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ABSTRACT: Single-molecule experiments have now achieved a time resolution
allowing observation of transition paths, the brief trajectory segments where the
molecule undergoing an unfolding or folding transition enters the energetically or
entropically unfavorable barrier region from the folded/unfolded side and exits to the
unfolded/folded side, thereby completing the transition. This resolution, however, is yet
insufficient to identify the precise entrance/exit events that mark the beginning and the
end of a transition path: the nature of the diffusive dynamics is such that a molecular
trajectory will recross the boundary between the barrier region and the folded/unfolded
state, multiple times, at a time scale much shorter than that of the typical experimental
resolution. Here we use theory and Brownian dynamics simulations to show that, as a
result of such recrossings, the apparent transition path times are generally longer than
the true ones. We quantify this effect using a simple model where the observed dynamics
is a moving average of the true dynamics and discuss experimental implications of our
results.

1. INTRODUCTION
The past few years have seen impressive advances in the
experimental monitoring of biomolecular dynamics, especially
in relation to folding and unfolding transitions in proteins and
nucleic acids. A new and exciting development has been the
capability to measure folding/unfolding transition paths, that is,
the trajectories that biomolecules take as they cross free energy
barriers between folded and unfolded states. The detailed
measurement of transition paths as a function of time, which can
only be carried out on individual molecules, has started to
provide us with an intimate view of what is really happening to
biomolecules as they undergo conformational rearrange-
ments.1,2 While the initial studies of transition paths focused
on the average transition path times,3,4 more recent work
investigated finer details such as transition path time
distributions,5−8 which have been shown to be particularly
informative about the folding dynamics,9−11 as well as transition
path shapes and velocities.12,13

Several experimental techniques have been applied in studies
of transition paths. Force spectroscopy,1 particularly using
optical tweezers, has shown significant promise. The technique,
as applied particularly by Woodside and co-workers, involves
tethering a biomolecule to two beads that are trapped under
tension in optical traps, and the displacement of the beads�and
thus the extension of the molecule as it moves�is recorded. The
unfolded molecule incurs larger extensions than the folded one,
so that monitoring the extension as a function of time provides

direct information on the state of the molecule. Provided that
the time resolution of the optical tweezers is high enough, one
may follow a biomolecule as it transits between folded and
unfolded states.

A second method, pioneered by Eaton and co-workers,
employs Fluorescence Resonance Energy Transfer (FRET)
between two fluorophores attached to a biomolecule to probe its
transitions.2 The donor fluorophore is photoexcited, and
depending on its distance from the acceptor fluorophore, it
may transfer its energy to the latter, which would then emit the
light. Single-molecule FRET experiments allow one to monitor
the FRET efficiency as a function of time, revealing the time
dependence of the distance between the two fluorophores. One
can then monitor how the interfluorophore distance evolves
when the folding barrier is crossed�that is, observe transition
paths.

Recently, a third technique has been introduced to study
transition paths. It involves monitoring an electric current
blockade in a nanopore as a biomolecule passes through it; a
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folded molecule blocks the current more than an unfolded
molecule. Gruebele, Wanunu, and co-workers have recently
reported such measurements of transition paths with a time
resolution of 0.5 μs (ref 14).

Each of these methods has its pros and cons. For example, a
central question in the optical tweezers experiment involves
unraveling the filtering effect due to the motion of the sluggish
beads.15−18 In the single-molecule FRET experiments, on the
other hand, it is challenging to obtain a high-enough photon flux
in order to follow closely the relatively fast folding/unfolding
transitions. Finally, monitoring the electric current blockade in a
nanopore involves an effect of the pore on the transition. A key
point�which is the topic of the present paper�is that none of
the experimental methods truly measures the instantaneous
value of the experimental observable reporting on the molecule’s
dynamics (such as the molecular extension or the donor−
acceptor distance). Rather, the observed trajectory is always
time-averaged/smoothed. The natural question, then, is what
are the implications of such time averaging when interpreting
single-molecule trajectories and gleaning from them information
on the observed conformational transitions?

A related question is how to interpret the measured transition
paths theoretically. Often, experimental results are compared to
approximate analytical results obtained using simple potentials
(see, e.g., refs 3 and 5) rather than solving the diffusion equation
numerically (see, e.g., refs 6 and 7). In such approximate
solutions, one often replaces the absorbing boundary conditions
required to obtain the correct transition path times (see next
Section) with open boundary conditions.19−23 But the mean
transition path time determined from the diffusion equation
with open boundary conditions will, in principle, be longer than
the same time determined with absorbing boundary conditions.
This observation has recently led to a renewed interpretation of
published optical tweezers experiments,5 indicating the
existence of a long-lived intermediate along the transition
path, which was missed due to the employment of open
boundary conditions.24 Open boundary conditions will include
path segments in which the system crosses the boundary but
then returns to it, paralleling experimental measurements with
limited time resolution. In a sense, trajectory smoothing, which
is inherent to experimental studies, blurs the difference between
open and absorbing boundary conditions; it is thus not
immediately clear which theoretical description is more
appropriate to describe experimental data.

There is yet another related question that must be addressed.
In any calculation, whether via a numerical solution of the
diffusion equation or a more sophisticated molecular dynamics
simulation, the resulting numerical data must be time-binned so
as to analyze and extract information from the measurements.
How much time-averaging is needed? What does this imply for
the statistics of the resulting binned trajectories? Are they
diffusive, or do they include memory and ballistic effects?

These questions have motivated this paper. We explore them
using a simple model cusp-shaped barrier potential, which has
the advantage of being tractable analytically, with the results
having a clear physical meaning. When analytical results are
unavailable, we supplement theory with simulations, particularly
to study the effect of smoothing on the apparent properties of
transition paths. The rest of this paper is organized as follows.
Section 2 explores the effect of the boundary conditions through
analytical theory. In Section 3 we study the effect of smoothing
on the apparent properties of transition paths. Section 4
concludes with a discussion of the practical implications of our

observations for the analysis of experimental distributions of
transition-path times in folding-unfolding kinetics of biomole-
cules.

2. EFFECT OF BOUNDARY RECROSSINGS ON THE
OBSERVED TRANSITION PATH TIME

Consider dynamics along a coordinate x (representing the
experimental observable) in a bistable potential of mean force
U(x), with the left and the right minima representing the
“reactant” and the “product” of a “reaction”, for example, folded
and unfolded states of a protein. Transition paths are segments
of trajectories x(t) that stay continuously within a specified
transition region, (a, b), having entered it from one boundary
a(b) and exited through the other, b(a).

An example of a transition path is shown in Figure 1, in green.
It enters the transition region through its left boundary a at a

point denoted A and exits this region at a point B. Given the
stochasticity of the trajectory x(t), it may recross the left
boundary multiple times (illustrated in Figure 1 as points A1, A2,
and A3) before committing to the transition path shown in
green. The segment of x(t) between A3 and A consists of failed
transition attempts or “loops”.25 Likewise, the exit from the
transition region may be followed by multiple reentrance events
through the boundary b (loops) before the trajectory is finally
committed to the “product” potential well.

Current experimental techniques usually do not have
sufficient time or positional resolution to precisely pinpoint

Figure 1. A transition path (green) stays continuously in the transition
region (a, b), entering it by crossing one boundary (here at point A) and
exiting through the other (point B). If the trajectory exits and reenters
the transition region on a time scale that is shorter than the
experimental time resolution, then the entrance point A may be
misidentified as, e.g., points A1, A2, or A3, and, likewise, the exit point B
may be misidentified as B1 or B2. This generally increases the apparent
transition path time.
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the last crossing A of the boundary a and the first crossing B of
the boundary b. Indeed, a typical time scale for recrossings τr
should be on the order of the velocity autocorrelation time. For a
polystyrene bead with a diameter of 2r = 1 μm (a typical bead
size in the optical tweezers setup), for example, this time is
readily estimated using Stokes’ law: m

rr 6
= , where m is the

bead mass and η is the water viscosity. This gives τr ≈ 50 ns, at
least an order of magnitude shorter than a typical time resolution
in such measurements. In FRET measurements, the time
resolution is determined by the rate of photon emission: if
multiple recrossings occur between the arrival moments of two
successive photons, they cannot be detected. In practice, the
problem is even more acute than described; several photons are
needed in order to define a FRET efficiency value or a distance
derived from it with reasonable confidence,26 and the exact
number may depend on various molecular and photophysical
parameters.

What is the effect of misidentifying the precise time where the
transition path enters/exits the transition region on the apparent
values of the transition path time? Since the point A in Figure 1,
where the transition path starts, corresponds to the last time that
the left boundary is crossed before the transition path begins, the
measured time when the transition path starts at the boundary a
will likely occur before the true time. Likewise, the apparent
transition path would end later than the true moment when the
boundary b is first crossed, thereby terminating the transition
path. In other words, the apparent transition path time would
include a contribution from the loops, and thus it would be
longer than the true transition path time.

To make this argument more quantitative, we need an
estimate of the temporal duration of the loop part of the
trajectory. To explain how this can be done, we start with
describing the standard way of calculating the distribution of the
transition path times (and its mean or higher moments) for the
case where the dynamics obey the Smoluchowski equation.

p x t
t

D
x

e
x

e p x t
( , )

( , )U x U x( ) ( )=
(1)

Here D is the diffusivity (which we will assume to be position-
independent),

k T
1

B
= is the inverse thermal energy, and p(x, t)

is the probability density of finding the system at point x at time
t. Equivalently, the stochastic time evolution of trajectories x(t)
is described by the overdamped Langevin equation

k T
D

x
t

U x f t
d
d

( ) ( )B = +
(2)

where f(t) is a Gaussian-distributed, delta-correlated random
force with zero mean, which obeys the fluctuation−dissipation
theorem

f t f t D k T t t( ) ( ) 2 ( ) ( )1
B

2= (3)

To obtain the distribution of the transition path times, pTP(t|a →
b), we imagine a trajectory that has just crossed the boundary a
and is located at x0 = a + ϵ at t = 0, where the limit ϵ → 0 will
eventually be taken. We follow this trajectory until it either exits
the interval (a, b) through the boundary a (in which case it does
not belong to the ensemble of transition paths) or through
boundary b (in which case it is a transition path whose temporal
duration contributes to the distribution of the transition path
time pTP(t|a → b)). This distribution is then proportional to the
flux exiting the boundary b

j b t x D
G x t x

x
( , )

( , )

x b
0

0| =
|

= (4)

where G(x, t|x0) is the Green’s function, which is the solution of
eq 1 with the initial condition

G x x x x( , 0 ) ( )0 0| = (5)

and absorbing boundary conditions

G a t x G b t x( , ) ( , ) 00 0| = | = (6)

The absorbing boundary condition at x = a eliminates the
trajectories that fail to make it to the boundary b, and thus are
not transition paths. Since only a fraction ϕ(x0 → b) of the
trajectories succeed in making it to b, the distribution of
transition path times is obtained from eq 4 by normalizing the
flux with the fraction of successful transition paths

p t a b
j b t x

x b
( )

( , )
( )TP

0

0
| = |

(7)

and finally taking the limit x0 = a + ϵ → a.
The “splitting probability” ϕ(x0 → b) can be obtained by

integrating the flux j(b, t|x0)

x b t j b t x( ) d ( , )0
0

0= |
(8)

Physically, the absorbing boundary condition at x = a
eliminates the contribution from the loops. In contrast, the f irst
passage time distribution pFP(t|a → b) from x = a to b will contain
contributions both from transition paths and from trajectories
that start at a and return to a multiple times before arriving at b
(e.g., pieces of trajectories starting at A1, A2, and A3 in Figure 1).
This distribution is obtained by considering all trajectories that
start at x = a and cross the boundary b at a later time t, regardless
of whether or not they exited the interval (a, b). As such
trajectories include both transition paths and loops, the
difference between the distributions pFP(t|a → b) and pTP(t|a
→ b) and, particularly, their means, informs us about the
contribution from the loops.

Unlike the distribution of transition path times, the
distribution of first passage times pFP(t|a → b) depends not
only on the potential shape inside the transition region (a, b) but
also on the potential outside it. In fact, for a double-well
potential (Figure 1) pFP(t|a → b) will include contributions from
trajectories that return to the vicinity of the left potential
minimum before eventually crossing the barrier to the right. For
a potential well that is deep enough, such events have a much
longer time scale (comparable to the inverse of the interwell
transition rate) than the loops that we are interested in.
Moreover, such events would be easy to resolve experimentally.
To exclude such long excursions, we consider the dynamics in a
modified potential Ũ(x), which is identical to U(x) for a < x < b
but which lacks potential wells and has the property that Ũ(x) →
−∞ for x → ±∞. More specifically, below we focus on a cusp-
shaped potential barrier of the form (Figure 2)

U x F x( ) = | | (9)

because dynamics on such a potential is tractable analytically.
We chose the boundaries a = −L, b = +L to be located

symmetrically with respect to the barrier top x = 0. For the
potential Ũ(x), some fraction of the trajectories starting at a will
escape to the left, never crossing the barrier and reaching the
point b. We thus define pFP

(c)(t|a → b) as the distribution of the
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conditional first passage time to reach b, provided that it happens.
This can be computed in a manner similar to eq 7: We solve eq 1
with the absorbing boundary condition at b but not at a

G b t x( , ) 00| = (10)

and then compute the flux (eq 4) of trajectories crossing b. Now
we have

p t a b
j b t a

a b
( )

( , )
( )

c
FP
( ) | = |

(11)

where ϕ(a → b) = ∫ 0
∞dt j(b, t|a) is the probability that a

trajectory that starts at x = a reaches the point b rather than
escapes to −∞ (splitting probability).

If every trajectory crossing the boundary a were to proceed to
b without recrossing a, the two distributions, pFP

(c)(t|a → b) and
pTP(t|a → b), would be identical. Physically, if the potential at x =
a is steep enough, any trajectory that recrosses the boundary a
will, within a negligibly short time, evolve toward x = −∞ rather
than reenter the transition region. Likewise, a trajectory that has
reached point b starting from a will proceed toward x → ∞.
Thus, we anticipate that pFP

(c)(t|a → b) will approach pTP(t|a → b)
as either the force F is increased or the transition region width b
− a = 2L increases while keeping the force F constant. In
particular, the mean conditional first passage time

t t tp t a bd ( )c c
FP
( )

0 FP
( )= |

(12)

will approach the mean transition-path time

t t tp t a bd ( )TP
0 TP= |

(13)

This is indeed what is observed in this “steep potential” limit,
when we calculate these times for the cusp-shaped potential of
eq 9 (Figure 3). In this case the distributions pTP(t|a → b) and
pFP

(c)(t|a → b) only depend on the dimensionless parameter

u U U L FL(0) ( )= [ ± ] = (14)

which is the transition path barrier height22 (equal to the barrier
measured relative to x = ±L) normalized by thermal energy. In
particular, for this potential we have27

t L
Du u
2 1

1 e
1

2
(3 e )u

u
TP

2
=

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ (15)

The explicit expression for ⟨tFP
(c)⟩ is rather long; how it was

calculated is explained in Appendix A.
The no-recrossing assumption is also invoked in the “open

boundary conditions” approximation, which is often employed
to obtain analytic results for transition path time distribu-
tions19−22 as well as to fit experimental data.5 This
approximation is based on eqs 4 and 7 but with the Green’s
function G(x, t|x0) satisfying the absorbing boundary conditions
(eq 6) replaced by the Green’s function Gopen(x, t|x0) satisfying
eqs 1 and 5 without the absorbing boundaries. Correspondingly,
the splitting probability ϕ(x0 → b) in eq 7 is now replaced by the
integral of the flux, which guarantees proper normalization of the
estimated distribution of the transition path time.

x b t j b t x

D t
G x t x

x

( ) d ( , )

d
( , )

x b

0
0 open 0

0

open 0

= |

|

= (16)

For the cusp-shaped potential Ũ(x), the mean transition path
time estimated using the open boundary conditions is given by a
physically appealing formula (Appendix B)

t
L

Du
L
v

2 2
TP open

2
= =

(17)

where v = FDβ is the mean drift velocity of the system in the
presence of a constant force F.

We note that the conditional times ⟨tTP⟩open and ⟨tFP
(c)⟩, while

both affected by loops, are different quantities, and the
difference between the two is not merely a change in boundary
conditions. As seen in Figure 3, for low (reduced) barrier

Figure 2. Model double-well potential used here is described by a
p i e c e w i s e f u n c t i o n U x

k T
( )

B
=

F x x x

Fx F
k

k x F
k

x x x
2 2

1

1

2

1

2

1

| | | |

+ | | | | >

l
m
oooo
n
oooo

i
k
jjj y

{
zzz , which has a cusp-

shaped barrier. Here x1 = 2.75, k = 1, and F = 1. The transition region
(−L, L) is indicated by the vertical lines. Conditional first passage times
were calculated using the modified potential (eq 9), which is identical to
U(x) in the transition region but lacks potential wells (dashed line).
The same potential was used to calculate transition path times using
open boundary conditions.

Figure 3. Mean conditional first passage time ⟨tFP
(c)⟩ (blue line, eq 12),

mean transition path time ⟨tTP⟩open evaluated using open boundary
conditions (red line, eq 17), and the true transition path time ⟨tTP⟩
(green line, eq 15) plotted as a function of the transition path barrier
height measured in thermal energy units (eq 14) for the cusp-shaped

potential, eq 9. Time is reported in dimensionless units of L
D

( / 2)2
, where

2L is the barrier width (Figure 2) and D is the diffusivity. Note the
logarithmic time axis.
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heights, both of these times are much longer than the mean
transition path time, highlighting the significant contribution
from trajectories re-entering the transition region. As the barrier
height increases, the three times converge to the same value.

Interestingly, ⟨tTP⟩open is close to the mean conditional first
passage time ⟨tFP

(c)⟩ at all values of the dimensionless free energy
barrier u, asymptotically behaving in the same way in the limits u
→ 0 and u → ∞ (Figure 3). Moreover, the distributions of the
conditional first passage time pFP

(c)(t|a → b) and of the transition
path time pTP(t|a → b) estimated using open boundary
conditions are close to one another for any barrier height (as
illustrated in Figure 4). Thus, recrossings of the boundaries of

the transition region lengthen both ⟨tTP⟩open and ⟨tFP
(c)⟩, as

compared to the true transition path time ⟨tTP⟩, by roughly the

same amount, with all three times approaching the same limit at

high barriers; specifically, this limit is

t t t
L

Du
L
v

2 2c
TP TP open FP

( )
2

=
(18)

3. EFFECT OF TRAJECTORY SMOOTHING ON THE
APPARENT TRANSITION PATH TIME

To understand more quantitatively how temporal resolution of
the measurement affects the apparent transition path times, here
we adopt a model in which the observed values x̃ of the quantity
of interest differ from the instantaneous values x: specifically, the
observed trajectory x̃(t) is a smoothed version of the true
trajectory x(t) obtained by performing a moving average over a
certain time window Δt.

x t
t

x t t( )
1

( ) d
t t

t t

/2

/2
=

+

(19)

We note that such smoothing is explicitly used in force
spectroscopy studies (see, e.g., ref 5) to eliminate noise. We
perform Langevin dynamics simulations with the full potential
U(x) of Figure 2 and the boundaries a = −L, b = +L. We
compute smoothed trajectories x̃(t) and use them instead of x(t)
to analyze the (apparent) transition path ensemble.

An example of a transition path obtained for the smoothed
trajectory x̃(t) and compared to the corresponding transition
path for the unsmoothed trajectory x(t) is shown in Figure 5.

Consistent with the discussion of Section 2, the transition path
time for the smoothed trajectory is longer. In the particular
example shown in Figure 5, the origin of this lengthening is clear:
Smoothing eliminates some of the recrossings of the boundary
where the transition path starts; the true transition path starts
when this boundary is crossed for the last time (blue arrow in
Figure 5), while the transition path obtained from the smoothed
trajectory starts earlier (red arrow in Figure 5). We show below
that this finding is general: the mean apparent transition path
time derived from a smoothed trajectory x̃(t) is always longer
than the true one.

3.1. Motional Averaging and Modified Potential of
Mean Force. In general, the equilibrium probability distribu-
tion p̃eq(x̃) of the observed coordinate x̃ is different from the
distribution peq(x) of the true value of x. As a result, application

Figure 4. Probability densities of the conditional first passage time
(obtained by numerically inverting the Laplace transform of eqs
A16−A19) and the transition path time evaluated using open boundary
conditions (eq B2) plotted for different values of the transition path
barrier height measured in thermal energy units (eq 14) for the cusp-
shaped potential, eq 9. Time is reported in dimensionless units of L

D4

2
,

where 2L is the barrier width (Figure 2) and D is the diffusivity.

Figure 5. An example of a segment of a trajectory containing a
transition path from b = +L to a = −L (these boundaries are indicated as
horizontal lines). The simulated trajectory x(t) is shown in blue, and its
smoothed version x̃(t) is in red. Smoothing was performed using eq 19
with Δt ≈ 0.14 ⟨tTP⟩. The reduced transition path barrier height is u = 2.
Blue/red arrows roughly indicate the beginning (i.e., entrance to the
transition region (−L, L) and the end (exit from the transition region)
of the transition path in the simulated/smoothed trajectories. The
smoothed transition path has a longer temporal duration than the “true”
one, with the true trajectory, unlike its smoothed counterpart,
recrossing the boundary b multiple times.
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of the Boltzmann formula p̃eq(x̃) = e−βUapp(x̃) results in an
apparent potential of mean force Uapp(x) that differs from the
true one U(x).28,29 As seen from Figure 6, smoothing effectively

deepens the potential wells of the apparent potential Uapp(x̃),
increasing the apparent barrier. The origin of this effect is the
“motional narrowing” that can be understood from the following
argument: Imagine that the smoothing time Δt is much longer
than the relaxation time within a potential well. Then for a
trajectory localized in one of the wells the time average of eq 19
will result in x̃ having a very sharp distribution localized around
the mean position within this well.29 For a trajectory undergoing
transitions between the two wells, the time averaging will yield
two such sharp peaks in the distribution of p̃(x̃) provided that
the smoothing time Δt is much shorter than the time scale for
the transitions between the two wells. As the smoothing
sharpens the two peaks of p̃(x̃) corresponding to each well and
effectively reduces the apparent probability density p̃(x̃ ≈ 0) of
finding the system near the barrier top, it increases the apparent
barrier between the two states.28

Importantly, Figure 6 shows that, even when the averaging
time Δt exceeds the mean transition path time, the effect of
smoothing on the shape of the apparent potential of mean force
is modest, and for Δt ≪ ⟨tTP⟩ this effect is insignificant for the
potential U(x) studied.

3.2. Mean Apparent Transition Path Time as a
Function of the Smoothing Window. In accord with the
discussion above, the apparent mean value of the transition path
time ⟨tTP

app⟩ based on the smoothed trajectory (eq 19) is longer
than the true value, and it increases with increasing smoothing
time window Δt (Figure 7). The magnitude of the effect is
relatively insensitive to the specifics of the potential, as seen in
Figure 7, where the results are plotted both for the piecewise
potential of Figure 2 and for a quartic double-well potential with
the same depth and transition path barrier height.

It is reasonable to assume that an experimental technique that
has its goal to measure the transition path times should operate
in the regime Δt < ⟨tTP⟩. As observed in Figure 6, the errors
introduced by smoothing into the apparent potential of mean
force in the barrier region −L < x < L are rather small in this
regime, yet the increase in the apparent mean transition path

time is significant (e.g., a ∼20% increase when Δt ≈ 0.1⟨tTP⟩). At
the same time, the apparent mean transition path time in this
regime is significantly shorter than the value ⟨tTP⟩open estimated
using open boundary conditions and the comparable value of the
mean conditional first passage time ⟨tFP

(c)⟩ (see Figure 3). The
latter two times, in a sense, represent the worst-case scenario
where the experimental method fails to capture boundary
recrossings.

4. CONCLUDING REMARKS
In this work, we studied the properties of transition-path
trajectories and used them to test and understand various
aspects that might affect measured transition paths and their
interpretation. A key observation that underlies this work is that
identification of the precise moment of time of boundary
crossing signifying the beginning or the end of a transition path
is beyond the resolution of current experiments, although it may
be possible in the future. This limitation may substantially affect
the interpretation of the measured transition path times. We
note that the same limitation has to be considered when
measuring other properties of barrier crossing dynamics such as
transition path velocities or shapes.11,13,30

We have shown here that, as a result of limited time
resolution, measured apparent transition path times are, on the
average, always longer than the true ones. This effect is
prominent with low barriers but becomes less so as the transition
path barrier height increases.

When the observed transition paths can be viewed as
smoothed versions of the true trajectories, the apparent
transition path time increases as the smoothing time window
increases. The changes in measured properties due to smoothing
are significant even when the smoothing time is a small fraction
(e.g., 10%) of the mean transition path time and the distortion of
the apparent potential of mean force caused by smoothing is
negligible. The effect of finite time resolution may be even more
complicated when the experimental analysis involves additional
data processing steps such as the maximum likelihood/hidden
Markov analyses often used in single-molecule FRET experi-
ments.2,3,6,8,23,31−35

Figure 6. Apparent potential of mean force measured in kBT units
(obtained via Boltzmann inversion of the histogram of the smoothed
variable x̃, eq 19) plotted for different values of the smoothing time Δt,
as specified in the legend. The true potential here is the piecewise
potential of Figure 2, with a cusp-shaped barrier and parabolic potential
wells.

Figure 7. Apparent mean transition path time measured from
smoothed Langevin trajectories, eq 19, as a function of the smoothing
time window Δt. Solid black line shows results for the (cusped)
potential of Figure 2, and dot-dashed blue line shows results for a
quartic double-well potential of the same depth and transition region
boundaries chosen such that the reduced transition path barrier height
is the same (u = 2). The horizontal dashed line indicates the true
transition path time, and the horizontal solid (red) line shows the
prediction of eq 17.
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In summary, the interpretation of folding/unfolding tran-
sition paths is challenging both from the point of view of the
measurements and from the point of view of their analysis. We
focused here on the latter. An interplay of experiment and theory
is essential for interpreting experimental observations and
deriving from them information, such as free energy profiles in
the transition region. The combination of theoretical and
experimental analysis is essential for making further progress in
this stimulating field of study.

■ APPENDIX A. CONDITIONAL FIRST PASSAGE
TIMES IN THE CUSP-SHAPED POTENTIAL MODEL

Here we consider a particle moving under the influence of a
cusp-shaped potential of the form U(x) = −F|x|. The conditional
first passage time from a boundary a = −L to b = +L can be
calculated using eq 11 in the main text. To do so, we need the
system’s Green’s function G(x, t| −L) satisfying the
Smoluchowsky equation (eq 1)

G x t L
t

D
x

e
x

e G x t L
( , )

( , )F x F x| = || | | |
(A1)

with the initial condition

G x L x L( , 0 ) ( )| = + (A2)

and absorbing boundary condition at x = b = L.

G L t L( , ) 0| = (A3)

Introducing the Laplace transform of this function
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0
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eqs A1 and A2 lead to
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Using the ansatz
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one finds that the function g satisfies the equation

g
x

s
D

F
g

d
d 4

0
2

2

2 2

+ =
i
k
jjjjj

y
{
zzzzz (A7)

whose general solution is of the form
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This gives the general expression for the Laplace transform of
the Green’s function.

G e Ae B( e )F x cx cx/2= +| | (A10)

The values of the coefficients A and B are different in three
distinct regions, x < −L, −L < x < 0, and x > 0. For x < 0, the
coefficient B must vanish, as otherwise eq 10 would result in an
unphysical solution that grows exponentially as x → −∞. The
remaining coefficients can be obtained via matching of the
solutions at the boundaries between these regions and using the
boundary condition. Specifically, continuity requires that

G L G L G G( 0) ( 0), ( 0) ( 0)= + = + (A11)

The presence of the delta function in eq A5 leads to
discontinuity of the first derivative of Ĝ at x = −L. Indeed,
integrating eq A5 from −L − 0 to −L + 0 one finds

De
x
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from which it follows that
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In contrast, the derivative is continuous at x = 0.

G
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G
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0
x x0 0

=
=+ = (A14)

Finally, Ĝ must satisfy the absorbing boundary condition (eq
A3), which requires

G L( ) 0= (A15)

By solving eqs A11−A15 we thus obtain the Laplace
transform of the Green’s function for all values of x. This
solution is then used to obtain the Laplace transform of the
distribution of the conditional first passage time (eq 11)
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and the Laplace transform of the flux at x = L, which is given by
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The final result for this flux can be written in the form
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The mean conditional first passage time can now be obtained
using eqs 12 and A18.
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The resulting formula is rather long and will not be spelled out
explicitly here.
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■ APPENDIX B. TRANSITION PATH TIMES
ESTIMATED USING OPEN BOUNDARY
CONDITIONS FOR THE CUSPED-SHAPED
POTENTIAL MODEL

To compute the mean transition path time using open boundary
conditions, one needs the function Gopen(x, t|x0). The Laplace
transform of this function, Ĝopen, satisfies eqs A1 and A2 and can
be found using the same approach as in Appendix A. The only
difference is that the absorbing boundary condition, eq A15,
must now be removed and replaced by the requirement that
Ĝopen does not diverge as x → ∞, which means that only the
second, exponentially decaying term of eq A10 should be kept
for x > L. The final result for the Laplace transform of the
distribution of the transition path times approximated using
open boundary conditions is

p s L L e( ) L
TP
(open) | = (B1)

with γ defined in eqs A9 and A18. Taking the inverse Laplace
transform of this expression gives the distribution
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from which the mean time of the distribution, eq 17, is
calculated.
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