether these DNA methylation associations may
reflect non-CNS surrogate biomarkers versus a
surrogate CNS mechanistic process. For a CNS
surrogate interpretation of results, we would need
access to multiple tissues, gene expression, and
brain structure and/or function, as well as the
application of more sophisticated causal methods.
That said, in total, we identified 30 methylome-
wide significant loci for ODD, 11 for headstrong,
but none for irritable. For ODD, many of the top
probes related to genes such as KCNG1, GABRA5,
and WDR7. These genes are involved in neurotrans-
mitter and cell signaling. Also of note is a probe
located in a region coding for several protocadherin
genes, which are highly expressed in the brain and
most likely play a critical role in the establishment
and function of specific cell–cell connections in the
brain (Hayashi et al., 2014). Of interest, the proto-
cadherin superfamily of genes had previously been
identified in a study that examined the impact of
early-life poverty on adult DNA methylation (Bor-
ghol et al., 2012). An unexpected result was the lack
of overlap between the FDR significant loci associ-
ated with the trajectories of ODD and headstrong
(in addition to the low overlap in genes shared in
ODD–ADHD and headstrong–ADHD). Given that
the difference between the two trajectories is that
the ODD group contains the youth with both high
headstrong and high irritable, headstrong in the
presence of irritability appears to have different
risks from headstrong in the absence of irritable.
Indeed, only one probe—linked to KCNG1—associ-
ated with both the high ODD trajectory and the
high headstrong trajectory. KCNG1 may have a role
in enhanced gene expression of voltage-dependent
ion channels during neural differentiation of stem
cells in pregnancy (Park, Kang, & Hong, 2013).

The second aim of this study was to examine the
potential biological overlap of ODD, the ODD sub-
dimensions, and ADHD at birth. In reminder, the
strong association between ODD and ADHD is (in
part) explained through common genetic influence
(Tuvblad et al., 2009). Because irritable did not have
methylome-wide significant loci, we focused on the
ODD and headstrong trajectories. While we did not
identify an overlap in methylome-wide significant
loci, we did identify shared biological pathways
with ADHD for both ODD (108 genes) and head-
strong (57 genes); however, as stated earlier, these
biological pathways were relatively independent of
each other as 15 genes in total overlapped between
ODD, headstrong, and ADHD. For ODD and
ADHD, 108 genes overlapped at p < .0001, and

these related to neuronal cell adhesion as well as
hormone and insulin signaling pathways. Impor-
tantly, a cluster was again identified involving
protocadherin genes, suggesting the importance of
this family to both ODD and ADHD. These genes
play a pivotal development of the neural circuitry
as well as in mature synaptic function (Redies,
Hertel, & H€ubner, 2012). Protocadherin genes
associate with neuropsychiatric disorders, such as
schizophrenia, autism, and bipolar disorder (Haya-
shi et al., 2014; Pedrosa et al., 2008). For headstrong
and ADHD, 58 genes overlapped at p < .001, and
these related to biological pathways implicated in
maternal placental development, regulation of long-
term neuronal synaptic plasticity, and enriched
molecular function related to glutamate receptor
binding. Here, a cluster of glutamate receptor genes
was identified. These genes have been implicated in
intellectual disability, schizophrenia, autism, and
psychosis (Berkel et al., 2010; Homann et al., 2016).
Although potentially pointing toward shared early
biological vulnerability for ODD, headstrong, and
ADHD, the present results should be considered
preliminary and are in need of replication and
extension.

Our third aim was to assess genetic influence on
the methylome-wide significant loci. DNA methyla-
tion of 3 of the 30 loci for ODD and 2 of the 10 loci
for headstrong were likely genetically influenced.
These were mainly cis-acting genetic influences that
occur close to the methylation site rather than trans-
acting influences that occur elsewhere farther in
genomic location. Although we assessed only cord
blood at birth, Gaunt et al. (2016) have estimated
that although levels of DNA methylation can vary
across development, genetic influences are stable
(average SNP heritability of DNA methylation
~0.20). Hence, an examination of genetic influences
is likely important for studies that assess associations
between environmental exposures and DNA methy-
lation. As many studies (such as the present one)
may not have the power to perform actual SNP
interactions, the mQTLdb database (http://www.
mqtldb.org/) may be of high value, as this online
resource allows investigators to search the results of
a large-scale study to characterize genome-wide sig-
nificant cis and trans effects on Illumina 450k DNA
methylation probes (Gaunt et al., 2016).

The fourth aim was to assess association between
prenatal risk exposures and the methylome-wide
significant loci. We found that proximal exposures
such as maternal anxiety, smoking, and teen preg-
nancy associated with the cumulative DNA methy-
lation score for headstrong (based on 10 top hits)
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rather than the more distal exposure of poverty.
This finding may support research that shows that
DNA methylation (in cord blood) is responsive to
environmental influences, with effects related to
toxins in cigarettes being highly replicated across
epigenetic studies (Richmond et al., 2015). Prenatal
anxiety has also previously been associated with
DNA methylation in cord blood, presumably
through stress hormones affecting the regulation of
placental barrier genes (Monk et al., 2016). Of inter-
est, both prenatal maternal smoking and internaliz-
ing problems have been associated with child
externalizing problems in genetically sensitive
designs (Salatino-Oliveira et al., 2016).

It is of interest, in comparison to headstrong, that
associations between the prenatal exposures and
the cumulative DNA methylation score for ODD
were limited to cigarette smoking. While the mixed
findings may be due to different loci, or even to
combining 30 loci into a cumulative score, it may
also be due to the influence of irritability in the
overall ODD trajectory. In the present study, we
found no methylome-wide significant loci (at birth)
for irritable. This finding may support our previous
research where we did not identify a direct associa-
tion between prenatal maternal stress and the
irritable subdimension examined here (Whelan
et al., 2015). Rather, prenatal maternal depression
associated with higher symptoms of ODD irritable
through increased difficult child temperament
(Whelan et al., 2015).

Findings should be interpreted in light of a num-
ber of limitations. First, the current study was
based on a modestly sized population-based sample
of youth. In future, it will be important to test the
robustness of findings using other epidemiological
cohorts. Second, findings were based on DNA
methylation from peripheral samples. Therefore,
research will be needed to establish the relevance of
the identified markers to brain function. Future
studies incorporating imaging data will be impor-
tant for establishing whether these markers associ-
ate with structural or functional alterations in
ODD-relevant neural pathways (e.g., related to
reward processing, impulse control). Third, despite
the fact that we identified prospective associations
between DNA methylation and ODD, it is not pos-
sible to establish causality, as associations could
reflect the contribution of confounding genetic and
environmental influences. Fourth, the study focused
exclusively on DNA methylation; other epigenetic
processes (e.g., histone modifications) are likely to
be important influences on the development of
ODD and the irritable and headstrong

subdimensions. Fifth, the identification of unique
versus shared biological pathways linked to
ODD and ADHD were based on gene ontology
analyses, which can be susceptible to bias
(Timmons et al., 2015), and consequently will neces-
sitate replication.

DNA methylation has received attention as a
mechanism that can help explain vulnerability for
disease (Meaney, 2010; Szyf & Bick, 2013). We
focused on variation in DNA methylation in cord
blood at birth, and highlighted both genetic influ-
ence and environmental associations during preg-
nancy. We identified prospective associations with
ODD and headstrong, and also that ODD shared
certain biological pathways with ADHD. Although
promising, this evidence is currently preliminary
and in need of replication. Consequently, findings
should be interpreted with caution and considered
more as well-grounded hypotheses for further
investigation. Furthermore, as we were not able to
biologically characterize the DNA methylation asso-
ciations (e.g., across multiple tissues, in gene
expression, or in brain structure or function) or
establish causality via approaches that integrate
genetic proxies for methylation (e.g., epigenetic
Mendelian randomization; Relton & Davey Smith,
2012), the present results are best interpreted as
non-CNS surrogate biomarker associations. Never-
theless, the present findings may be important in
pinpointing specific DNA methylation markers for
further investigation.
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