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SUMMARY

This study focuses on enhancing the prediction of regulatory functional sites in DNAandRNA sequences, a
crucial aspect of gene regulation. Current methods, such as motif overrepresentation and machine
learning, often lack specificity. To address this issue, the study leverages evolutionary information and
introduces Graphylo, a deep-learning approach for predicting transcription factor binding sites in the
human genome.
Graphylo combines Convolutional Neural Networks for DNA sequences with Graph Convolutional
Networks on phylogenetic trees, using information from placental mammals’ genomes and evolutionary
history. The research demonstrates that Graphylo consistently outperforms both single-species deep
learning techniques and methods that incorporate inter-species conservation scores on a wide range of
datasets. It achieves this by utilizing a species-based attention model for evolutionary insights and an in-
tegrated gradient approach for nucleotide-level model interpretability. This innovative approach offers a
promising avenue for improving the accuracy of regulatory site prediction in genomics.

INTRODUCTION

Transcription factors (TFs) regulate gene expression by binding to specific genomic locations and interacting directly or indirectly with the

transcriptional machinery to modulate gene expression levels. TF binding sites (TFBS) are critical components of gene regulatory networks.

TFBS are defined by short sequence motifs (6–15 bp), often with relatively low information content and significant degeneracy at specific

positions. Hence TF binding is determined not only by the relatively simple rules of affinity for a given sequence pattern but also by a number

of other factors including (1) the epigenetic state of theDNA region (e.g., chromatin accessibility, DNAmethylation, 3D genomeorganization)

and (2) the presence of other TFs bound to neighboring sites and resulting in cooperative or competitive interactions.

Similarly, interactions between RNA binding proteins (RBPs) and their RNA targets play a vital role in post-transcriptional regulation,

including pre-RNA splicing, mRNA sub-cellular localization, stability, and translation.1–3

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq)4 identifies genomic locations bound by a given TF in a given cell

type. It involves isolating cross-linked chromatin complexes with an antibody, followed by high-throughput sequencing of the DNA frag-

ments. CLIP-Seq (cross-linking immunoprecipitation and high-throughput RNA sequencing)5 experiments and their variants, including

PARCLIP,6 HITS_CLIP,7 and ICLIP,8 enable the identification and characterization of RNA binding sites, shedding light on the regulatory

roles of RBPs in post-transcriptional processes. These experiments have a limited resolution (typically 100–200 bp), although more recent

variants (e.g., ChIP-exo9) yield a finer resolution. Obtaining these experimental data can be challenging, but it serves as valuable training

data for computational models aimed at predicting transcription factor binding sites (TFBS) or RBP-RNA interaction in silico. These

sequence-analysis models are important because they can be used to gain nucleotide-level resolution when it comes to identifying

regulatory functional sites. These methods can also yield insights into the sequence specificity of TFs and the architecture of multi-

TFBS regions such as promoters and enhancers. Computational predictors are also key to interpreting the potential consequences of

sequence variants.10

TFBS prediction was one of the first problems considered in bioinformatics, with early work on position-weight matrices (PWMs) dating

back to.11 Traditional approaches for TFBS have mostly relied on motif overrepresentation approaches.12,13 However, in recent years, ma-

chine learning approaches based on neural networks trained onChIP-Seqpeak datasets have successfully predicted TFBS. These approaches

leverage a variety of neural network architectures, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). CNNs

effectively extract useful data from noisy sources, whereas RNNs can detect patterns in time-series data that depend on nearby context. One

of the earliest deep learning models for TFBS prediction was DeepBind,14 which uses CNNs to identify the sequence specificity of DNA and
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RNA binding proteins.15 More recent models take advantage of combining CNNs with RNNs or attention mechanisms to account for long-

range dependencies and are trained on longer input sequences. FactorNet16 is a model that has performed well in the ENCODE-DREAM

in vivo TFBS Prediction Challenge.17 This model uses a siamese CNN stacked with a long short-term memory (LSTM) network.18,19 Similar

models exist for predicting RNA-RBP interactions.20–23

Purely sequence-based approaches have been shown to lack specificity.16 Evolutionary information can yield important clues about

sequence function24 and has long been combined with other types of sequence-based analyses to improve the detection of functional sites.

Phylogenetic footprinting25,26 is an approach that seeks to detect functional TFBS by combining motif discovery with an analysis of inter-spe-

cies sequence conservation. Multiple whole-genome alignments (MWGAs) are commonly used to compare the genomes of different species

in order to identify similarities and differences between them. Multiz27 and Cactus28 have proved effective at aligning large numbers of

mammalian genomes, including both coding and non-coding regions. These alignments can be used to accurately infer ancestral genomic

sequences.29,30Methods like PhastCons31 and PhyloP32 use these alignments tomeasure the level of inter-species sequence conservation of a

given region or site. High levels of sequence conservation are evidence of negative selection and hence of function. Machine learning and

deep learningmodels have been shown to be able to take sequence conservation information into account to successfully identify regulatory

regions in the genome.33–37

With the potential of linking evolutionary trace with functionality, an increasing number of deep learningmodels in bioinformatics are start-

ing to utilize multiple sequence alignments as an input to take advantage of deep learning models’ ability to represent data naturally. For

example, Alphafold238 uses multiple alignments of amino acid sequences to predict protein structure. For DNA sequences, there are few

methods that used multiple sequence alignments including33,39 but extracting features from the multiple sequence alignment within the

context of evolution remains challenging.

Here, we introduce Graphylo, a deep learning model that operates on a set of orthologous placental mammal sequences and their

computationally inferred ancestral sequences. Graphylo combines a CNN for individual sequence representation with Graph Convolu-

tional Networks (GCNs)40 to integrate information across species along the branches of a given phylogenetic tree (see Figure 1). This al-

lows incorporating functional information without sacrificing the flexibility and scalability of sequence-based models. As far as we know,

Graphylo is the first deep learning predictor to utilize multiple DNA sequence alignments for TFBS prediction. Here, we show that Graph-

ylo outperforms state-of-the-art models for TFBS prediction. We also analyze how information from different species contributes to

improving prediction accuracy in human.

Figure 1. Overview of Graphylo’s architecture

For a given 201 bp human sequence and its orthologous and inferred ancestral sequences in other placental mammals, the forward strand and the reverse

complement are one-hot encoded and fed into the shared weight CNN layer with 2D filters separately. The output of the reverse complement CNN is

flipped horizontally and is stacked with the output from the forward strand CNN. The stacked output is fed into the second CNN layer where the filter is

expected to have the potential to capture binding sites on both strands. The output of the second CNN layer is used to generate a species attention vector

that serves as a scaling factor for the CNN output. Scaled representation is subsequently fed to the Graph Convolutional layer where the weighted sum is

taken from the output that corresponds to species that are connected by edges. The output of the GCN is then flattened out and fed to the fully connected

layer to make the final prediction of whether the TF binds to the input sequence or not.

ll
OPEN ACCESS

2 iScience 27, 109002, February 16, 2024

iScience
Article



RESULTS

Predictive performance

We evaluated Graphylo against several state-of-the-art machine learning models that operate on single-species data: (1) FactorNet,16 a

top-performing single-species TFBS predictor in a recent DREAM competition17 but limited to using only sequence information; (2)

FactorNet+phastCons, a modified version of FactorNet that uses as input both the human sequence of interest and its interspecies con-

servation level (average PhastCons score); (3) RNATracker,41 a tool initially designed for RNA subcellular localization analysis but also effec-

tive at TFBS prediction; and (4) PhyloPGM applied to FactorNet prediction values,39 a probabilistic graphical model that combines pre-

dictions made on orthologous and ancestral sequences to improve a base FactorNet’s accuracy. Performance was measured using

area under the receiver operating characteristic curve (AUROC) for the RBP binding task and the area under the precision-recall curve

(AUPR) for the TF binding task on a held-out test set that were not used for training. The choice of AUPR as the primary evaluation metric

A

B

Figure 2. Performance comparison with different models

(A) Performance (area under the precision-recall curve) comparison of Graphylo against other predictors (RNAtracker and FactorNet) on 13 within-cell type

ENCODE DREAM benchmarking datasets.

(B) Performance (area under the precision-recall curve) gain of Graphylo compared with the FactorNet+PhastCons model on 124 dataset.
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for the TF binding task was driven by the significant class imbalance observed in this dataset, with less than 1% positive examples. Consid-

ering this class imbalance, we determined AUPR to be an appropriate metric as it focuses on precision and recall, which are crucial mea-

sures when dealing with rare positive samples. AUPR provides a more accurate assessment of our model’s performance in this specific TF

binding task.

Graphylo outperforms all baseline predictors on 9 of the 13 different TF/cell-type pairs introduced in the DREAM challenge and 29 of the 31

different RBP binding datasets (see Figures 2 and 3, as well as Figure 4). This suggests an overall superior performance for Graphylo with Wil-

coxon signed-rank test p value of 1:81310� 2 and 3:543 10� 6, against the second-best predictor for TF prediction (FactorNet+PhastCons) and

RBP binding prediction (DeepA-RBPBS), respectively. Note that the results of FactorNet presented here differ from those in their original pa-

per16 asweonly use sequence information, whereasQuang andXie (2019) usedboth sequence andchromatin accessibility data (DNase-Seq).16

We also evaluated the different predictors on a larger set of 124 balanced datasets derived from ChIP-seq experiments on various

TF/cell-type pairs. Graphylo outperforms the two single-sequence predictors FactorNet and RNATracker on 117 and 122 of the 124

datasets (see Figure 5). Graphylo also outperforms FactorNet+PhastCons on 112 datasets. This again supports an overall superior

Figure 3. RBP binding site prediction performance comparison

Model performance comparison for the RNA binding protein binding site prediction problem.

Figure 4. Recall improvements over different FDR thresholds

This figure displays the results of 124 reference training datasets, respectively. This figure shows the mean relative percentage improvement of Graphylo test

recall score over FactorNet+PhastCons for 17 different false discovery rate thresholds (blue line). The boxplot shows the summary of recall for Graphylo

(blue) and FactorNet+PhastCons (white).
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prediction performance for Graphylo (Wilcoxon signed-rank test p value of 2:733 10� 6). Observed from Figures 2A and 2B, the gains pro-

vided by Graphylo are particularly striking (up to 6.5%) for TF-cell-type pairs where single-species models perform poorly, while compar-

atively more modest (though still significant in most cases) for datasets where single-species models are more robust (e.g., for CTCF or

GABPA).

We then askedwhether the performance gains obtainedwithGraphylo dependon the level of sequence conservation (PhastCons score) of

the human sequence used as input.Weobserve thatGraphylo’s benefits comparedwith FactorNet are highest in regions that exhibit relatively

high levels of conservation (Figure 6A, whereas the other twomodels utilizing evolutionary information (PhyloPGM, FactorNet+PhastCons) do

not improve as significantly as a function on sequence conservation levels. Graphylo also exhibits a consistent trend in RBP-RNA binding pre-

diction (Figure 6B, wherein the performance gain is more pronounced in highly conserved regions compared with its baseline counterpart,

which is solely trained on human sequence data).

As the highly imbalanced nature of the TFBS prediction task typically leads to a high false discovery rate, it is important to evaluate pre-

dictive models based on their recall at low false discovery rates values. Figure 4 shows that Graphylo has a significantly higher recall value at

low FDR thresholds compared with its competitor.

A

B

Figure 5. Performance comparison in scattered plot

Graphylo’s AUPR improvement over baseline models [RNAtracker (A) and FactorNet (B)] in 124 balanced test sets. Each dot represents a TF/cell-type pair.
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Species attention weights

We used the attention weights learned by Graphylo to gain insights into the role played by different species in the model’s predictions. The

attention weights allow for the relative importance of different species to be determined, and the values learned during training can be utilized

to identifywhich specieshave thegreatest influenceon thefinal prediction. Figure 7 illustrates theaverageper-species attention values learnedby

Graphylo across different TF-cell-type combinations. AlthoughGraphylo is not ‘‘told’’ that its goal is tomake a prediction that pertains to the hu-

man sequence, it learns to assign the highest attention to that sequence (and to the human-chimp ancestral sequence, which is nearly identical).

The figure illustrates three distinct patterns of attention allocation. The first pattern, located on the left side of the heatmap, showcases

datasets where the majority of modern species and ancestors receive notable attention values, indicating that the predictor is utilizing infor-

mation from the entire tree. The second cluster, situated in the middle of the figure, displays TF-cell-type combinations where attention is

primarily focused on the human and human-chimp ancestral sequences, with little to no attention allocated to other species. The final cluster

(right portion of the heatmap) reveals datasets where the majority of modern sequences are given attention, whereas most ancestral se-

quences are disregarded.

Comparison of prediction with ChIP-Seq signals

Figure 8A illustrates the Graphylo predictions for CTCF (one of the TFs for which Graphylo’s performance is the best) on various cell lines,

compared with ChIP-Seq signal for a small portion of human chromosome 1 that was not used for training. The results confirm that Graphylo’s

CTCF binding predictions align well with experimental data and that these predictions display a good degree of cell-type specificity. Figures

8B and 8C show similar results for ATF3 and JunD.

Moreover, there are regions with high Graphylo predictions but low ChIP-Seq signal, indicating potential false-positive predictions of

binding sites. Nevertheless, these regions could be of interest for further exploration, as the ChIP-Seq experiment may not be able to identify

all binding sites perfectly.

A

B

Figure 6. Performance improvement with different conservation level

Performance improvement of different models with different levels of sequence conservation.

(A) Graphylo, Factornet+PhastCons, and PhyloPGM compared with the baseline FactorNet model for TF binding prediction.

(B) Graphylo and PhyloPGM compared with the baseline Graphylo model trained only on the human sequence.
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Integrated gradients

To understand which portions of the input sequences are important for predicting transcription factor binding sites, we used integrated

gradient (IG)42 values to analyze specific examples (Figure 9). Both panels show the same genome region, which is known to be bound by

TF CEBPB in both HCT116 (top) and HepG2 (bottom) and on which the corresponding Graphylo models makes positive predictions. The

figure illustrates which nucleotides from the human and orthologous/ancestral sequences had the most impact on the binding prediction.

This enables several observations. First, the portions of the input that get assigned the largest IG values are typically in human. This is ex-

pected because human sequences are the most relevant to binding predictions for that species. However, the fact that Graphylo, which is

agnostic to the fact that the training data were generated for human, successfully assigns importance to human sequences indicates that

the model architecture is effective at learning species relevance.

Second, in the CEBPB-HepG2 results, we can see that the consensus motif for the CEBPB binding site (ATTGCGCAAT) is assigned

large IG values in humans and its recent ancestors. On the contrary, the largest IG values in HCT116 (a colorectal cancer cell line) are as-

signed to another portion of the input sequence, which happens to match the consensus binding site of the heterodimer C/EBP:AP-1

(TGACGTCA or TGACTCA). This suggests that the Graphylo model trained on that cell line’s data has learned to recognize that hetero-

dimer’s signature, rather than the individual CEBPB binding site itself. This is consistent with the fact that in colorectal cancer, AP-1 activity

is stimulated through the activation of upper-stream signaling pathways such as mitogen-activated protein kinases or the Wnt/Wingless

signaling pathway. Studies have shown that AP-1 can promote the growth and proliferation of colorectal cancer cells as well as increase

resistance to chemotherapy.43,44

Running time

The amount of time required to train Graphylo depends on the size of the training data and the hyperparameters of the model. The study’s

results were obtained by trainingmodels with a batch size of 256. The training process generally requires 20–50 epochs to reach theminimum

validation loss, and the largest dataset (CEBPB-HepG2, with 714,543 training examples) required 28 min per epoch using an Nvidia Quadro

RTX 6000 GPU. In terms of inference, predicting transcription factor binding on a single human region of 201 nucleotides takes approximately

20 ms. To make genome-wide predictions with a 50 bp stride, it would take approximately 334 h or 14 days using the same GPU.

DISCUSSION

Graphylo is among the first deep learning approach to fully take advantage of deepmultiple genome alignments to enhance the prediction of

regulatory functional regions. By combining convolutional neural networks with graph convolutional networks, Graphylo exploits evidence of

Figure 7. Attention weight visualization

This figure shows the species attention weights learned byGraphylo. The x axis represents TF-cell-type pairs, and the species in the alignment. Each vertical line in

the figure represents the averaged attention vectors assigned to different species, over the test set, for a specific TF-cell-type combination. The darker colors

indicate lower attention values and the lighter violet colors indicate higher attention values. The attention vectors are clustered with single-linkage

hierarchical clustering with Euclidean distance.
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negative selection on TFBS binding to enhance the sequence signal observed in humans. The GCN architecture provides a natural

mechanism to represent and share information across related species, in a phylogenetically informed manner. This proves an effective

approach to take advantage of deepmulti-genome alignments. Our results demonstrate that Graphylo outperforms its competitors by a sig-

nificant margin, with median AUPR scores improving by over 5% on 13 ChIP-Seq datasets and 1.5% on a balanced set of 124 ChIP-Seq

datasets.

Unlike approaches that measure site-specific levels of interspecies conservation (e.g., PhastCons and PhyloP), Graphylo only uses themul-

tiple genome alignments to extract orthologous/ancestral sequences, without assuming that functional sites necessarily remain at the same

alignment positions. This makes it more robust to events such as binding site turnover, where one TFBS is replaced by another one nearby

through a series of local mutations. Indeed, Graphylo outperforms state-of-the-art single-sequence models such as FactorNet across the

entire spectrum of TFBS sequence conservation levels. This suggests that although Graphylo can take advantage of evolutionary sequence

conservation when it exists, its performance is not adversely impacted in low-conservation regions, e.g., those corresponding to human- or

primate-specific regions.

Although Graphylo has demonstrated promising results, there are several areas for future research. An interesting prospect is combining

the Graphylo architecture with approaches that also take input cell-type-specific experimental data such as chromatin accessibility as was

done in FactorNet16 or RNA structural data as was done in DeepA-RBPBS.22 This would likely improve prediction accuracy.

The integrated gradients and attention values findings indicate that Graphylo tends to place greater emphasis on the leaves of the phylo-

genetic tree rather than its internal nodes. This may be due to the fact that ancestral genome sequences are inferred from extant species and

hence contain little to no new information. Versions of Graphylo where sequence information is only provided at the leaves, but ancestral

nodes still exist to enable message passing across the tree, will be worth investigating.

Graphylo has the potential to be applied to other types of sequence function predictions, including other interaction prediction tasks

(RNA-protein interactions, micro-RNA targeting, etc.) or higher-level functions (prediction of complex transcriptional or post-transcriptional

regulatory regions).

We also anticipate that it may prove powerful at predicting the impact of mutations in these types of regions.45 Graphylo, by

using multiple sequence alignments as input and as a machine learning approach, provides a natural framework to learn evolutionary con-

straints and patterns of evolution naturally. This can provide a more nuanced understanding of the functional importance of different

mutations.

A

B

C

Figure 8. Genome Browser comparison of ChIP-Seq signal and Graphylo predictions

A genome browser-style display of Graphylo’s predictions (orange) and ChIP-seq signal data (other colors) for CTCF on various cell lines (A), ATF3 on K562 cells

(B), and JunD on HeLa cells (C).
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In conclusion, we believe that models such as Graphylo, which are capable of fully taking advantage of very rich evolutionary data to

enhance predictive power, can help address some of the shortcomings of existing single-sequence approaches while yielding valuable bio-

logical and evolutionary insights.

Limitations of the study

One disadvantage of Graphylo is that it is quite slow, because it operates on a large set of orthologous sequences. Our work on species atten-

tion mechanisms suggests that attention values assigned to certain species or ancestors tend to be very low for some datasets. A sped-up

predictor could be obtained by simply excluding those species from the analysis.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Architecture of Graphylo

B Shared 1D-CNN

B Species attention

B Graph convolutional networks

B Data preprocessing

B Training Graphylo

B Probability calibration

B Baseline approaches

B Interpretation of Graphylo predictions

Figure 9. Examples of integrated gradients

The figure illustrates the results of integrated gradient attribution analysis applied to a sequence alignment, for models trained on CEBPB binding ChIP-Seq in

two cell types (HCT116 and HepG2). The 58 rows in the alignment depict modern species sequences of length 201. Green nucleotides signify positive integrated

gradient attribution scores, indicating their potential contribution to the prediction of TF binding. Conversely, red nucleotides represent negative scores. The

blue box in the figure represents themotif match for CEBPB, and the red box represents motif matches for the heterodimer C/EBP:AP-1. The common consensus

sequence for CEBPB is ‘‘ATGGCGGCAT’’ and for C/EBP:AP-1 heterodimer is ‘‘TGACTCA or TCGCTTCA.’’
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Mathieu Blanchette (blanchem@

cs.mcgill.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data availability: This paper uses publicly available Transcription Factor binding data from17 and RNA binding protein data from46

listed in the key resources table.
� Code availability: Graphylo is publicly available online at https://github.com/DongjoonLim/Graphylo.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Graphylo is a deep learningmodel that combines Convolutional Neural Networks andGraphConvolutional Networks to predict transcription

factor binding sites. It takes as input a set of orthologous and computationally reconstructed ancestral DNA sequences from various species,

including a reference species of interest (e.g. human), as well as a phylogenetic tree representing their evolutionary history. In this section, we

describe the architecture of Graphylo, and how it is trained and evaluated.

Architecture of Graphylo

Graphylo is divided into twomain parts (see Figure 1): (1) a set of CNN layers that capture local dependencies within eachDNA sequence, and

(2) a GCN that captures dependencies between the sequences in the phylogenetic tree. The CNN layers analyze the sequence data to extract

features, while the GCN processes the phylogenetic tree to incorporate evolutionary information into the model. Together, these two com-

ponents allow Graphylo to effectively combine sequence data with evolutionary information for improved prediction performance.

Shared 1D-CNN

TFs can bind either on the forward or the reverse strand, and the orientation of binding sites matters in some situations. Existing CNN archi-

tectures for TFBS prediction do not adequately capture TFBS orientation while enabling convolution layers to capture in the same field of view

motif matches on both strands. Hence we introduce a new type of sequence encoding, where each aligned sequence is one-hot encoded (A,

C, G, T, -, N) on both the forward and reverse strands. Those are fed into the shared CNN with 32 2D-filters of size (63 11) and ReLU52 acti-

vation function. The output representation is downsampled 2-fold usingmax-pooling. This results in a downsampled version of the input that

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Example data for running Graphylo Code This paper https://github.com/DongjoonLim/graphylo

Transcription Factor Binding Chip-seq

publicly available dataset

Kundaje et al.17 https://doi.org/10.7303/syn6131484

RBN binding Clip-seq publicly available dataset Strazar et al.46 https://github.com/mstrazar/iONMF

Software and algorithms

Tensorflow Abadi et al.47 www.tensorflow.org

Numpy Harris et al.48 www.numpy.org

Biopython Cock et al.49 www.biopython.org

Spektral Grattarola et al.50 www.graphneural.network

Pandas McKinney et al.51 www.pandas.pydata.org

Graphylo Code This paper https://github.com/DongjoonLim/graphylo
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is smaller in size and has reduced spatial resolution, enlarging the model’s receptive field. The output from the sequence’s reverse comple-

ment is flipped left to right and stacked with the forward strand output to yield a 643L=2 representation, where L denotes the length of a

sequence.

The stacked outputs are fed into a second 1D-CNNwith 32 filters of size (643 11). The convolution operation on the stacked outputs from

both the forward strand and the reverse complement helps the filter capture meaningful patterns from both strands simultaneously. Learning

simultaneously from both strands of DNA is more biologically relevant than the models that separate the learning for each strand and aggre-

gate the result at the end. The output of this CNN layer is again downsampled by max-pooling.

Species attention

To help the GCN learn dependencies between species, we scaled the output of previous CNN layers with separately learned attention

weights. Attentions are scalar values designed to represent the relative importance of the input chunk (tokens in natural language processing,

channels of CNN in computer vision, etc.) to help the model embed the input data more easily.53,54 With alignment data, it is logical to give

attention to different species in the phylogenetic tree since not every species is equally important in predicting TFBSs in the human genome.

We could expect the highest attention weight given to the human sequence and proper attention values given to other species according to

what the model naturally learns to focus on.

The species’ attention values are generated using simplemultilayer perceptrons (MLP). After representations are generated from theCNN

layers, global averages (over L
4332 values for each species embedding) are taken species-wise 1 to yield a vector of length 115 (number of

input species). This vector is then fed into a single fully connected layer with 8 neurons with a sigmoid activation function to generate an atten-

tion vector of length 115, where each value represents the attention value of the corresponding species. The attention values are applied to

the original CNN representation as a scaling factor.

Graph convolutional networks

To capture the relationships among species, we apply a 4-layeredGCN40 that operates on the phylogenetic tree, with each node’s data being

the attention-scaled species-wise representation obtained by the CNN. The convolution for the GCN is as follows.

Sðl+1Þ
i = s

 X
j˛Ni

1

ci;j
W ðlÞSðlÞ

j + bðlÞ
!

Where S
ðlÞ
i is the representation of the species in node i in the l-th layer of the GCN,Ni is the set of neighbours of node i, ci;j is a normalization

constant, W ðlÞ is the weight matrix(Trainable) for the l-th layer, and bðlÞ is the bias term for the l-th layer. The function sigma is an activation

function, such as the ReLU function.

This formula defines the convolution operation as a weighted sum of the representations of the neighbours of each node, with the weights

determined by the weight matrix W ðlÞ. The normalization constant ci;j is used to ensure that the influence of each neighbour is weighted

equally. The bias term bðlÞ and the activation function sigma are used to introduce non-linearity into the model.

This way, the GCN can learn to extract features from the tree-structured data by applying convolutional filters over the phylogenetic tree.

GCNs are known to encounter the issue of over-smoothing40 when used with many layers. Therefore, we have limited the application of

graph convolution to only four layers. This results in message passing done locally rather than over the entire phylogenetic tree, which has

115 nodes and a diameter of 20. Thus, after the GCN layers have processed the graph data, the outputs of all nodes are aggregated using

a fully-connected (FC) layer.

The output of theGCNmodel is a set of embeddings for each node in the graph. These embeddings are then flattened into a single vector

of length 1840 (115 nodes * 16 features per node) and fed into a fully-connected (FC) layer with 64 neurons. The FC layer produces two logits,

representing the predicted probabilities of the two classes (TF binding or not). The logits are normalized using the softmax function to pro-

duce class probabilities, and the cross entropy loss is calculated between the predicted probabilities and the true labels. This loss value is

used to perform backpropagation and update the model weights.

Data preprocessing

Sequence alignment and ancestral genome reconstruction

Graphylo is trained from a set of multiple sequence alignment blocks (201 bp) with the phylogenetic tree represented as an adjacencymatrix.

We isolated DNA sequences of 58 placental mammals from a 100-way alignment of whole vertebrate genomes27,55 available in the UCSC

genome browser. We applied the Ancestors1.0 program29,30 to infer the maximum likelihood ancestral sequences genome-wide based

on a simple context-independent substitution model. This process leaves us with 115 aligned DNA sequences, 58 sequences corresponding

to the leaves (modern species) in the phylogenetic tree, and the remaining 57 to the internal ancestral nodes. The alignment and inferred

ancestral sequences are available at https://repo.cs.mcgill.ca/PUB/blanchem/Boreoeutherian/.

Alignment refinement

Multiz whole-genome alignments are imperfect. In particular, MultiZ sometimes over-zealously but incorrectly aligns sequences from distant

species.We attempted to remove badly aligned species in the alignment with a simple refinement approach. A dubious alignment for a given
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species’ sequence is often characterized by the presence of an unusually large number of gaps in the corresponding alignment row. We

tested different thresholds of gaps allowed per 201 bp sequence and removed every sequence containing more than 2 gaps.

Transcription factor binding data

TheGraphylomodel was trained and evaluated using transcription factor binding data from the ENCODEDREAM in vivo Transcription Factor

Binding Site Prediction Challenge.17 This data includes ChIP-Seq experiments on the human genome (hg19/GRCh37), which have been

divided into 200 bp bins using a sliding window with a 50 bp stride. Each bin is labelled as ambiguous (A), bound (B), or unbound

(U) based on the presence of ChIP-Seq peaks and an estimated Irreproducible Discovery Rate (IDR).56 Bins without peaks are labelled as un-

bound, bins with IDRs higher than 0.05 are labelled as ambiguous, and bins with IDRs lower than 0.05 are labelled as bound. The primary

dataset we used was 13 ’’Within-Cell Type’’ benchmarking data where each cell type had held-out testing chromosomes (1,8,21). In addition

to the ’’Within-Cell Type’’ benchmarking data, we also analyzed the ’’Training Cell Types’’ datasets, which were provided for training models

for the across-cell type prediction challenge but not used for leaderboard benchmarks. This includes a total of 124 datasets for different tran-

scription factor (TF)-cell type combinations. Since not all of these datasets included held-out chromosomes for testing, we created a custom

dataset by balancing the number of positive and negative samples. Further information about these datasets can be found on the ENCODE

DREAM website.

LiftOver57 was used to map the labelled ChIP-Seq dataset coordinates from hg19 to hg38 assembly positions. For each TF-Cell type com-

bination, we took all the bins labelled as bound to be the positive (+) examples and sampled an equal number of bins labelled as unbound

that are located at least 1000 bp away from any positive examples as the negative examples (-). Regions labelled as ambiguous were ignored.

The model was two-fold cross-validated, where the dataset is shuffled and divided into two equal numbers of sets, where one set is used for

training and validation while the other set is used for benchmarking.

RNA-RBP binding dataset

We used PARCLIP,6 HITS_CLIP,7 and ICLIP8 datasets initially curated by Strazar et al.46 It comprises the results of 31 RBP binding experiments

conducted using different CLIP-Seq protocols. Each experiment contains 8,000 positive examples, representing RNA sequences containing

binding sites for a specific RBP, and 32,000 negative examples, which correspond to unbound regions. Each example consists of an RNA

sequence that spans 101 nucleotides. The dataset is split into a fixed 3-fold cross-validation scheme.

Training Graphylo

We chose the cross-entropy (sum of negative log-likelihood) as the loss function to minimize. In short, we aim to minimize

�
XN
i = 1

yi log
�
pi

�
+ ð1 � yiÞ log

�
1 � pi

�
whereN is the number of samples, yi is the true label of the ith sample, and pi is the predicted probability of the ith sample. Trainable weights

include the weights in the CNN filters that will determine howmuch attribution is assigned to each input pattern, parameters of the fully con-

nected layer in the species attention module that produces a weight for each species that determines howmuch importance is given to each

species in the phylogenetic tree, weights in theGCN that are used for node embedding, and weights in the fully connected layer that helps to

make the final prediction. The ReLU activation52 was applied after every layer. The weights were updated iteratively using the ADAM opti-

mizer58 with default parameters in TensorFlow.47 We fed in inputs in batches of size 256. To reduce overfitting, we used early stopping, which

ends the training when the validation loss did not decrease for 15 consecutive epochs. There are several hyperparameters of the model that

can be optimized. These include the number and size of CNN filters in each CNN layer, the size of node representation in the GCN, and the

number of hidden units in the fully connected layer.We performed a grid search on realistic values for each hyperparameter and settled down

with 32 CNN filters of the size of ð6 3 11Þ, 32 for the hidden weight size of GCN, and 64 perceptrons for the fully connected layer.

Probability calibration

A trainedGraphylo will output a probability-like value for each class (Bind, No bind). Although these raw values represent themodel’s relative

confidence in class membership, they should not be interpreted as the actual class assignment as these values are obtained from a balanced

training set.

Corrected binding probability estimates are obtained by using the method proposed by Pozzolo and colleagues59 to address the sam-

pling bias of the training set:

Wewant to get the probability of PrðBind = TruejDataÞwhereas what themodel predicts is PrðBind = TruejData;Sampled = TrueÞ. For
simplicity, Bind=True is denoted as B, Bind=False is denoted asN, Sampled = True is denoted as S, and original data is denoted as D. From

Bayes’ theorem,

PrðBjDÞ =
PrðSjNÞPrðBjD;SÞ

PrðBjD; SÞðPrðSjNÞ � 1Þ+1
where PrðSjNÞ is the undersampling ratio which in our case is the ratio of positive examples and negative examples.
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Baseline approaches

Most pre-existing computational models built to predict TFs are based on CNN coupled with machine learning techniques that

capture context dependencies. One of the top-performing models in the ENCODE DREAM in vivo Transcription Factor Binding Site Predic-

tion Challenge data17 is FactorNet.16 FactorNet addresses shortcomings of prior simpler models such as DeepBind14 by coming up with a

sophisticated Siamese structure of CNN stacked with LSTM. This unique structure of FactorNet allows the prediction to be invariant of

the strand of the input fed in, and the LSTM adds the more extended context-capturing capability to the output of CNN, which is known

to be good at capturing local sequence patterns. In this paper, we compare Graphylo with two different versions. The original FactorNet

model takes as input both the human sequence andDNase-Seqdata; since our setting is purely sequence-based, we set all DNase-Seq values

to zero. In the second version, we are replacing the DNase-Seq values with PhastCons conservation scores. By retraining FactorNet on

this data, we add evolutionary information to FactorNet and can validate Graphylo’s ability to capture different mutations throughout

long evolution than a simpler sequence + conservation score-based model.

RNAtracker41 is a model initially built to predict RNA subcellular localization, mainly driven by trans-regulatory factors called RNA-binding

proteins. RNA-binding proteins also depend heavily on the sequence pattern,making RNAtracker a reasonable baselinemodel for predicting

TFs. RNAtracker’s architecture also utilizes CNN for capturing local patterns in the sequence, followed by bidirectional LSTM that captures

more extended context patterns and the attentionmechanism. These baselinemodels are powerful predictors that take a single sequence as

an input. Comparing the performance of thesemodels to Graphylo is a goodmeasurement of the advantages Graphylo is taking from evolu-

tionary information. We also compared Graphylo against PhyloPGM39 which is a probabilistic graphical model that successfully incorporates

predictions from different nodes in the phylogenetic tree.

For RBP-RNA binding prediction, we conducted a comparative analysis of Graphylo with two other baseline models: iDeepS,21 which em-

ploys CNN and LSTM, and DeepA-RBPBS,22 which shares a similar architecture with other baseline models but incorporates RNA secondary

structure information as an additional input to the sequence. Furthermore, we developed a variant of Graphylo that exclusively utilizes human

sequence as input, serving as a baseline model to evaluate the impact of integrating evolutionary data.

Interpretation of Graphylo predictions

In this section, we try to interpret what Graphylo learned during the training. In the Integrated Gradients analysis, we examine what feature

inputs the model considers important and how the Integrated Gradients scores are distributed along with different species in the alignment.

In the attention weights analysis, we look at the relative importance of the input species the model perceives after training.

Integrated gradients

The non-linear transformation of input data of deep learning models allows deep learning to be very flexible and powerful in solving many

complicated tasks. Conversely, it makes it hard to understand what exactly and why precisely such learning happens. However, we can

observe a few valuable things from trained deep-learning models, one sort being methods using the gradient of the output with respect

to the input.

Earlier approaches to calculating attribution of input were multiplying the gradient with the input feature value, assuming that an input

value important for the prediction will likely affect the output more than those less important.60 However, this approach often fails when

the input feature is important for the prediction but the gradient is zero resulting in the attribution score of such case as zero. To overcome

this limitation, Sundararajan and colleagues developed the Integrated Gradients score.42 Instead of using simple gradients for attributing the

importance of input, this method integrates gradients from the baseline to the input feature, which prevents the sensitivity problem of pre-

vious attribution methods.

Integrated Gradients attribution scores are calculated below

IG = ðxi � baseiÞ3
Z 1

a= 0

vFðbase+a3 ðx � baseÞÞ
vxi

da

where x is the one-hot encoded sequence alignment, base is the baseline input, F is a trained Graphylo model, and a is the interpolation

constant.

We have set the baseline feature values to be zero, and the integration was approximated by Riemann Sum with N = 50.61

Observation of attention weights

Observing the species’ attention weights that the model learns is a good proxy for evaluating the importance given to each species by the

model. This research aims to predict the candidate TF binding sites for the human genome, so it is natural to assume that the orthologous

genome of different species holds different importance in the prediction.
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