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There are gender differences between men and women in many physiological functions
and diseases, which indicates that female sex hormones may be important. Traditionally,
estrogen exerts its biological activities by activating two classical nuclear estrogen
receptors, ESR1 and ESR2. However, the roles of estrogen in the regulation of
physiological functions and the pathogenesis of diseases become more complicated
with the identification of the G protein-coupled estrogen receptor (GPER1). Although
many GPER1-specific ligands have been developed, the therapeutic mechanisms of
exclusively targeting GPER1 are not yet well understood. Translational applications and
clinical trial efforts for the identified GPER1 ligands have been focused primarily on the
reproductive, cardiovascular, nervous, endocrine, and immune systems. More recently,
research found that GPER1 may play an important role in regulating the digestive system.
Cholesterol gallstone disease, a major biliary disease, has a higher prevalence in women
than in men worldwide. Emerging evidence implies that GPER1 could play an important
role, independent of the classical ESR1, in the pathophysiology of cholesterol gallstones in
women. This review discusses the complex signaling pathways of three estrogen
receptors, highlights the development of GPER1-specific ligands, and summarizes the
latest advances in the role of GPER1 in the pathogenesis of gallstone formation.

Keywords: biliary sludge, bile salts, cholesterol gallstone disease, estrogen, estrogen receptors, gallbladder
hypomotility, GPER1, GPER1 antagonists
INTRODUCTION

The prevalence of digestive disease ranges from 10 to 27.8% in the United States (1, 2). Some
common chronic digestive diseases include gallstone disease, nonalcoholic fatty liver disease,
alcoholic liver disease, gastroesophageal reflux disease, irritable bowel syndrome, inflammatory
bowel disease, gastric cancer, pancreatic cancer, and colon cancer. Many digestive disorders exhibit
Abbreviations: E2, 17b-estradiol; ER, estrogen receptor; ERE, estrogen response element; ESR1, estrogen receptor a; ESR2,
estrogen receptor b; 2-ME, 2-methoxy-estradiol; GPER1, G protein-coupled estrogen receptor; QTL, quantitative trait locus.
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a distinct gender difference in prevalence between women and
men (3–5), suggesting that sex hormones are important. Over the
past decades, many basic research and clinical investigations
have been focused largely on the roles of estrogen, through two
classical nuclear estrogen receptors, ESR1 and ESR2 (also called
ERa and ERb), in the regulation of physiological functions and
the pathophysiology of diseases such as cardiovascular, kidney,
nervous, reproductive, endocrine, and gastrointestinal disorders.
However, the discovery of a new estrogen receptor called the G
protein-coupled estrogen receptor (GPER1) has made it more
complicated to investigate the roles of estrogen in the
pathogenesis of numerous diseases because estrogen can
produce its biological activities through one of the three
nuclear receptor signaling pathways, or a combination of two,
or all three. This review discusses the latest advances in the
signaling pathways of three estrogen receptors, the development
Frontiers in Endocrinology | www.frontiersin.org 2
of GPER1-specific ligands, and the roles of GPER1 and its
ligands in the pathogenesis of cholesterol gallstone disease.
COMPLEX SIGNALING PATHWAYS OF
THREE ESTROGEN RECEPTORS

The identification of three estrogen receptors has implied that
estrogen-stimulated receptor signaling is more complex than
initially realized (Figure 1). The naturally occurring estrogens
are 17b-estradiol (E2), estrone, and estriol, and all of them are
C18 steroids. Cellular response to E2 can occur through the
activation of the nuclear estrogen receptors, ESR1, and ESR2.
The classical ER signaling through the ERs involves the binding
of estrogen, receptor dimerization, and subsequent association of
coactivator proteins that guide the dimerized ER subunit to
FIGURE 1 | Signaling pathways of three estrogen receptors. The classical estrogen receptors, ESR1 and ESR2, primarily exist within the cytoplasm and nucleus, as
well as interact with estrogen response elements (EREs) after dimerization to drive genomic signaling. Unlike the nuclear estrogen receptors, GPER1 signaling
pathway occurs through various second messengers. Phospholipase C Beta (PLCb), inositol triphosphate (IP3), nuclear factor of activated T-cells (NFAT), calcium/
calmodulin-dependent protein kinase (CamK), cAMP response element-binding protein (CREB), adenylate cyclase (AC), protein kinase A (PKA), phosphoinositide
3-kinase (PI3K), protein kinase B (Akt), IkB kinase (IKK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), endothelial nitric oxide synthase
(eNOS), non-receptor tyrosine kinase (SRC), matrix metallopeptidases (MMPs), heparin-binding EGF-like growth factor (HB-EGF), son of sevenless (SOS), Src
homology 2 domain-containing transforming protein (SHC), growth factor receptor-bound protein 2 (GRB2), RAS protein (RAS), RAF kinase (RAF), mitogen-activated
protein kinase kinase (MEK), extracellular signal-regulated kinases 1/2 (ERK 1/2), Elk-1 transcription factor (Elk1), p38 mitogen-activated protein kinase (p38 MAPK),
and c-Fos transcription factor (c-Fos).
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estrogen response elements (EREs) that drive transcriptional
activity (6, 7). In addition, variants or single nucleotide
polymorphisms (SNPs) in the ESR1 and the ESR2 genes increase
the complexityanddiversity ofE2-mediated signaling transduction.

The identification of GPER1, a 375-amino acid protein
known previously as GPR30, makes the well-known ER
signaling pathways more complicated. Unlike the classical
nuclear estrogen receptors, GPER1 signaling occurs through
various second messengers (8–12). Specifically, GPER1 has
been shown to activate ERK1/2 phosphorylation through Gb,g-
dependent transactivation of epidermal growth factor receptor
(EGFR), cAMP, calcium mobilization, and protein/lipid kinases
(i.e., PKC and PKA) (8, 13–17). Interaction with these signaling
pathways influences protein expression, apoptosis, cell
proliferation, cell migration, and growth. Despite differences in
signaling capabilities, ESR1, ESR2, and GPER1 are expressed
ubiquitously throughout the human body and the variability of
response in different tissues highlights the importance of
understanding the druggability of each target separately due to
the downstream signaling events that differ between the
proteins (18).
CURRENT LIGANDS FOR THE
MODULATION OF GPER1 SIGNALING

The effects of preferentially targeting GPER1 are not fully
understood; therefore, there has been an increased research effort
into the development of novel ligands tomodulate GPER1 activity.
Before the identification of GPER1-specific ligands, the
antiestrogens, tamoxifen and fulvestrant, were shown to interact
with GPER1 (19). While tamoxifen and fulvestrant block the
ability of E2 to signal through ESR1 or ESR2, they also possess
the ability to activate the GPER1 signaling pathway similarly to E2.
The activity of antiestrogens at GPER1 highlights the cross-
reactivity of estrogenic ligands and the difficulty in developing
GPER1-specific ligands. In addition to antiestrogens, various non-
selectiveGPER1agonists have been identified: these include natural
products like hydroxytyrosol and oleuropein, as well as
phytoestrogens, such as coumestrol, and the endocrine-disrupting
compounds Bisphenol A (BPA) (Figure 2) (20–22). Additional
studies have identified synthetic polybrominated diphenyl ethers
(PBDEs) and hydroxylated PBDEs as potential GPER1 ligands;
however, these compounds likely exhibit no selective activity (23).

A hallmark challenge in the identification and discovery of
GPER1-specific ligands has been the difficulty in achieving a
crystalized structure of the receptor. Presently, a crystallized
structure of GPER1 does not exist. For this reason, the
identification and optimization of ligands has relied upon large-
library virtual screening techniques and homology modeling (24–
27). Due to the cross-reactivity of estrogenic ligands, a limited
number of GPER1-specific ligands have been identified. The
current benchmark for GPER1-specific ligands were identified
through virtual screening of 10,000 into a model of GPER1
based on 2D- and 3D-similarity approaches and GPER-
privileged substructures (24). From the screening, a substituted
Frontiers in Endocrinology | www.frontiersin.org 3
dihydroquinoline was identified and named GPR30-specific
compound 1, G-1 (24). Binding studies revealed no appreciable
binding toESR1orESR2below100nM(24). Subsequent functional
bioassays with GPER1-transfectedCOS-7 cell andG-1 showed that
E2 and G-1 exhibit an increase in calcium mobilization at 1 nM;
however, a closer analysis of the data suggests that the kinetic profile
of the calcium mobilization differs between the compounds such
thatG-1 exhibits slow receptor occupancy and an asymptotic curve
and E2 exhibits fast receptor occupancy with a quick peak in
calcium release (24). Medicinal chemistry approaches to modify
the dihydroquinoline of G-1 altered the pharmacological activity of
the scaffold from an agonist to an antagonist (28). While the
identified antagonist, G-15, inhibited G-1 activity at GPER1, off-
target binding to ESR1 and activation of EREs persisted (28). The
reduction of binding andEREactivationwas accomplishedwith the
addition of an isopropyl group to the scaffold to make G-36 (29).
While the G-series has become the standard for GPER1 agonists
and antagonists, the success with the compounds has been variable
andmay be related to the tissue-specific signaling events of GPER1
(30, 31).

Since the development of the G-series of ligands, a limited
number of groups have published data on synthesized ligands for
GPER1. Lappano et al. proposed two tricyclic tetrahydroquinolines,
GPER-L1 and GPER-L2 (32). These compounds were shown to
bind exclusively to GPER1 without significant ESR1 binding
above 100 mM (Figure 2) (33). Previously, we identified a series
of N-thiazol-2-yl-1H-indole-2-carboxamide derivatives as GPER1
agonists (30). These compounds exhibited a similar effect on breast
cancer proliferation as reported in the literature in response to the
GPER1-selective agonist, G-1 (Figure 2) (30). Based on that work
and further computational modeling, we have since reported
the first structure-activity relationship for GPER1 antagonists
and discovered CIMBA (2-cyclohexyl-4-isopropyl-N-(4-
methoxybenzyl)aniline) (34). In addition to our group, Maggiolini
et al. developed two selective GPER1 antagonists (PBX1 and PBX2)
based on a benzo[b]pyrrolo[1,2-d][1,4]oxazin-4-one scaffold
(Figure 2) (35). Both PBX1 and PBX2 effectively blocked agonist-
induced GPER1 activity without transcriptional activation of the
classical ERs. Additional non-selective GPER1 ligands have also
been described in the literature. Unlike the GPER1 antagonists
identified by DeLeon et al. and Maggioloini et al., Lappano et al.
identified MIBE (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-
1-methyl-1H-indol-3-yl]but-2-enoate) and demonstrated that
MIBE blocks agonist activity at both GPER1 and ESR1 (36, 37).
In addition to MIBE novel ligands, such as calixpyrrole derivatives
that include a cyclic structure and resemble a porphyrin ring system,
have been proposed as GPER1 antagonists (Figure 2) (36, 37).

The limited number of available GPER1-specific ligandsmay be
attributed to a lack of clarity in the localization as well as the
complex pharmacology associated with GPER1. The localization
and expression ofGPER1has been longdebated.Numerous studies
have shown that GPER1 is expressed both along the cellmembrane
surface as well as intracellularly within the endoplasmic reticulum
and Golgi apparatus (38–40). After several decades, it is now
recognized that even though GPER1 expression exists within the
cell membrane, the expression level is substantially less than the
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subcellular expression (40). This has important implications for
drug discovery in that GPER1 ligands may need to be lipophilic
and able to cross the cellmembrane to access the receptor. The data
achieved relating to the pharmacology of the G-series has varied
among groups and has posed challenges to defining G protein
coupling (31, 40). Together, the localization and varied success with
currently available probes substantiate the need for novel GPER1-
specific ligands to better understand the pharmacology associated
with GPER1 and the clinical implications for the receptor.
ROLE OF GPER1 IN CHOLESTEROL
GALLSTONE DISEASE

Cholesterol gallstone disease is one of the most prevalent and
costly digestive diseases in the United States, with at least 20
Frontiers in Endocrinology | www.frontiersin.org 4
million Americans (12% of adults) being affected (41). Clinical
and epidemiological investigations have demonstrated that
women are twice as likely as men to form cholesterol
gallstones in every population that has been studied (42). Oral
contraceptives and conjugated estrogens significantly increase
gallstone prevalence in premenopausal and postmenopausal
women (43–53). Similar lithogenic effects are also found in
men with prostate cancer during postoperative estrogen
therapy (54–56). All these studies show that E2 is a critical risk
factor for gallstone disease and a high predisposition to
gallstones in women than in men is related to differences in
how the liver metabolizes cholesterol in response to E2 (57).
Although both ESR1 and ESR2 are expressed in the liver of mice
and humans, ESR1 expression is approximately 50-fold higher
compared to ESR2 expression (58). Despite these observations,
the mechanism by which ESR1 plays a key role in mediating E2-
A

B

FIGURE 2 | Selective and non-selective GPER1 agonists (A) and antagonists (B). (A) Various GPER1 agonists have been identified. This includes non-selective
natural products like hydroxytyrosol and oleuropein, phytoestrogens such as coumestrol, as well as endocrine-disrupting compounds like BPA. Various synthetic
GPER1 agonists have been identified. A series of polybrominated ethers have been identified; however, these compounds likely do not exhibit specificity for GPER1.
Several GPER1-specific agonists have been identified. These compounds include G-1, GPER-L1, GPER-L2, and SAGZ5. (B) Currently, there are no known naturally
occurring GPER1 antagonists. Modifications were made to the tetrahydroquinoline scaffold of G-1 to create G-15 and G-36. These alterations modified the activity of
the compounds to antagonists. Since the identification of G-15 and G-36, there have been a limited number of GPER1-specific antagonists identified. These include
PBX1, PBX2, CIMBA, carbhydraz, and calix[4]pyrrole. MIBE has been identified as an antagonist for GPER1 and ESR1. In certain circumstances, there may be a
therapeutic benefit in jointly targeting GPER1 and ESR1.
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induced lithogenic actions at a cellular and molecular level is
not yet fully understood. Exciting results show that E2
enhances cholelithogenesis by increasing hepatic expression of
ESR1 but not ESR2, and the lithogenic actions of E2 can be
blocked completely by the antiestrogenic agent, ICI 182,780 (58).
Furthermore, the ESR1-selective agonist propylpyrazole, but not
the ESR2-selective agonist diarylpropionitrile, promotes hepatic
cholesterol output, leading to cholesterol-supersaturated bile and
gallstones (58). Similar to E2 treatment, tamoxifen significantly
increased biliary cholesterol secretion and gallstone prevalence
(58, 59). These results indicate that the hepatic ESR1, but not
ESR2, plays a critical role in E2-induced gallstones in female
mice. More importantly, ESR1 stimulated by E2 dramatically
increases hepatic expression of sterol regulatory element-binding
protein-2 (SREBP-2), activating SREBP-2-responsive genes in
the cholesterol biosynthetic pathway (60). Thus, the E2-treated
mice continue to synthesize cholesterol despite its excess
availability from high dietary cholesterol, which reflects a loss
in controlling the negative feedback regulation of cholesterol
synthesis. As a result, more newly synthesized cholesterol
determined by the estrogen-ESR1-SREBP-2 pathway is secreted
into bile, leading to biliary cholesterol hypersecretion and
enhancing the lithogenicity of bile (60).

More interestingly, the deletion of Esr1 diminishes susceptibility
to E2-induced gallstones by reducing hepatic cholesterol secretion
and desaturating gallbladder bile; however, this cannot completely
protect against gallstone formation in mice treated with high doses
of E2 and fed the lithogenic diet (61). As found by a powerful
genetic quantitative trait locus (QTL) analysis, Gper1 is a new
gallstone gene, Lith18, on chromosome 5 in mice (62–66). GPER1
activated by its agonist, G-1, enhances cholelithogenesis by deterring
expression of cholesterol 7a-hydroxylase, the rate-limiting enzyme
for the classical pathway of bile salt synthesis (67). These metabolic
abnormalities greatly increase biliary cholesterol concentrations in
company with hepatic hyposecretion of biliary bile salts, leading to
cholesterol-supersaturated gallbladder bile and accelerating
cholesterol crystallization (68). Moreover, E2 activates GPER1 and
ESR1 toproduce liquid crystalline versus anhydrous crystalline
metastable intermediates evolving to cholesterol monohydrate
crystals from supersaturated bile (69). However, cholesterol
crystallization is drastically retarded in Gper1/Esr1 double
knockout mice. This indicates that GPER1 produces a synergistic
lithogenic action with ESR1 to enhance E2-induced
gallstone formation.

Impaired gallbladder motility is often a distinctive clinical
feature of pregnant women and subjects received high doses of
E2, which promotes the formation of biliary sludge, the
precursor of gallstones (70–75). Immunohistochemical studies
find that GPER1 is expressed predominately in the epithelial cells
of the gallbladder (69). By contrast, ESR1 is expressed mainly in
the smooth muscle of the gallbladder (69). This suggests that
GPER1 could impair gal lbladder moti l i ty , working
independently of ESR1, as both can cause sluggish gallbladder
contractility from different mechanisms. Indeed, G-1 impairs
gallbladder emptying through the GPER1 pathway in mice,
leading to sluggish gallbladder motility and accelerating the
Frontiers in Endocrinology | www.frontiersin.org 5
development of biliary sludge in the early stage of gallstone
formation (67).

More recently, exciting evidence shows that a novel, potent
GPER1-selective antagonist, CIMBA, reduces the prevalence of
E2-induced gallstones in a dose-dependent manner by impeding
the GPER1 signaling pathway in female wild-type mice (76).
However, gallstones can be completely prevented in E2-treated
ESR1 knockout mice even on the lithogenic diet (76). These
results are consistent with the findings that the deletion of either
Esr1 or Gper1 significantly reduces the prevalence of E2-induced
gallstones but could not abolish it completely.

Overall, these studies have established a novel concept that
GPER1 is involved in E2-dependent lithogenic actions, working
independently of ESR1, as both GPER1 and ESR1 can promote
the formation of E2-induced gallstones through different
pathways. Thus, both GPER1 and ESR1 are potential
therapeutic targets for cholesterol gallstone disease, particularly
in women and patients exposed to high levels of E2 (77).
CONCLUSIONS AND FUTURE
DIRECTIONS

The similarity between estrogenic compounds poses significant
challenges in the design of new, selective ligands due to the
promiscuous binding of estrogenic compounds to different types
of ERs and is a particular challenge for designing new
compounds. While estrogen binding is frequently associated
with the nuclear ERs, GPER1 has been recognized as a new
ER. A frequently neglected aspect of ER signaling is the ability of
E2 and estrogenic compounds to directly activate calcium
channels, specifically L-type calcium channels and calcium-
activated BK (big potassium) channels (78, 79). The activation
of ion channels by estrogenic compounds adds another level of
complexity to studying ER signaling pathways and the design of
GPER1-specific compounds.

The signaling pathways of ERs are complex and multifaceted.
For this reason, studies that aim to examine a singular ER
signaling pathway should not neglect existence of the three
ERs. The therapeutic implications of targeting multiple ER
signaling pathways are not well understood; however, evidence
exists that cross-reactivity may severely limit the application of
certain therapeutics. For instance, even though selective estrogen
receptor modulators (SERMs) exhibit antiestrogen effects at the
classical ERs, the cross-reactivity and activation of GPER1 may
contribute to therapeutic resistance, which renders the
therapeutic ineffective (80, 81). This limitation has been
observed with tamoxifen. Alternatively, there may be some
therapeutic opportunities for cross-reactivity, specifically in the
gallbladder. In this circumstance, previous evidence has shown
that inhibition of ESR1 or GPER1 alone is not sufficient to
completely prevent gallstone formation (49). In this instance, the
cross-reactivity of a compound, such as MIBE (Figure 2), which
acts as an antiestrogen at both ESR1 and GPER1 may be a useful
tool. The identification of new agonists has largely occurred in
breast cancer cell lines that endogenously express GPER1. The
November 2020 | Volume 11 | Article 578536
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pharmacology associated with GPER1 may be tissue-specific
since GPER1 is expressed ubiquitously throughout the body.
The use of additional cell lines may lead to a greater number of
potent and efficacious ligands.

In most areas of the digestive system, there are still
opportunities for further understanding the impact of
exclusively targeting GPER1 and understanding the potential
pharmacological implications of targeting multiple ERs. While
G-1 has served as a valuable tool for understanding the role of
GPER1 in health and disease associated with the digestive system
in animals, and development of further GPER1 agonists and
antagonists will lead to potential therapeutics with greater
activity, specificity, and solubility in water or oil. The role of
GPER1 in cholesterol gallstone disease presented in this review
highlights the potential importance of GPER1 in hepatobiliary
diseases. Overall, the prevention of lithogensis via a GPER1
antagonist represents a novel treatment option for high-risk
Frontiers in Endocrinology | www.frontiersin.org 6
populations and may prove to be an adjunct therapy to
nonsurgical gallstone treatments.
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