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Abstract

Pain is evolutionarily hardwired to signal potential danger and threat. It has been proposed

that altered pain-related associative learning processes, i.e., emotional or fear conditioning,

might contribute to the development and maintenance of chronic pain. Pain in or near the

face plays a special role in pain perception and processing, especially with regard to

increased pain-related fear and unpleasantness. However, differences in pain-related learn-

ing mechanisms between the face and other body parts have not yet been investigated.

Here, we examined body-site specific differences in associative emotional conditioning

using electrical stimuli applied to the face and the hand. Acquisition, extinction, and rein-

statement of cue-pain associations were assessed in a 2-day emotional conditioning para-

digm using a within-subject design. Data of 34 healthy subjects revealed higher fear of face

pain as compared to hand pain. During acquisition, face pain (as compared to hand pain)

led to a steeper increase in pain-related negative emotions in response to conditioned sti-

muli (CS) as assessed using valence ratings. While no significant differences between both

conditions were observed during the extinction phase, a reinstatement effect for face but not

for hand pain was revealed on the descriptive level and contingency awareness was higher

for face pain compared to hand pain. Our results indicate a stronger propensity to acquire

cue-pain-associations for face compared to hand pain, which might also be reinstated more

easily. These differences in learning and resultant pain-related emotions might play an

important role in the chronification and high prevalence of chronic facial pain and stress the

evolutionary significance of pain in the head and face.

Introduction

Pain is evolutionarily hardwired to signal potential danger and threat. Thus, learning about

signals or situations that predict pain is a highly adaptive response as it allows to prepare for

upcoming pain and to effectively cope with it, for instance by initiating protective behavior [1–

3]. Pain signals might also initiate maladaptive responses such as increased negative emotions,

e.g. fear of pain [4] as described in the fear-avoidance model of chronic pain [2, 5]. These

anticipatory negative emotions might lead to an aggravation of pain experiences [6, 7]. Recent
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research suggests that the development and maintenance of chronic pain might be associated

with alterations in pain-related learning of negative emotions [1, 8]. Alterations in different

learning processes (e.g. enhanced acquisition, reduced extinction, or enhanced reinstatement

effects) might differentially contribute to the chronification of pain.

For more than 100 years classical conditioning paradigms have been used to investigate dis-

tinct learning mechanisms: acquisition describes the establishment of associations when an

unconditioned stimulus (US), such as a painful or aversive stimulus is contingently paired with

a conditioned stimulus (CS) inducing conditioned responses (CR). The acquisition of CR

might depend on the characteristics of the US, such as aversiveness or salience [3]. Once US-CS

associations are acquired, these might be extinguished when the US is no longer present. This

extinction learning is thought to be an active, inhibitory learning process rather than just “for-

getting” of CR [9], supported by phenomena like spontaneous recovery, i.e., a decay of the CR

through the passage of time [10–12] or reinstatement, i.e. the retrieval of an extinguished mem-

ory after an unexpected exposure to the US [13, 14]. These learning processes have been thor-

oughly investigated for fear-learning in anxiety disorders [15], but only recently has research

started to study pain-related learning mechanisms in experimental and chronic pain (e.g., [16–

18]) suggesting enhanced conditioned pain-related fear, impaired differential learning, and

increased fear generalization of CS in chronic pain. There are only few studies examining pain-

related spontaneous recovery [19] or reinstatement of previously extinguished CR reporting

inconclusive findings. While some report increased behavioral and neural responses during the

reinstatement of CR [20–22], others did not observe such reinstatement effects [23].

Differences in pain-related learning depending on the site of stimulation have only sparsely

been investigated, despite its potential clinical relevance [24]. Klinger, Matter [25] investigated

differences in learning mechanisms using painful stimulation at the hand and found increased

conditioned muscular responses in chronic back pain and chronic headache patients com-

pared to healthy controls. Harvie, Meulders [24] recently compared painful US applied to dif-

ferent body sites. Differential fear learning in terms of startle responses, fear and expectancy

ratings was observed for hand pain but not for back pain stimuli, which was related to differ-

ences in sensory acuity in these regions. Such investigations are lacking for face pain despite its

high salience and clinical relevance [26].

Given the outstanding biological relevance of face pain, i.e., potential danger to vital func-

tions, learning of cues predicting face pain might be of particular relevance and prioritized over

cues signaling threat to other external body parts. Face pain is associated with increased pain-

related fear compared to pain on extremities [27]. Moreover, pain applied to an extremity posi-

tioned near the head elicits strong defensive reactions [28, 29] and neural reinstatement after

single trial conditioning was enhanced for face compared to hand pain [30]–results that may be

explained by the inherent salience and threat of face pain stimuli. Stimulus-related differences

in learning have also been suggested in other clinically relevant pain models, i.e. somatic and

visceral pain [31, 32], stressing the importance of US salience for pain perception and learning

of pain-related emotional responses as well as the role of the aversiveness of a US [33, 34].

In the present study, we aimed to investigate the acquisition, extinction, extinction recall,

and reinstatement of emotional responses to cues predicting electrical pain stimuli applied to

the face or the hand in healthy participants using a 2-day conditioning paradigm. We investi-

gated differences in acquisition and extinction of emotional responses (i.e., change in valence)

on the first day to initially neutral visual stimuli that predict face or hand pain using a within-

subject design. On the second day, an extinction recall phase prior to the unsignaled exposure

to both US (reinstatement phase) was included to investigate spontaneous recovery.

With regard to the different experimental phases we expected the following results for

learning of US-CS associations as assessed using valence ratings:
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1. Acquisition phase (day 1): enhanced emotional learning, i.e., steeper learning curve of nega-

tive valence for CS+face than CS+hand (non-differential).

2. Extinction phase (day 1): reduced extinction, i.e., slower decrease of negative valence rat-

ings for CS+face than CS+hand (non-differential).

3. Extinction recall phase (day 2): stronger increase in negative valence for CS+face than CS+-

hand from the end of extinction to the beginning of extinction recall (i.e. increased spontane-

ous recovery).

4. Reinstatement test phase (day 2): stronger increase in negative valence for CS+face than CS+-

hand from the end of extinction recall to after the unsignaled exposure of both US (i.e.

increased reinstatement).

Methods

Participants

Participants were recruited locally to participate in the study. The study had been approved by

the local Ethics Committee (University of Duisburg-Essen, Germany; 16-7248-BO). All sub-

jects gave written informed consent and received monetary compensation for study participa-

tion. Participants were free to withdraw from study participation at any time.

Based on previously reported medium to large effect sizes for interaction effects between

body parts during the acquisition of conditioned fear [24], we decided to include 39 subjects

participated in the study. Due to technical difficulties or no sufficiently painful sensation

induced by the electrical stimulator (maximal electrical current: 15 mA), 5 participants had to

be excluded from the study. Data from the remaining 34 right-handed subjects (14 male, age:

25.34 ± 3.87 years) were included into the analyses. Exclusion criteria comprised acute and his-

tory of recurrent or chronic pain, neurological or psychiatric disorders, diabetes and no nor-

mal or corrected-to-normal vision based on self-report. All female participants used hormonal

contraceptives. None of the participants showed any clinically relevant scores regarding anxi-

ety or depression as assessed with standardized questionnaires.

Participants were informed that the purpose of the study was to investigate visual percep-

tion and processing during the perception of painful electrical stimulation. Please note that

subjects were only informed about a potential association of conditioned stimuli (CS) and

unconditioned stimuli (US) but not of the exact contingencies between specific CS and US.

They were not informed about the absence of US in the extinction phase or the implementa-

tion of unannounced US during reinstatement.

Experimental procedures

The study was performed on two consecutive days. The conditioning paradigm (for details see

below) consisted of 5 phases: 3 on day 1 (habituation, acquisition, extinction) and 2 on day 2

(extinction recall, reinstatement, see Fig 1). Changes in CS perception (i.e. valence ratings)

were assessed using a 0–100 visual analog scale (VAS) with the question “How do you perceive

this figure?” (anchors: “very pleasant–“neutral”–“very unpleasant”).

Please note that we chose to focus on cue valence ratings for this study to capture emotional

aspects of pain-related learning, in line with previous studies from our group [35, 36] and in

the literature [37].

In addition, we assessed contingency awareness separately from valence ratings after the

acquisition and extinction phases, aiming to avoid an emphasis on the CS-US connection in

this uninstructed learning paradigm.
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Contingency awareness of the coupling between CS and US was assessed by a 0–100 VAS

asking the question “How often was this figure paired with painful stimulation?” (anchors:

“100% Face pain”–“never”–“100% Hand pain”). Pain intensity ratings were provided on a

0–100 VAS asking “How painful was this stimulus?” (anchors: “not painful at all”–“unbearably

painful”). All VAS cursor positions had a random start position between VAS 25 and VAS 75.

On the first day, participants completed preparatory procedures, including the assessment

of pain thresholds and calibration of electrical pain stimuli on both body sites. Electrical pain

stimuli on the left side of the forehead (termed “face” throughout the manuscript) and the

back of the left hand (termed “hand” throughout the manuscript) were adjusted separately to

yield pain intensities of 70 on a 0–100 VAS.

Painful electrical stimulation was applied with two identical electrical stimulators (Digiti-

mer DS7A constant current stimulator, Hertfordshire, UK) and surface electrodes (Specialty

Developments, Bexley, UK) with a diameter of approximately 5mm that were attached to the

skin using medical tape. One electrical stimulator was attached to the back of the left hand

approximately 2cm under the knuckle of the index finger (dermatome C6), while the other

electrode was positioned to the left side of the forehead 1cm above the outer edge of the eye-

brow. For each US, we applied 15 single pulses of 0.5ms duration with an inter pulse interval

of 30ms resulting in a train of painful stimulation with 0.5s duration.

Moreover, participants completed pain-related and general questionnaires (see below).

After that, the first part of the conditioning paradigm (habituation, acquisition, and extinction

phase) was conducted. On the second day, participants underwent the extinction recall and

reinstatement phase of the conditioning paradigm.

Day 1. On day 1, the participants completed questionnaires assessing anxiety, depression

and pain-related psychological processing. Personality states and traits have been shown to

Fig 1. Emotional conditioning paradigm. Day 1 comprised a habituation, acquisition, and extinction phase. Day 2

comprised the extinction recall and reinstatement phases. Assignment of geometric figures to experimental conditions

was randomized (example shown here). During habituation, each CS and each US was presented once. During

acquisition, reinforcement rate was 75% (CS+ followed by US). No US were presented during extinction or extinction

recall. At the beginning of the reinstatement phase, each US was presented three times without announcement.

Afterwards, no US were presented.

https://doi.org/10.1371/journal.pone.0234160.g001
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influence pain perception, chronification, and pain-related learning [38]. Participants com-

pleted the following questionnaires: (1) Pain Anxiety Symptom Scale: PASS-D [39], German

version [40]; (3) Pain Catastrophizing Scale: PCS [41], German version [42]; (4) Center for

Epidemiological Studies Depression Scale [43], German version: ADS-K [44]; and (5) State

Trait Anxiety Inventory: STAI [45], German version [46]. All questionnaires were analyzed

following their respective manuals. In order not to influence trait and state pain-related cogni-

tions by experimentally induced pain during the experiment, questionnaires were completed

before any painful stimulation was applied.

Afterwards, participants were familiarized with the electrical stimulation. First, electrical

pain thresholds were assessed separately for both sites [(1) back of the left hand, (2) left side

of the forehead]. Single-pulse stimuli with 0.5 ms duration were applied while increasing

the current by 0.1 mA between consecutive stimuli starting at 0 mA (ascending method of

limits) [47]. In order to avoid tissue damage, the upper limit was set to 15 mA. Subjects ver-

bally indicated a change in perception from a tingling to a painful sensation (pain thresh-

old). The assessment of pain thresholds was repeated three times for each stimulation site.

The mean electrical current (mA) was defined as the site-specific pain threshold. Following,

electrical pain stimuli were calibrated individually for each subject and each body site to

determine the stimulation intensity corresponding to a level of 70 on a 0–100 VAS. Here,

trains of electrical stimuli (duration 0.5s) of varying intensity levels around the individual

pain threshold were applied. Subjects rated each stimulus regarding the pain intensity on a

VAS presented on a computer screen. The stimulation intensity corresponding to a VAS

level of 70 was determined for application during the experiment. All calibration proce-

dures were assessed separately for hand and face in counterbalanced order. Subsequently,

the first day of the conditioning paradigm was conducted (approximately 45 minutes task

duration).

Day 2. On the second day of the experiment (23–25 h later), subjects performed the second

part of the conditioning paradigm. We chose to perform extinction recall and the reinstate-

ment phase on day 2 in order to allow an over-night consolidation of conditioned emotions

and extinction memory [48, 49]. Note that pain intensities were not recalibrated and that elec-

trodes were positioned at the same locations (see above/experimental procedures).

Emotional conditioning paradigm

The emotional conditioning paradigm consisted of 5 phases: habituation, acquisition, extinc-

tion, extinction recall, and reinstatement. Three neutral visual cues (rectangle, square, and

rhombus) served as conditioned stimuli. The cues were presented on a computer screen with

softened edges in blue color on a black background (square: visual angle 4.99˚ x 4.99˚, rectan-

gle: visual angle 8.3˚ x 3.14˚, diamond: visual angle 7.38˚ x 5.36˚). The presentation of visual

stimuli, application of electrical stimuli, and recording of the behavioral data were performed

using the software Presentation (www.neurobs.com).

Habituation phase. Before habituation, subjects answered three questions on a VAS

regarding general arousal (“How tense do you feel at the moment?”, anchors: “not tense at

all”–“extremely tense”) and pain-related fear (“How fearful are you about the upcoming pain

stimulation?”, anchors: “not fearful at all”–“extremely fearful”) separately for both body sites.

Afterwards, subjects were presented three different visual cues, which later served as CS. Dur-

ing the habituation phase, each visual cue was presented once with a duration of 9s without

any painful stimulation. Subjects rated each figure on a VAS regarding their valence. The VAS

was shown on the computer screen during the first 7.5s of the CS presentation. Each electrical

pain stimulus (USHand and USFace) was applied once with a duration of 0.5s and subjects rated
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the pain intensity on a VAS. Presentation of visual cues and pain stimuli was performed in a

randomized order.

Acquisition phase. In the acquisition phase, the CS were pseudo-randomly assigned to

one of the three experimental conditions (i.e., CS-, CS+Hand, CS+Face). Trials were presented in

a pseudo-randomized order with no more than 3 trials of the same condition presented con-

secutively and the first and last CS+Hand and CS+Face reinforced with a US. Conditions were

equally distributed within the first and second half of the acquisition phase. Each CS was pre-

sented 16 times for 9s (total: 48 trials). The CS+Hand and the CS+Face were partially reinforced

with 0.5s painful electrical stimulation on either the hand or the face, respectively, in 75% of

trials (i.e. 12 of 16 CS presentations per experimental condition). The US application started

0.5s before the end of CS presentation. The CS- was never paired with a US. Inter-trial-interval

(ITI) was jittered between 10 and 15s. Subjects rated their perceived pain intensity on every 4th

pain trial, resulting in three pain ratings for each body site. Pain intensity ratings were assessed

in order to guarantee moderate and comparable pain intensities for face pain and hand pain

stimuli throughout the acquisition phase. To ensure a constant perception of electrical pain sti-

muli on both body sites (VAS 70), stimulation intensities were adjusted manually by an experi-

enced experimenter during the acquisition phase in case participants showed intense

habituation or sensitization. Specifically, stimulation intensities were adjusted when VAS rat-

ings dropped below 50 or increased to ratings above 90. Adjustments were performed in 31

participants.

Moreover, subjects rated the valence of the CS on every 4th trial during the first 7.5s of CS

presentation, resulting in four valence ratings for each CS type.

All ratings were accomplished online to ensure valid and reliable ratings [50]. Given our

interest in tracking changes emotional responses to the CS (i.e. learning curves), we sampled

ratings every fourth trial, providing a suitable amount of ratings for model calculation of learn-

ing curves while avoiding a possible interference with the learning process that could result

from continuous or more frequent ratings.

At the end of the acquisition phase, subjects were presented one question regarding the

CS-US coupling contingency of each CS to assess explicit learning awareness. Subjects provided

answers on a 0–100 VAS. Participants were given 15 seconds to become familiar with and

adjust the VAS and to confirm their contingency rating by pressing a button.

Extinction phase. The extinction phase began subsequently after these contingency rat-

ings without any noticeable pause in between. During the extinction phase, each CS was pre-

sented 12 times without any US presentation (total: 36 trials) in order to extinguish the

acquired cue-pain associations. Subjects provided CS valence ratings on every 4th trial. ITI was

6-11s. Trials were presented in a randomized order with no more than 3 trials of the same con-

dition presented consecutively. After the end of the extinction phase, subjects again provided

contingency ratings regarding the CS-US coupling.

On day 2, the experiment consisted of 2 phases (approximately 15 minutes task duration).

Extinction recall phase. During the extinction recall phase, subjects were presented each

CS 3 times without any US presentation (total: 9 trials) to test spontaneous recovery and

extinction efficiency of pain-related emotions. Subjects were asked to rate the valence of 2 trials

in each condition. Trials were presented in a randomized order. Importantly, US pain intensi-

ties were not recalibrated at the beginning of day 2 in order to avoid a reinstatement of pain-

related emotional responses and to be able to test spontaneous recovery of pain-related emo-

tions and extinction memory [13].

Reinstatement phase. Subsequently after the extinction recall phase with no noticeable

pause and no further instructions, 3 unannounced US were applied to each body site in ran-

domized order across participants. Participants rated their pain intensity after every US on
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a 0–100 VAS. Afterwards, 6 CS of each type were presented in a randomized order without

any US presentation to test the reinstatement of previously extinguished emotional

responses. Subjects provided valence ratings for 3 CS of each experimental condition.

Statistical analyses

Behavioral data were automatically recorded by the software Presentation (https://www.

neurobs.com/). The software R (R Studio; https://www.rstudio.com/, version 1.2.5001) was

used for all behavioral analyses. One-sample t-tests were performed to compare electrical pain

thresholds, calibrated intensities, pain-related fear and pain intensity ratings between both

body-sites. Analyses on valence and contingency ratings were performed using linear mixed

model analyses (R packages lme4 and lmerTest, [51]) in order to investigate differences in

learning slopes between the CS types within each experimental phase.

Valence ratings. Analyses were performed to test for changes over time and body-site dif-

ferences in valence ratings. Separate models were calculated for each experimental phase, i.e.

(I) acquisition, (II) extinction, (III) extinction recall, and (IV) reinstatement. The valence rat-

ings provided during habituation were included into the analysis of the acquisition phase as a

baseline rating prior to CS-US coupling. This was done since the first valence rating in the

acquisition phase was not provided until after three CS-US pairings. Accordingly, the extinc-

tion phase model included the last rating of the acquisition phase as a baseline, while the

model for the extinction recall and reinstatement phase included the last rating of the extinc-

tion phase as baseline ratings.

Model calculation for the acquisition and extinction phase. To account for differences

in valence ratings between CS types and their changes over time, main effects of the

factors CS type (i.e. CS-, CS+Hand, CS+Face) and time (i.e. rating number 1–5 for habituation

(1) and acquisition (2–5); rating number 1–4 for last rating of acquisition (1) and extinc-

tion (2–4)) and the interaction of both factors CS type × time were included as fixed effects

into the model. In this study we focused on the differences in emotional conditioning

between CS+Hand and CS+Face as well as on the individual development of all CS types (CS+-

Hand, CS+Face, CS-) and did not explicitly test differential conditioning in terms of CS+-CS-

comparisons during the acquisition and extinction phase. We therefore did not subtract

CS+ and CS- ratings but rather included all three CS types separately into the models for the

data of day 1 as performed previously [20, 36]. In line with previous studies [24, 52], we

have further investigated differential learning (CS+–CS-) for the day 2, i.e., spontaneous

recovery and reinstatement (see below).

Model calculation for the extinction recall and reinstatement phases. To account for

differences in valence ratings between CS types and their changes over time, main effects of

the factors CS type and time (i.e. rating number 1–2 during extinction recall; rating number

1–3 during reinstatement) and their interaction CS type × time were included as fixed effects

into the model. This model calculation was performed to test the following questions: (i) Do

previously extinguished pain-related emotional responses spontaneously recover (extinction

rating 3 vs. extinction recall rating 1) and if so, is this recovery augmented for face pain com-

pared to hand pain?; (ii) Does extinction recall of conditioned pain-related emotional

responses differ between hand and face pain (extinction recall rating 1 vs. extinction recall rat-

ing 2)?; (iii) Are conditioned pain-related emotions reinstated after unexpected US presenta-

tion in terms of changes in valence (extinction recall rating 2 vs. reinstatement rating 1)?; and

(iv) Do reinstated pain-related emotions subsequently extinguish differentially for face pain

and hand pain?

PLOS ONE Face pain-related conditioning

PLOS ONE | https://doi.org/10.1371/journal.pone.0234160 June 19, 2020 7 / 19

https://www.neurobs.com/
https://www.neurobs.com/
https://www.rstudio.com/
https://doi.org/10.1371/journal.pone.0234160


In addition to the analysis of non-differential learning (each CS separately), we performed

further analyses on differential effects ([CS+Hand–CS-] and [CS+Face–CS-] to test spontaneous

recovery and reinstatement.

For all models, we tested whether the model containing a random intercept for each par-

ticipant and allowing variation for the factors CS type, time, and subjects by adding random

slopes for these factors, improved model fit. For the acquisition and extinction phase, the

factor time was included as a continuous factor in order to account for increases and

decreases of valence ratings over the course of the experiment. For the extinction recall and

the reinstatement phase only, the factor time was included into the model as a categorical

factor. Here, we did not expect a continuous development of the valence ratings because of

the unexpected US presentation in the beginning of the reinstatement phase, which is

expected to lead to a reinstatement of pain-related emotions, i.e. sudden increases of CS+

valence ratings.

All models were estimated according to the restricted maximum likelihood (REML)

approach. The decision for best model fit was done according to the Akaike information crite-

rion (AIC) based on maximum likelihood (ML) estimations as indicated by ANOVAs used for

model comparison. Potential covariates were included into the models for each phase sepa-

rately to account for their modulating influences. These comprised the differences in pain-

related fear between face and hand pain, differences in pain intensity ratings between face and

hand pain during acquisition, and pain-related cognitions (i.e. pain catastrophizing) since

these have been shown to influence pain-related learning [38]. All models were tested for nor-

mal distribution and heteroscedasticity of the residuals.

Contingency ratings. Analyses were performed to test for changes in contingency ratings

between phases and body-sites. Since contingency ratings were provided on a 0–100 VAS with

the anchors 0 = 100% hand pain, 50 = no pain, and 100 = 100% face pain, ratings were trans-

formed to correspond to site-specific 0–100 scales, i.e. 0 = no pain; 100 = 100% face pain and

hand pain, respectively.

Further, analyses were performed to investigate differences in contingency ratings between

CS types, experimental phases, and changes between phases, i.e. the acquisition and the extinc-

tion phase. The calculated final model contained main effects for the factors phase (i.e. acquisi-

tion and extinction) and CS type and their interaction phase × CS type as fixed effects and

random intercept for the subjects and random slopes for the factors phase, CS type, and sub-
jects to allow for subject-specific variation. Again, potential covariates were included into the

model to account for their modulating influences. These comprised the differences in pain-

related fear between face and hand pain, differences in valence and pain intensity ratings dur-

ing the habituation phase, differences in pain intensity ratings during the acquisition phase,

and pain-related cognitions. Again, models were calculated according to the REML approach,

model fit was compared via ML estimations using the AIC and all models were tested for nor-

mal distribution and heteroscedasticity of the residuals.

Results

Electrical pain thresholds and calibrated intensities

Electrical pain thresholds were significantly lower for the face compared to the hand (face:

0.96 ± 0.55 mA, hand: 1.78 ± 0.95 mA, t(33) = 7.50, p< 0.001; all mean ± standard deviation).

Moreover, calibrated electrical stimuli for painful stimulation during the experiment were sig-

nificantly lower for the face as compared to the hand (face: 1.44 ± 1.00 mA, hand: 2.15 ± 1.46, t

(33) = 4.01, p< 0.001).

PLOS ONE Face pain-related conditioning

PLOS ONE | https://doi.org/10.1371/journal.pone.0234160 June 19, 2020 8 / 19

https://doi.org/10.1371/journal.pone.0234160


Pain-related fear and pain intensity rating

Pain-related fear ratings, which were provided once at the beginning of the habituation phase,

were significantly higher for face compared to hand pain (face: 33.53 ± 24.49, hand

27.06 ± 20.60, t(30) = 3.43, p = 0.002). Importantly, pain intensity ratings did not significantly

differ between calibrated face pain and hand pain in the habituation phase (face: 64.30 ± 9.53,

hand 62.46 ± 11.65, t(33) = 1.06, p = 0.271) and the acquisition phase (face: 60.10 ± 11.51,

hand 57.71 ± 12.85, t(33) = 1.60, p = 0.150).

Questionnaire results

Questionnaire data were in a normal range for all subjects. For details, please see S1 Table in

S1 Appendix.

Valence ratings

Valence ratings during habituation, acquisition, and extinction are displayed in S2 Table in

S1 Appendix and in Fig 2. According to the AIC, the model including random slopes for each

subject and the factors time and CS type best predicted the data as compared to models without

random slopes (acquisition: Δ AIC = -217.2, p< 0.001; extinction: Δ AIC = -14.9, p< 0.001;

extinction recall and reinstatement: Δ AIC = -513.2, p< 0.001). This applied to all experimen-

tal phases.

The raw data in Fig 2 shows successful differential learning during the acquisition phase,

i.e. increase in negative valence for both CS+ and an increase in positive valence for the CS-.

Further, we observed successful extinction, i.e. decrease in negative valence for both CS+ and

no changes in valence for the CS-. Please note that model calculation for valence ratings was

performed for each phase separately following the same analysis pattern. Hence, results are dis-

played separately for each phase.

Acquisition phase. Results of the acquisition phase revealed a significant interaction of

the factor time and CS type. Here, CS- valence ratings revealed a significant main effect of

Fig 2. Valence ratings during the habituation (Hab), acquisition (Acq 1 –Acq 4), extinction (Ext 1 –Ext3) on day 1

of the experiment and the extinction recall (ExtRe 1 –ExtRe 2) and reinstatement phases (Rein 1 –Rein 3) on day 2

of the experiment. Ratings are given in means ± standard error of the mean. Dashed lines separate the phases. For

individual data, please see S2 Fig in S1 Appendix.

https://doi.org/10.1371/journal.pone.0234160.g002
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the factor time, i.e. an increase in positive valence over the course of the acquisition phase

(β: -2.92 ± 0.63, t(163.62) = -4.62, p< 0.001, d = -0.72), whereas both CS+ revealed a significant

increase in negative valence ratings over the course of the acquisition phase (CS+Face: β:

4.48 ± 0.96, t(348.90) = 4.65, p< 0.001, d = 0.50; CS+Hand: β: 2.16 ± 0.87, t(310.67) = 2.48,

p = 0.01, d = 0.28).

As an indicator for successful differential emotional learning, valence ratings for the

CS+Hand showed an increase in negative valence over the course of the acquisition phase as

compared to valence ratings for the CS- (β: 6.10 ± 0.83, t(370.82) = 7.31, p< 0.001, d = 0.76).

The same result was shown for CS+Face valence ratings compared to CS- ratings (β: 7.80 ± 0.83,

t(368.05) = 9.44, p< 0.001, d = 0.98). Confirming our hypothesis, the CS+Face showed a stron-

ger increase in negative valence over the course of the acquisition phase as compared to CS+-

Hand (β: 1.69 ± 0.83, t(369.50) = 2.04, p = 0.04, d = 0.21). None of the potential covariates did

improve model fit.

Extinction phase. Analysis of the extinction phase showed no significant effect of the fac-

tor time for the CS- (β: 1.05 ± 0.72, t(98.93) = 1.45, p = 0.15, d = 0.29) indicating no significant

change in valence ratings but a significant decrease of negative valence for both CS+ (CS+Face:

β: -3.41 ± 0.72, t(96.80) = -4.74, p< 0.001, d = -0.96; CS+Hand: β: -3.12 ± 0.73, t(99.26) = -4.29,

p< 0.001, d = -0.86).

Moreover, in line with our expectations, results revealed a significant interaction for the fac-

tors time and CS type. Specifically, valence ratings for the CS+Hand showed a decrease over the

course of the extinction phase as compared to CS- valence ratings (β: -7.28 ± 0.83, t(275.72) =

5.00, p< 0.001, d = 0.60). Also, valence ratings for CS+Face decreased compared to CS- ratings

(β: -7.87 ± 0.83, t(273.93) = 5.40, p< 0.001, d = 0.65). However, contrary to our hypothesis,

valence ratings for the CS+Face did not significantly differ in their decrease over the course of

the extinction phase as compared to the CS+Hand ratings (β: -0.29 ± 0.83, t(274.88) = -0.35,

p = 0.72, d = -0.04). None of the potential covariates did improve model fit.

Extinction recall and reinstatement phase. Regarding a spontaneous recovery of previ-

ously extinguished emotional responses (extinction rating 4 vs. extinction recall rating 1), we

observed a significant increase in negative valence for the CS+Face (β: 4.26 ± 1.84, t(390.19) =

2.31, p = 0.02, d = 0.23) and an increase in negative valence at trend level for the CS+Hand

(β: 3.22 ± 1.84, t(390.24) = 1.75, p = 0.08, d = 0.24) indicating spontaneous recovery with com-

parable, small effect sizes for both CS+. Hence, there were no significant differences between

both CS+ in spontaneous recovery (β: -1.04 ± 2.61, t(390.04) = -0.40, p = 0.69, d = -0.04).

When investigating the differential effects between the CS+ and the CS-, we did not observe

any spontaneous recovery for neither CS+ as indicated by non-significant differences between

the ratings at the end of the extinction phase and the beginning of the extinction recall phase

(CS+Face: β: 2.89 ± 2.24, t(177.59) = 1.29, p = 0.20, d = 0.19; CS+Hand: β: 0.33 ± 2.24, t(180.17) =

0.15, p = 0.88, d = 0.02). There were no significant differences between both CS+ (β:

-2.56 ± 3.07, t(258.37) = -0.083, p = 0.41, d = -0.10). Moreover, during extinction recall, there

were no significant effects of the factor time nor any interactions of the factor time and CS type
indicating no further extinction.

We observed a significant, yet small, reinstatement effect (i.e. last extinction recall rating vs.

first reinstatement rating) for the CS+Face as indicated by a significant increase in negative

valence after unexpected US presentation (β: 3.94 ± 1.83, t(390.17) = 2.15, p = 0.03, d = 0.22).

This effect could also be observed at a trend level for the CS+Hand (β: 3.46 ± 1.87, t(390.08) =

1.86, p = 0.06, d = 0.19). There were no significant differences between both CS+ in reinstate-

ment and no effects for the factor time or interactions of the factor time and CS type within the

reinstatement phase. In terms of differential effects (CS+–CS-), we observed no significant

reinstatement effects (CS+Face: β: 2.48 ± 2.19, t(234.97) = 1.13, p = 0.26, d = 0.15; CS+Hand:
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β: -0.15 ± 2.19, t(235.52) = -0.07, p = 0.95, d = -0.01). There were no significant differences

between both CS+ (β: -1.33 ± 3.08, t(260.0) = -0.43, p = 0.67, d = -0.05).

For day 2, we observed a significant main effect of the factor CS type. Ratings for both CS+

were significantly higher as compared to the CS- (CS+Face: β: 16.11 ± 5.47, t(31.70) = 2.95,

p = 0.006, d = 1.05; CS+Hand: β: 15.67 ± 6.27, t(30.18) = 2.50, p = 0.02, d = 0.91). There were no

significant differences between CS+Face and CS+Hand valence ratings (β: -0.44 ± 3.43; t(44.74) =

-0.13, p = 0.89, d = -0.04) and no interactions with the factor time.

None of the potential covariates did improve model fit.

Contingency ratings

For contingency ratings, please see S3 Table in S1 Appendix and Fig 3. According to the AIC,

the model including random slopes for the subjects and the factors phase and CS type predicted

the data best as compared to models without random slopes (Δ AIC = -36.4, p< 0.001).

Fig 3. Contingency ratings after the acquisition (Acq) and extinction (Ext) phases on day 1. Ratings are given in

means ± standard error of the mean. Dashed line separates the phases. For individual data, please see S3 Fig in S1

Appendix.

https://doi.org/10.1371/journal.pone.0234160.g003
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In general, participants correctly identified the CS to predict either hand pain, face pain, or

the absence of pain. Analyses revealed a significant main effect for the factor phase indicating a

decrease in contingency ratings from acquisition to extinction for the CS+Face (β: -28.9 ± 6.00, t

(109.15) = -4.82, p< 0.001, d = -0.92) and CS+Hand (β: -21.42 ± 6.60, t(118.85) = -3.24,

p = 0.002, d = -0.60) but not for the CS- (β: -2.29 ± 6.00, t(109.15) = -0.38, p = 0.71, d = - 0.07).

There was no significant interaction of the factors phase and CS type between the CS+Face and

the CS+Hand (β: 7.50 ± 8.45, t(101.45) = 0.89, p = 0.38, d = 0.18) indicating that contingency rat-

ings for both CS+ types showed a similar amount of decrease from acquisition to extinction.

We observed a significant main effect for the factor CS type. Both, the CS+Face and the CS+Hand,

differed significantly from the CS- (CS+Face: β: 44.00 ± 8.13, t(57.16) = 5.41, p< 0.001, d = 1.43;

CS+Hand: β: 29.92 ± 9.32, t(54.70) = 3.21, p = 0.002, d = 0.89). Moreover, a trend for a main

effect of the factor CS type revealed higher contingency ratings with a medium effect size for

the CS+Face as compared to the CS+Hand (β: -14.08 ± 7.70, t(64.45) = -1.83, p = 0.07, d = -0.46).

None of the potential covariates (see Statistical analyses) did improve model fit. Covariates

were therefore not included into the model.

Discussion

This study investigated potential differences in the acquisition, extinction, extinction recall

and reinstatement of hand and face pain-related emotional responses in healthy young volun-

teers in a 2-day-paradigm. Experimental electrical pain (US) applied to the hand or the face

was paired with US-specific visual cues (CS) to investigate body site-specific differences in

pain-related learning within the same pain modality. Confirming our hypothesis of differences

in pain-related learning between hand and face pain, we found increased acquisition of pain-

related emotions in terms of valence and increased contingency ratings for the CS+ paired

with face pain compared to the CS+ paired with hand pain. Further, we observed small, yet not

statistically significant spontaneous recovery and reinstatement effects of these pain-related

emotions for face but not for hand pain.

Successful learning during the acquisition and extinction phase

For the acquisition phase, we show successful learning of emotional responses for both CS+

compared to the CS-. In detail, valence ratings for both CS+ significantly increased (i.e. more

negative valence) while valence ratings for the CS- significantly decreased (i.e. more positive

valence), consistent with its role as a safety signal [53]. Successful learning with large effect

sizes for pain-related emotions using a classical conditioning paradigm has been shown previ-

ously [36, 54, 55], but never thus far in the context of face pain.

For the extinction phase, when the CS+ were no longer paired with pain, negative valence

ratings expectedly declined significantly for both CS+, which is in line with previous research

[35, 56]. Valence ratings at the end of the extinction phase, however, still descriptively differed

from baseline ratings during habituation, indicating that our sample of healthy participants

did not show complete extinction of emotional responses in terms of valence ratings, at least

not within 12 extinction trials. This resistance to extinction might be due to the biological

warning function and genuinely aversive characteristic of pain as has also been observed

before for interoceptive painful stimuli serving as US [31, 33, 34]. Another explanation could

be that emotional responses, such as valence, do not get as easily extinguished as for instance

conditioned fear ratings or predictive US expectation ratings [13, 57]. A spider phobic, for

example, might not show fear after successful exposure therapy, but might still perceive a spi-

der as unpleasant. Our finding of incomplete extinction, however, might also be a result of the

repeated evaluation of CS valence during the extinction procedure, as found and discussed in a
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recent emotional conditioning study [58]. Further, a meta-analysis of emotional conditioning

studies concluded that emotional conditioning is sensitive to extinction, although extinction

of emotional responses might occur at a slower rate than what is often reported for other

forms of pavlovian conditioning [59]. This is in line with our findings of significant, yet

incomplete extinction. In this study, we have explicitly decided to assess valence ratings in

order to focus on the emotional and affective aspects of pain [31, 32] as these might also shape

pain perception [60], especially in chronic pain patients. Future studies could investigate

body-site specific differences and in particular face pain-specific mechanisms of extinction

learning using fear ratings or US expectation ratings [50] to shed more light on different types

of learning (e.g. evaluative vs. predictive).

Our result of successful emotional conditioning in terms of acquisition and extinction are

further supported by the subjects’ contingency ratings, which were higher for both CS+ as

compared to the CS-, indicating that subjects were aware of the coupling of both CS+ with pain

during the acquisition phase. Post-extinction, contingency ratings were significantly lower for

both CS+ as compared to post-acquisition, supporting our reported findings in valence rating

changes.

Stronger acquisition but comparable extinction of pain-related negative

valence for face compared to hand pain

While other studies examined fear or emotional learning using single pre- or post-acquisition

or extinction ratings [23, 36, 61, 62], we were able to acquire more precise information regard-

ing the temporal dynamics and slopes of these processes by repeatedly assessing subjective

valence ratings over the course of the experiment. In line with our hypothesis, valence ratings

showed a stronger negative increase over the course of the acquisition phase for the CS+Face

compared to the CS+Hand. This result indicates that face pain-related negative emotions seem

to be acquired steeper and faster as compared to hand pain-related emotions, which is in line

with previous research showing that face pain and pain applied to extremities positioned near

the head or face are perceived as more threatening and result in increased fear compared to

painful stimulation of other body parts [27–29, 63]. Although we carefully matched the inten-

sity of both pain stimuli, the more salient face pain might have been more aversive or arousing

[64] to subjects, leading to increased conditioned responses [34].

Contrary to our hypotheses, there was no difference in the slope of extinction of pain-

related negative emotions between the CS+Hand and the CS+Face. Both CS+ showed a compara-

ble decrease in valence ratings. The difference in biological relevance of the two investigated

body sites thus seems to affect the acquisition rather than the extinction in pain-related emo-

tional conditioning. One might speculate that the observed body-site specific differences are

only evident under certain conditions, for instance in the presence of multiple, more or less

threatening stimuli, i.e. face pain and hand pain, presumably leading to a state of enhanced

top-down processes such as arousal [65]. Further, top-down processes, such as a fear-related

enhanced attention towards the more threatening CS might result in the observed body-site

learning differences during acquisition [66, 67]. Once these stimuli are not present anymore

(and with a reduced arousal or similar attention levels), the formation of new inhibitory associ-

ations (i.e. extinction learning) might work equally well for CS associated with US of different

threat levels [65], at least in healthy subjects. In this study, fear of pain assessed prior to the

experiment was increased for face compared to hand pain, which might have increased atten-

tion for the CS predicting face pain in relation to hand pain. Visual attention to the site of

painful stimulation has been shown before [68]. Future studies might test this assumption

experimentally in enhancing arousal or attention during the extinction phase, for instance by
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intermittently applying a (new) US in a non-contingent manner [69] and controlling individ-

ual arousal levels to test the assumption of differential arousal to multiple, more or less threat-

ening stimuli.

Further support for increased learning mechanisms of face pain-related

emotions—Contingency ratings

As expected, contingency ratings, which directly assess perceived awareness of the predictive

value of CS, were significantly higher for both CS+ after the acquisition phase as compared to

the CS-, indicating largely accurate contingency awareness.

Supporting our hypothesis of increased learning for face compared to hand pain, contin-

gency ratings were descriptively higher for the coupling of the CS+Face and face pain as com-

pared to the CS+Hand and hand pain after both phases. Although reinforcement rates did not

differ, subjects were more aware of the CS-US association for face compared to hand pain.

Therefore, subjects not only perceived the CS+Face to be more unpleasant than the CS+Hand but

also to predict painful stimulation more often. This result indicates that the biological rele-

vance of face pain not only affects emotional aspects, such as valence, but also cognitive

aspects, such as perceived contingency and supports the notion that contingency awareness

and conditioned responses are highly related [50, 70]. From a functional perspective, success-

ful learning about signals predicting pain, either explicitly or implicitly, may foster an adaptive

way of coping with upcoming threatening stimuli [3].

Interestingly, contingency, but not valence ratings differed after the extinction phase

between both pain conditions, indicating that these emotional and cognitive aspects related to

pain learning may not develop uniformly and represent related, yet separate processes [31, 71].

Taken together, face pain seems to elicit higher pain-related fear [27, 63] and negative emo-

tions, defensive responses [29], and, as shown here at least at trend level with medium effect

sizes, increased contingency awareness.

In terms of cognitive awareness towards pain, a limitation of this study might be that partic-

ipants filled out pain-related questionnaires prior to the conditioning experiment. This proce-

dure was chosen to avoid influencing trait and state pain-related cognitions by receiving

painful stimulation during the experiment. Answering questionnaires on pain-related

thoughts and behavior might, however, have influenced the subjects’ thoughts during the con-

ditioning task and might have primed awareness to pain in general. However, as there were no

questionnaires addressing hand or face pain specifically, differential (priming) effects on hand

and face pain are unlikely.

Spontaneous recovery and reinstatement effects for pain-related emotions

The observed increase in negative valence for both CS+ at the beginning of the extinction recall

phase suggests spontaneous recovery [12] of pain-related emotions, albeit with small effect

sizes. However, when analyzing differential effects (CS+–CS-), we did not observe significant

spontaneous recovery, but our results at least suggest a small effect on the descriptive level for

face pain only. This finding might be explained by the absence of full extinction on day 1. Fur-

ther, increasing the sample size might have increased the power and potentially strengthened

our results. As is, these results have to be interpreted with caution as we do not observe consis-

tent results when comparing analyses of differential and non-differential (spontaneous recov-

ery) effects.

Moreover, according to our hypothesis, we observed small reinstatement effects of pain-

related negative valence after unexpected painful stimulation of the hand and face. Neural acti-

vation during the reinstatement of pain-related fear and emotions has been assessed before
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using visceral US [20, 23, 36], but has never been reported at the behavioral level using two US.

Again, when analyzing differential effects, we did not find significant reinstatement. Regarding

effect sizes, however, our data shows a small reinstatement effect for face and no effect for

hand pain. These results could once more point towards increased conditioned responses and

relevance of face compared to hand pain. Increasing sample sizes or using other outcome mea-

sures (e.g. US expectancy ratings, skin conductance, startle response) may clarify this question.

Implications for chronic pain populations

Differential fear learning has been reported to be altered in chronic pain populations [17, 18,

52]. Klinger, Matter [25], for instance, reported increased conditioned responses in tension-

type headache patients as compared to healthy controls. In this study, patients suffering from

headache and those suffering from chronic back pain did not show differences in the acquisi-

tion for painful US applied to the extremities. However, neither extinction nor differences in

acquisition for pain applied to the head or back were investigated. In another study, patients

suffering from trigeminal neuralgia showed increased defensive responses and their defensive

“peripersonal space” was enhanced and enlarged ipsilateral to the affected body site [72].

Regarding reinstatement of pain-related fear and emotions, results are scarce. In chronic pain

patients and healthy controls, Icenhour, Langhorst [20] report first evidence suggesting altered

reinstatement processes in patients with chronic visceral pain.

It could be hypothesized that patients suffering from chronic head and face pain would

show maladaptive learning, i.e., enhanced acquisition, impaired extinction and enhanced rein-

statement for face pain, as compared to healthy subjects or other chronic pain populations,

such as chronic back pain patients. This may contribute to the chronification of head and face

pain disorders and should be investigated in future research.

Conclusion

This study revealed a significantly increased acquisition of pain-related emotional learning for

electrical pain applied to the face as compared to the hand in young healthy participants,

which is in line with previous findings on increased face pain-related fear [27, 63]. In young

healthy participants, there were no significant differences in extinction-related phenomena of

previously acquired pain-related emotional responses for face and hand pain. However,

chronic pain populations, especially patients suffering from chronic head and face pain dis-

eases, might show different extinction mechanisms for pain-related emotions, particularly in

the head and face area, which might contribute to the chronification of these pain diseases.

Supporting information

S1 Appendix. Supplementary information on the manuscript.

(DOCX)

S1 Data. Dataframe of the raw data day 1.

(CSV)

S2 Data. Dataframe of the raw data day 2.

(CSV)

Acknowledgments

All authors discussed the results and wrote and commented on the manuscript. KS performed

research. KS, KF and UB designed research and analyzed the data. We thank Dirk Neumann

PLOS ONE Face pain-related conditioning

PLOS ONE | https://doi.org/10.1371/journal.pone.0234160 June 19, 2020 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234160.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234160.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234160.s003
https://doi.org/10.1371/journal.pone.0234160


for his help with data collection and Dr. Julian Kleine-Borgmann for his support in designing

the manuscript.

Author Contributions

Conceptualization: Katharina Schmidt, Katarina Forkmann, Ulrike Bingel.

Data curation: Katharina Schmidt.

Formal analysis: Katharina Schmidt.

Funding acquisition: Katarina Forkmann, Ulrike Bingel.

Methodology: Katharina Schmidt.

Project administration: Katharina Schmidt.

Supervision: Ulrike Bingel.

Writing – original draft: Katharina Schmidt, Katarina Forkmann, Sigrid Elsenbruch, Ulrike

Bingel.

Writing – review & editing: Katharina Schmidt, Katarina Forkmann, Sigrid Elsenbruch,

Ulrike Bingel.

References
1. Vlaeyen JW. Learning to predict and control harmful events: chronic pain and conditioning. Pain. 2015;

156 Suppl 1:S86–93.

2. Vlaeyen JW, Crombez G, Linton SJ. The fear-avoidance model of pain. Pain. 2016; 157(8):1588–9.

https://doi.org/10.1097/j.pain.0000000000000574 PMID: 27428892

3. Domjan M. Pavlovian conditioning: a functional perspective. Annual review of psychology. 2005;

56:179–206. https://doi.org/10.1146/annurev.psych.55.090902.141409 PMID: 15709933

4. Turk DC, Wilson HD. Fear of pain as a prognostic factor in chronic pain: conceptual models, assess-

ment, and treatment implications. Current pain and headache reports. 2010; 14(2):88–95. https://doi.

org/10.1007/s11916-010-0094-x PMID: 20425197

5. Crombez G, Eccleston C, Van Damme S, Vlaeyen JW, Karoly P. Fear-avoidance model of chronic

pain: the next generation. The Clinical journal of pain. 2012; 28(6):475–83. https://doi.org/10.1097/AJP.

0b013e3182385392 PMID: 22673479

6. Traxler J, Madden VJ, Moseley GL, Vlaeyen JWS. Modulating pain thresholds through classical condi-

tioning. PeerJ. 2019; 7:e6486–e. https://doi.org/10.7717/peerj.6486 PMID: 30867984

7. Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information

about salience into perceptual decisions about pain. J Neurosci. 2010; 30(48):16324–31. https://doi.

org/10.1523/JNEUROSCI.2087-10.2010 PMID: 21123578

8. Flor H. New developments in the understanding and management of persistent pain. Current opinion in

psychiatry. 2012; 25(2):109–13. https://doi.org/10.1097/YCO.0b013e3283503510 PMID: 22227632

9. Bouton ME, Westbrook RF, Corcoran KA, Maren S. Contextual and temporal modulation of extinction:

behavioral and biological mechanisms. Biological psychiatry. 2006; 60(4):352–60. https://doi.org/10.

1016/j.biopsych.2005.12.015 PMID: 16616731

10. Meir Drexler S, Merz CJ, Hamacher-Dang TC, Marquardt V, Fritsch N, Otto T, et al. Effects of postretrie-

val-extinction learning on return of contextually controlled cued fear. Behav Neurosci. 2014; 128

(4):474–81. https://doi.org/10.1037/a0036688 PMID: 24841740

11. Dour HJ, Brown LA, Craske MG. Positive valence reduces susceptibility to return of fear and enhances

approach behavior. J Behav Ther Exp Psychiatry. 2016; 50:277–82. https://doi.org/10.1016/j.jbtep.

2015.09.010 PMID: 26497447

12. Rescorla RA. Spontaneous recovery. Learning & memory (Cold Spring Harbor, NY). 2004; 11(5):501–

9.

13. Haaker J, Golkar A, Hermans D, Lonsdorf TB. A review on human reinstatement studies: an overview

and methodological challenges. Learning & memory (Cold Spring Harbor, NY). 2014; 21(9):424–40.

PLOS ONE Face pain-related conditioning

PLOS ONE | https://doi.org/10.1371/journal.pone.0234160 June 19, 2020 16 / 19

https://doi.org/10.1097/j.pain.0000000000000574
http://www.ncbi.nlm.nih.gov/pubmed/27428892
https://doi.org/10.1146/annurev.psych.55.090902.141409
http://www.ncbi.nlm.nih.gov/pubmed/15709933
https://doi.org/10.1007/s11916-010-0094-x
https://doi.org/10.1007/s11916-010-0094-x
http://www.ncbi.nlm.nih.gov/pubmed/20425197
https://doi.org/10.1097/AJP.0b013e3182385392
https://doi.org/10.1097/AJP.0b013e3182385392
http://www.ncbi.nlm.nih.gov/pubmed/22673479
https://doi.org/10.7717/peerj.6486
http://www.ncbi.nlm.nih.gov/pubmed/30867984
https://doi.org/10.1523/JNEUROSCI.2087-10.2010
https://doi.org/10.1523/JNEUROSCI.2087-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21123578
https://doi.org/10.1097/YCO.0b013e3283503510
http://www.ncbi.nlm.nih.gov/pubmed/22227632
https://doi.org/10.1016/j.biopsych.2005.12.015
https://doi.org/10.1016/j.biopsych.2005.12.015
http://www.ncbi.nlm.nih.gov/pubmed/16616731
https://doi.org/10.1037/a0036688
http://www.ncbi.nlm.nih.gov/pubmed/24841740
https://doi.org/10.1016/j.jbtep.2015.09.010
https://doi.org/10.1016/j.jbtep.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26497447
https://doi.org/10.1371/journal.pone.0234160


14. Vervliet B, Craske MG, Hermans D. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol.

2013; 9:215–48. https://doi.org/10.1146/annurev-clinpsy-050212-185542 PMID: 23537484

15. Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM, et al. Updated meta-analysis of classical

fear conditioning in the anxiety disorders. Depression and anxiety. 2015; 32(4):239–53. https://doi.org/

10.1002/da.22353 PMID: 25703487

16. Biggs EE, Meulders A, Kaas AL, Goebel R, Vlaeyen JWS. The Acquisition and Extinction of Fear of

Painful Touch: A Novel Tactile Fear Conditioning Paradigm. The journal of pain: official journal of the

American Pain Society. 2017; 18(12):1505–16.

17. Harvie DS, Moseley GL, Hillier SL, Meulders A. Classical Conditioning Differences Associated With

Chronic Pain: A Systematic Review. The journal of pain: official journal of the American Pain Society.

2017; 18(8):889–98.

18. Meulders A, Meulders M, Stouten I, De Bie J, Vlaeyen JW. Extinction of Fear Generalization: A Com-

parison Between Fibromyalgia Patients and Healthy Control Participants. The journal of pain: official

journal of the American Pain Society. 2017; 18(1):79–95.

19. Wicking M, Steiger F, Nees F, Diener SJ, Grimm O, Ruttorf M, et al. Deficient fear extinction memory in

posttraumatic stress disorder. Neurobiology of learning and memory. 2016; 136:116–26. https://doi.org/

10.1016/j.nlm.2016.09.016 PMID: 27686278

20. Icenhour A, Langhorst J, Benson S, Schlamann M, Hampel S, Engler H, et al. Neural circuitry of abdom-

inal pain-related fear learning and reinstatement in irritable bowel syndrome. Neurogastroenterology

and motility: the official journal of the European Gastrointestinal Motility Society. 2015; 27(1):114–27.

21. Kattoor J, Gizewski ER, Kotsis V, Benson S, Gramsch C, Theysohn N, et al. Fear conditioning in an

abdominal pain model: neural responses during associative learning and extinction in healthy subjects.

PloS one. 2013; 8(2):e51149. https://doi.org/10.1371/journal.pone.0051149 PMID: 23468832

22. Meulders A, Rousseau A, Vlaeyen JWS. Motor Intention as a Trigger for Fear of Movement-related

Pain: An Experimental Cross-US Reinstatement Study. Journal of Experimental Psychopathology.

2015; 6(3):206–28.

23. Claassen J, Labrenz F, Ernst TM, Icenhour A, Langhorst J, Forsting M, et al. Altered Cerebellar Activity

in Visceral Pain-Related Fear Conditioning in Irritable Bowel Syndrome. Cerebellum (London, England).

2017; 16(2):508–17.

24. Harvie DS, Meulders A, Reid E, Camfferman D, Brinkworth RS, Moseley GL. Selectivity of conditioned

fear of touch is modulated by somatosensory precision. Psychophysiology. 2016; 53(6):921–9. https://

doi.org/10.1111/psyp.12631 PMID: 26950514

25. Klinger R, Matter N, Kothe R, Dahme B, Hofmann UG, Krug F. Unconditioned and conditioned muscular

responses in patients with chronic back pain and chronic tension-type headaches and in healthy con-

trols. Pain. 2010; 150(1):66–74. https://doi.org/10.1016/j.pain.2010.03.036 PMID: 20452731

26. Burch R, Rizzoli P, Loder E. The Prevalence and Impact of Migraine and Severe Headache in the

United States: Figures and Trends From Government Health Studies. Headache. 2018; 58(4):496–505.

https://doi.org/10.1111/head.13281 PMID: 29527677

27. Schmidt K, Schunke O, Forkmann K, Bingel U. Enhanced Short-Term Sensitization of Facial Compared

With Limb Heat Pain. The journal of pain: official journal of the American Pain Society. 2015; 16(8):781–

90.

28. Sambo CF, Forster B, Williams SC, Iannetti GD. To blink or not to blink: fine cognitive tuning of the

defensive peripersonal space. The Journal of neuroscience: the official journal of the Society for Neuro-

science. 2012; 32(37):12921–7.

29. Sambo CF, Liang M, Cruccu G, Iannetti GD. Defensive peripersonal space: the blink reflex evoked by

hand stimulation is increased when the hand is near the face. Journal of neurophysiology. 2012; 107

(3):880–9. https://doi.org/10.1152/jn.00731.2011 PMID: 22090460

30. Schmidt K, Forkmann K, Schultz H, Gratz M, Bitz A, Wiech K, et al. Enhanced neural reinstatement for

evoked facial pain compared to evoked hand pain. The journal of pain: official journal of the American

Pain Society. 2019.

31. Koenen LR, Icenhour A, Forkmann K, Theysohn N, Forsting M, Bingel U, et al. From anticipation to the

experience of pain: The importance of visceral versus somatic pain modality in neural and behavioral

responses to pain-predictive cues. Psychosomatic medicine. 2018.

32. Benson S, Siebert C, Koenen LR, Engler H, Kleine-Borgmann J, Bingel U, et al. Cortisol affects pain

sensitivity and pain-related emotional learning in experimental visceral but not somatic pain: A random-

ized-controlled study in healthy men and women. Pain. 2019.

33. Hosoba T, Iwanaga M, Seiwa H. The effect of UCS inflation and deflation procedures on ’fear’ condition-

ing. Behaviour research and therapy. 2001; 39(4):465–75. https://doi.org/10.1016/s0005-7967(00)

00025-5 PMID: 11280344

PLOS ONE Face pain-related conditioning

PLOS ONE | https://doi.org/10.1371/journal.pone.0234160 June 19, 2020 17 / 19

https://doi.org/10.1146/annurev-clinpsy-050212-185542
http://www.ncbi.nlm.nih.gov/pubmed/23537484
https://doi.org/10.1002/da.22353
https://doi.org/10.1002/da.22353
http://www.ncbi.nlm.nih.gov/pubmed/25703487
https://doi.org/10.1016/j.nlm.2016.09.016
https://doi.org/10.1016/j.nlm.2016.09.016
http://www.ncbi.nlm.nih.gov/pubmed/27686278
https://doi.org/10.1371/journal.pone.0051149
http://www.ncbi.nlm.nih.gov/pubmed/23468832
https://doi.org/10.1111/psyp.12631
https://doi.org/10.1111/psyp.12631
http://www.ncbi.nlm.nih.gov/pubmed/26950514
https://doi.org/10.1016/j.pain.2010.03.036
http://www.ncbi.nlm.nih.gov/pubmed/20452731
https://doi.org/10.1111/head.13281
http://www.ncbi.nlm.nih.gov/pubmed/29527677
https://doi.org/10.1152/jn.00731.2011
http://www.ncbi.nlm.nih.gov/pubmed/22090460
https://doi.org/10.1016/s0005-7967(00)00025-5
https://doi.org/10.1016/s0005-7967(00)00025-5
http://www.ncbi.nlm.nih.gov/pubmed/11280344
https://doi.org/10.1371/journal.pone.0234160


34. Rescorla RA. Pavlovian conditioning. It’s not what you think it is. Am Psychol. 1988; 43(3):151–60.

https://doi.org/10.1037//0003-066x.43.3.151 PMID: 3364852

35. Icenhour A, Kattoor J, Benson S, Boekstegers A, Schlamann M, Merz CJ, et al. Neural circuitry underly-

ing effects of context on human pain-related fear extinction in a renewal paradigm. Human brain map-

ping. 2015; 36(8):3179–93. https://doi.org/10.1002/hbm.22837 PMID: 26058893

36. Gramsch C, Kattoor J, Icenhour A, Forsting M, Schedlowski M, Gizewski ER, et al. Learning pain-

related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement

processes in human visceral pain. Neurobiology of learning and memory. 2014; 116:36–45. https://doi.

org/10.1016/j.nlm.2014.08.003 PMID: 25128878

37. Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ’fear condition-

ing’: Methodological considerations for the design and analysis of studies on human fear acquisition,

extinction, and return of fear. Neuroscience and biobehavioral reviews. 2017; 77:247–85. https://doi.

org/10.1016/j.neubiorev.2017.02.026 PMID: 28263758

38. Nees F, Becker S. Psychological Processes in Chronic Pain: Influences of Reward and Fear Learning

as Key Mechanisms—Behavioral Evidence, Neural Circuits, and Maladaptive Changes. Neuroscience.

2018; 387:72–84. https://doi.org/10.1016/j.neuroscience.2017.08.051 PMID: 28890049

39. McCracken LM, Zayfert C, Gross RT. The Pain Anxiety Symptoms Scale: development and validation

of a scale to measure fear of pain. Pain. 1992; 50(1):67–73. https://doi.org/10.1016/0304-3959(92)

90113-p PMID: 1513605

40. Walter B, Hampe D, Wild J, Vaitl D. Die Erfassung der Angst vor Schmerzen: Eine modifizierte deutsche

Version der Pain Anxiety Symptoms Scale (PASS-D). Der Schmerz. 2002; 16(83).

41. Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: Development and validation. Psy-

chological Assessment. 1995; 7(4):524–32.

42. Lautenbacher S, Huber C, Kunz M, Parthum A, Weber PG, Griessinger N, et al. Hypervigilance as pre-

dictor of postoperative acute pain: its predictive potency compared with experimental pain sensitivity,

cortisol reactivity, and affective state. The Clinical journal of pain. 2009; 25(2):92–100. https://doi.org/

10.1097/AJP.0b013e3181850dce PMID: 19333152

43. Radloff LS. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population.

Applied Psychological Measurement. 1977; 1(3):385–401.

44. Hautzinger M., Bailer M. Allgemeine Depressionsskala. Weinheim: Beltz. 1993.

45. Spielberger CD, Gorssuch R. L., Lushene P. R., Vagg P. R., Jacobs G. A. Manual for the state-trait anx-

iety inventory. Palo Alto, CA: Consulting Psychologists Press Inc. 1983.

46. Laux L, Glanzmann P, Schaffner P, Spielberger CD. Das State-Trait-Angstinventar (Testmappe mit

Handanweisung, Fragebogen STAI-G Form X1 und Fragebogen STAI-G Form X2). Weinheim: Beltz.

1992.

47. Gescheider G. Psychophysics: the fundamentals. Lawrence Erlbaum Associates. 1997.

48. Pace-Schott EF, Germain A, Milad MR. Effects of sleep on memory for conditioned fear and fear extinc-

tion. Psychological bulletin. 2015; 141(4):835–57. https://doi.org/10.1037/bul0000014 PMID: 25894546

49. Schiller D, Cain CK, Curley NG, Schwartz JS, Stern SA, Ledoux JE, et al. Evidence for recovery of fear

following immediate extinction in rats and humans. Learning & memory (Cold Spring Harbor, NY). 2008;

15(6):394–402.

50. Lovibond PF, Shanks DR. The role of awareness in Pavlovian conditioning: empirical evidence and the-

oretical implications. Journal of experimental psychology Animal behavior processes. 2002; 28(1):3–

26. PMID: 11868231
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