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Abstract
As part of the QTLMAS XII workshop, a simulated dataset was distributed and participants were
invited to submit analyses of the data based on genome-wide association, fine mapping and genomic
selection. We have evaluated the findings from the groups that reported fine mapping and genome-
wide association (GWA) efforts to map quantitative trait loci (QTL). Generally the power to detect
QTL was high and the Type 1 error was low. Estimates of QTL locations were generally very
accurate. Some methods were much better than others at estimating QTL effects, and with some
the accuracy depended on simulated effect size or minor allele frequency. There were also
indications of bias in the effect estimates. No epistasis was simulated, but the two studies that
included searches for epistasis reported several interacting loci, indicating a problem with
controlling the Type I error rate in these analyses. Although this study is based on a single dataset,
it indicates that there is a need to improve fine mapping and GWA methods with respect to
estimation of genetic effects, appropriate choice of significance thresholds and analysis of epistasis.

Background
For decades, geneticists have used genetic linkage to iden-
tify and locate genomic loci that determine traits with
Mendelian as well as complex genetic inheritance. The
most common approach to genome-wide genetic analyses
has been to utilize the extended linkage disequilibrium
that exists in pedigrees to screen the genome using a few
hundred markers or even less. Such linkage analysis (LA)

studies are powerful and in experimental pedigrees they
allow detection of loci of moderate effect and with com-
plex inheritance patterns, including imprinting and
epistasis [1]. Using this approach, large numbers of loci
have been mapped [2]. LA uses only the recombination
events that have occurred within the pedigree of geno-
typed individuals and this limits the resolution to regions
tens of megabases long, containing potentially hundreds
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of genes. New molecular methods now allow cost-effi-
cient genotyping of several hundred thousand genetic
markers, making it possible to increase resolution by
using the short-range linkage disequilibrium (LD) in gen-
eral populations regardless of the pedigree structure. This
LD mapping approach has been coined genome-wide
association (GWA) when applied to whole-genome scans
and has revolutionized the field of complex trait genetics
in human populations [3]. It also opens up new opportu-
nities for high resolution mapping in animal populations
[4]. Pedigree-based association methods that attempt to
take into account the general relationships between
related individuals have also been developed. GWA is
considered to be more powerful than LA for detecting the
effects of common alleles with small effects but is less
powerful when traits have a complex genetic determina-
tion, including epistasis. A relatively recent proposal is to
combine elements of both LA and LD mapping into one
analysis, known as LDLA (combined linkage disequilib-
rium and linkage analysis) [5]. An alternative to classical
statistical approaches is a Bayesian analysis, which has the
advantage that determining the number of QTL that
should be modelled can form an integral part of the proc-
ess and effects of all QTL can be estimated simultaneously
[6].

The purpose of distributing a common dataset to partici-
pants of the QTLMAS XII workshop was to evaluate cur-
rent and new methods for QTL analysis and genomic
selection by their performance on the same data. The dis-
tributed dataset included dense marker genotypes of indi-
viduals in a deep pedigree. Here, we summarise and assess
the six studies that focused on QTL mapping [7-12]. Our
aim was to identify the strengths and weaknesses of the
different methods and try to draw more general conclu-
sions about the types of approach that perform best, as
well as highlighting areas that need more research. The
results from the studies relating to genomic selection are
evaluated in the second summary paper of this supple-
ment [13].

The dataset
The data available for fine-mapping and genome-wide
association analyses consisted of a simulated four-genera-
tion pedigree of 4,665 individuals [13]. Phased biallelic
marker genotypes were given at 0.1 cM intervals for six
chromosomes, each 100 cM long. Hence, chromosome-
wide haplotypes containing 1,000 markers per chromo-
some were given. Fifty biallelic QTL with additive effects
were simulated. Details of these QTL are given in Table 1
and their genomic locations are illustrated in Figure 1. For
six QTL, the location was pre-defined and their effects
were chosen so that the QTL explained a fixed proportion
of the genetic variance. The genetic variance for each QTL
was calculated as 2p(1 - p)α2, where p is the minor allele

frequency in the four generations and α is the average
effect of allelic substitution (average change in genotypic
value when one allele is randomly substituted for the
other, which we calculated from the data using the for-
mula in [14]). The locations and effects of the remaining
QTLs were randomly sampled. A normally distributed
error term was added to the genetic value for each individ-
ual to give a genetic variance of 0.3 times the phenotypic
variance. No QTL were simulated on chromosome 6,
making it a control for false positives. The number of QTL
simulated on chromosomes 1–5 was 10, 13, 6, 10 and 11,
respectively. None of the QTL was located at a marker
position and therefore the QTL genotypes were unknown
to the participants. The average effect of allelic substitu-
tion for the QTL varied from <0.01 to 0.75. One QTL was,
by chance, fixed in the base population; the minor allele
frequencies of the other QTLs ranged from 0.04 to 0.47.

Description of studies and treatment of results
Descriptions of the methods used to produce the results
that we compared are given in Table 2, along with the
notation that we will use to refer to each study. All of the
studies described more than one analysis. Mostly, one
analysis was clearly preferred or a final set of results was
given and these were used in our comparison. Two studies
did not give a clear preference for one method and we
chose results based on their comments. From LDLA1, we
took the positions and effects from the multiple regres-
sion that were located in regions found by LDLA and 23.2
cM on chromosome 1, which was found only by LDLA.
Two methods were used in LDHap: a haplotype method
called Blossoc and single marker association. Each was
applied to both the raw data and the data pre-corrected for
pedigree, sex and generation. The results from Blossoc did
not include estimates of QTL effects. For our comparison,
we took the positions identified by Blossoc with pre-cor-
rected data and 13.3 cM on chromosome 3, which was
close to the chosen significance threshold for Blossoc with
pre-corrected data, detected by Blossoc with raw data and
by single marker association with both raw and pre-cor-
rected data. For the estimates of QTL effects, we took the
values from single marker association with pre-corrected
data that corresponded to these positions.

Three of the studies aimed to identify and estimate the
genetic effects of as many simulated QTL as possible,
whilst controlling the Type I (false positive) error rate. The
methods used included Bayesian linkage analysis
(LABayes), multiple regression LD analysis (LDmulti) and
an LD approach that scores the clustering of phenotype
with reconstructed phylogeny (LDHap). The remaining
three studies had slightly different goals. Two aimed to
find the most important QTL efficiently with a reduced
analytic effort. A selective genotyping strategy was
explored in LDLA1, choosing which markers to include
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based on allele frequency differences between individuals
with high and low phenotypic values. A limit of two QTL
per chromosome was applied in LDLA2 and only marker

data from the last two generations of the pedigree was
used. LDLA1 used LDLA in combination with multiple
regression LD analysis and LDLA2 applied LDLA and LD

Table 1: Simulated QTL.

Namea Chrb Location (cM) Effectc Minor allele 
frequency

Genetic variance % of phenotypic 
variance explained

Estimated effect in 
multiple regression

M1 1 20.00 0.62 0.28 0.15 3.50 0.61
S1 1 31.87 0.01 0.44 0.00 0.00 0.06
S2 1 33.16 0.00 0.30 0.00 0.00 0.04
M2 1 40.00 0.56 0.07 0.04 0.91 0.62
S3 1 50.37 0.06 0.46 0.00 0.04 0.08
S4 1 52.50 0.05 0.40 0.00 0.03 0.07
S5 1 62.21 0.00 0.29 0.00 0.00 0.02
M3 1 77.23 0.37 0.29 0.06 1.29 0.42
S6 1 86.68 0.01 0.30 0.00 0.00 0.09
S7 1 93.99 0.01 0.47 0.00 0.00 0.01
S8 2 2.25 0.01 0.39 0.00 0.00 0.06
S9 2 6.52 0.07 0.38 0.00 0.06 0.09
M4 2 27.41 0.35 0.44 0.06 1.38 0.44
M5 2 30.00 0.33 0.21 0.04 0.82 0.25
S10 2 32.49 0.04 0.41 0.00 0.02 0.07
S11 2 45.71 0.01 0.09 0.00 0.00 0.07
S12 2 48.22 0.04 0.08 0.00 0.01 0.06
M6 2 48.62 0.37 0.40 0.07 1.50 0.39
M7 2 74.91 0.50 0.18 0.07 1.63 0.46
S13 2 89.04 0.12 0.22 0.01 0.12 0.15
S14 2 93.54 0.25 0.32 0.03 0.61 0.22
S15 2 95.66 0.02 0.29 0.00 0.01 0.12
S16 2 97.83 0.13 0.41 0.01 0.19 0.14
S17 3 0.70 0.03 0.00 0.00 0.00 -d

S18 3 7.89 0.01 0.46 0.00 0.00 0.04
M8 3 14.91 0.30 0.40 0.04 0.98 0.27
S19 3 21.07 0.02 0.26 0.00 0.00 0.00
S20 3 29.81 0.07 0.29 0.00 0.04 0.05
M9 3 60.00 0.68 0.07 0.06 1.29 0.70
M10 4 3.21 0.61 0.39 0.18 4.01 0.64
S21 4 3.44 0.08 0.32 0.00 0.06 0.10
S22 4 3.88 0.02 0.23 0.00 0.00 0.02
S23 4 10.00 0.01 0.04 0.00 0.00 0.06
S24 4 16.35 0.00 0.36 0.00 0.00 0.11
S25 4 19.84 0.07 0.47 0.00 0.05 0.10
M11 4 36.93 0.34 0.24 0.04 0.95 0.37
S26 4 69.56 0.00 0.08 0.00 0.00 0.01
M12 4 76.06 0.58 0.41 0.16 3.70 0.58
M13 4 96.49 0.29 0.19 0.03 0.59 0.38
M14 5 5.15 0.18 0.21 0.01 0.24 0.25
S27 5 12.98 0.09 0.44 0.00 0.10 0.09
S28 5 28.64 0.00 0.13 0.00 0.00 0.05
S29 5 68.39 0.12 0.44 0.01 0.15 0.17
S30 5 68.48 0.00 0.43 0.00 0.00 0.02
S31 5 72.54 0.00 0.12 0.00 0.00 0.06
S32 5 77.02 0.13 0.25 0.01 0.14 0.15
S33 5 80.00 0.08 0.11 0.00 0.03 0.05
S34 5 82.14 0.01 0.36 0.00 0.00 0.08
M15 5 93.50 0.75 0.26 0.22 4.97 0.75
S35 5 98.32 0.01 0.45 0.00 0.00 0.02

aQTL labelled M are major QTL, known to be detectable in this dataset based on the results from our multiple regression. QTL labelled S are 
secondary QTL that were not detected, with the significance threshold used, in our multiple regression. bChromosome. cAverage effect of allelic 
substitution (absolute value). dCould not be estimated because the QTL was fixed in the population.
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analysis only to the most significant region per chromo-
some identified by linkage analysis. The last study
(LDBayes) came from a genomic selection perspective,
directed at finding all potential QTL, and did not aim to
control the type 1 error rate. In order to make a more
equivalent comparison with the other studies, we only
included the positions from LDBayes with the largest esti-
mated effects (see below for more details). Genetic effects
in LDBayes were estimated with a Bayesian LD analysis.

Methods
Assessment of QTL detectability
Because the dataset is the result of a single simulation,
detection of QTL may be limited by the minor allele fre-
quencies generated in that simulation. Detectability will
also depend on the size of the QTL effect and be affected
by the population size. Therefore, to determine which
QTL are potentially detectable in this dataset, we fit a mul-
tiple regression with all 50 QTL genotypes. Our rationale
was that QTL that could not be identified when the correct
genetic model was used, could not be correctly identified
by the participants. The purpose of fitting a multiple

regression was to exclude spurious effects due to linkage
with another QTL of large effect, which might have been
found in single locus analyses. We used the following lin-
ear model of purely additive effects.

y = μ + Xα + e,

where y is the vector of phenotypes, μ is the population
mean, X is a 50-column matrix of indicator variables for
the genotype of each QTL, α is a vector of average effects
of allelic substitution for the QTL and e is a vector of nor-
mally distributed error terms. The indicator variables were
set to -1, 0 and 1 for QTL genotypes 11, 12 and 22, respec-
tively. We declared a QTL significant if the p-value for a t-
test of the estimated effect was <8 × 10-6, which is a Bon-
ferroni correction for an overall significance level of 0.05
with 6,000 tests. Although the Bonferroni correction is
conservative, the next smallest p-value was 3 × 10-4, so
only a much more lenient threshold would have resulted
in more QTL found, and the relevant QTL was not
reported by any of the studies. The significance thresholds
used in each of the studies are given in Table 3. To gain an

Chromosomal positions of simulated QTLFigure 1
Chromosomal positions of simulated QTL. Each simulated chromosome (Chr) is 100 cM long. QTL are indicated on the 
right-hand side of each chromosome and their position in cM on the left-hand side. No QTL were simulated on chromosome 
6.
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understanding of which QTL were detected by each study,
we also carried out individual regressions on QTL geno-
type.

Criteria for detection of a simulated QTL
We will refer to the QTL that were detected by our multi-
ple regression model as M-QTL (for major QTL) and the
remaining QTL as S-QTL (for secondary QTL). Partici-
pants were considered to have correctly identified a QTL if
they reported a position within 5 cM either side of an M-
QTL. If a reported QTL was within 5 cM of more than one
M-QTL, we treated this as detection of the M-QTL that was
closest. If more than one QTL was reported within 5 cM of
an M-QTL, we took the closest reported QTL as the esti-
mate of the M-QTL and treated the others as false posi-
tives. Other reported QTL, including those close to S-QTL,
with two exceptions described in the results, were treated
as false positives. To select which positions should be
included from LDBayes, we first ranked them by esti-

mated effect size. We then chose a cut-off such that 10 M-
QTL were detected.

Measures for comparing the reported results

The results of the participants were compared in several
ways. First we determined how many M-QTL were
detected and the number of false positives. Second, we
looked at accuracy in estimates of QTL position, by calcu-
lating the absolute difference between the reported and
simulated position. For LABayes we took the mode of
each identified region as the estimate of QTL position.
Third, we considered accuracy in estimates of effect size.
We determined the magnitude of the difference between
the estimated and simulated effect as a percentage of the
simulated effect. Most of the studies reported an estimate
of the additive effect. For LDLA1 and LDmulti, we took
half the difference in genotypic value between the 11 and
22 genotypes as the estimate of effect size. For the simu-

Table 2: Summary of studies.

Study Type Loci Type of locia Loci effects Additional effects Model Comments

LABayes [7] LA multiple multi-markerb fixed, additive sex + generation Bayesian only every tenth marker 
used

LDBayes [8] LD multiple single marker random, additive - Bayesian

LDLA1 [9] LD multiple single marker fixed, additive 
+dominance

polygenic mixed model, 
REMLc and FSd

markers selected by allele 
frequency difference in 
high/low offspring per sire

LDLA single haplotype (2) random, additive polygenic variance 
component, REML

markers selected by allele 
frequency difference in 
high/low offspring per sire

LDmulti [10] LD multiple single marker fixed, additive 
+dominance 
+epistasis

pre-correction for 
polygenic + sex + 
generation

linear regression, 
least squares and 
FS

mixed model, REML used 
for pre-correction

LDHap [11] LD single haplotype (10e) fixed, additive pre-correction for 
polygenic + sex + 
generation

phylogeny building, 
cluster analysisf

mixed model, MLg for pre-
correction, maximum in 10 
cM interval

LD single single marker fixed, additive polygenic + sex + 
generation

mixed model, ML maximum in 5 cM interval, 
explored epistasis

LDLA2 [12] LA two single marker random, additive polygenic variance 
component, REML

only marker data from last 
two generations used

LDLA single haplotype (10) random, additive polygenic variance 
component, REML

only marker data from last 
two generations used, only 
on most significant region 
per chromosome from LA

LD single haplotype (3) random, additive polygenic variance 
component, REML

only marker data from last 
two generations used, only 
on most significant region 
per chromosome from LA

aIn brackets is the number of markers in a haplotype. bProbability of QTL genotype is conditional on all marker data (at reduced 1 cM density) for 
the chromosome. cRestricted maximum likelihood. dForward selection. eAt least 10 markers used. fUsing Blossoc [16]. gMaximum likelihood.
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lated effect, we used the average effect of allelic substitu-
tion calculated from the data. As an equivalent measure of
error for LDLA2, we calculated the magnitude of

, where Vest is the estimated genetic

variance explained by the QTL and Vsim is the simulated

genetic variance. We also looked at tendencies for bias in
reported effects. For QTL detection, position and effect
accuracy, we evaluated potential relationships with simu-
lated QTL effect, percentage of phenotypic variance
explained by the QTL and minor allele frequency (MAF).

Results
Power of QTL detection
15 of the 50 simulated QTL were significant in our multi-
ple regression on known genotypes and therefore were
potentially detectable using a stringent genome-wide sig-
nificance threshold (Table 4). These were the QTL with
the 14 largest simulated effects and the 16th largest simu-
lated effect. All except the last were also significant in indi-
vidual regressions.

Eleven M-QTL were found in LDHap (Table 4). Ten M-
QTL were found in LABayes and by design, in LDBayes,

100 1× −( )V Vest sim

Table 3: Threshold criteria used in the studies and description of epistatic analyses.

Study Threshold
criteria

P-value Comments

LABayes 2× ln(Bayes factor) ≥ 3 0.08 We equated 2× ln(Bayes factor) with a likelihood
ratio test statistic with one degree of freedom [17]
and calculated the p-value with a χ2 approximation.
This method compared models with an increasing number of QTL,
for each chromosome, therefore far fewer tests were
necessary than for the other studies.

LDBayes - - No significance tests were performed.

LDLA1 LD: F > 4a 0.007 Tests were only performed on markers that had
a significant difference in allele frequency
between high/low offspring from each sire at p < 0.0016.

LDLA: LRTb > 12.8 0.0003c Tests were only performed on markers that had
a significant difference in allele frequency
between high/low offspring from each sire
at p < 0.0016.

LDmulti 8×10-6 An epistatic analysis was performed.
An epistatic model was tested against two-locus
marginal model (p < 8 × 10-6)
for pairs of markers significant alone,
against one locus model (p < 1 × 10-7)
for one significant and one non-significant marker,
and null model for pairs of non-significant markers
(p < 3 × 10-9).
In last two cases, epistatic model was then tested
against two-locus marginal model at
p < 2 × 10-5 and p < 5 × 10-7, respectively.

LDHap haplotype: HQd  ≥ 15 2×10-9e

single marker: LRT >32.8 10-8 An epistatic analysis was performed
using single marker association on pre-corrected data.
For each 1 cM interval the marker in highest
average LD with the others in the same interval was found.
Each type of epistatic interaction
(e.g. additive by dominance) was then tested
for pairs of these markers at p < 10-3.
When these were significant epistasis was tested
for all pairs of markers in the two intervals at
p < 10-6 and pairs within 10 cM of each other were excluded.

LDLA2 LRT > 6 0.014c -

aLowest F-to-enter value reported. bLikelihood ratio test statistic. cFrom a χ2 approximation with one degree of freedom. dHannan-Quinn criteria, 
which is similar to 2× ln(Bayes factor). eFrom regression of p-values obtained by permutation test (108 replicates) for chromosome 1 with raw data 
against HQ score (Ledur, pers. comm.).
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and nine were reported in LDmulti. The studies with the
lowest power were LDLA1 and LDLA2, the two with
restricted analyses, in both of which only seven QTL were
identified. Furthermore, for one of the cases in LDLA2, the
M-QTL (M6) was outside the confidence interval for the
estimated position.

Type I error rate
There were no false positives reported in LDLA2, or in the
marginal effects reported in LDmulti and LDHap. One
false positive was found in LABayes (Table 4). A second
region reported in this study (91–99 cM on chromosome
2) was not treated as a false positive because it contained
three minor QTL, whose combined effect was significant
in our multiple regression model. Two false positives were
given in LDLA1. For the cut-off that we applied, there were
five false positives for LDBayes. LDBayes also reported a
QTL at 94.9 cM on chromosome 2, which, for consistency
with our treatment of LABayes, we did not consider a false
positive.

Key features of discovered QTL
We looked for trends in which QTL were detected. Figure
2 shows the M-QTL, ordered by simulated effect size and
minor allele frequency that were found by each study. The
QTL found in LDLA2 were those with highest minor allele
frequency (MAF) for a given chromosome in the last two
generations. In LDmulti and LDHap, the same QTL plus
two more (M2, M12) were detected. M2 and M12 had

large simulated effects and were the next most significant
M-QTL in individual regressions. An additional two QTL
were found in LDHap than in LDmulti (M9, M13). M9
and M13 were the most significant of the remaining M-
QTL in individual regressions. M9 had the second highest
simulated effect of all the QTL but the lowest MAF and
was only identified in LDHap. Hence, in LDmulti and
LDHap, power to detect QTL appears to have been mostly
limited by effect size.

The QTL identified in LDLA1 show no obvious relation-
ship with MAF, and QTL with both large and small effects
were missed (Figure 2). In particular, the two QTL with
the largest simulated effects (M9, M15) were not found. In
LABayes the same QTL were found as in LDLA1 plus three
more (M3, M14, M15). M3 and M15 were found in all the
studies except LDLA1. M14 had the lowest simulated
effect of the M-QTL and was only detected in LABayes.
Eight of the QTL reported in LABayes were also found by
LDHap. There were nine QTL found in common between
LDBayes and LDHap. LDBayes estimated the position of
the first QTL on chromosome 1 closer to M4 than the
nearby M5, whereas the estimated location in LABayes
was closest to M5. In LDBayes, M11 was also identified,
which was not found in any of the other studies.

M7 was not detected in any of the studies. In none of the
studies were the two closely linked QTL, M4 and M5, dis-
tinguished.

Table 4: Comparison of M-QTL and reported QTL.

Estimated QTL
Simulated QTL

MRf LABayesg LDBayesi LDLA1j LDMulti LDHap LDLA2

QTL Chra Locb ec pd Vge e Loc eh Loc eh Loc ek Loc ek Loc eh Loc Vg

M1 1 20.0 0.62 0.28 11.8 0.61 21 0.55 19.5 0.66 23.2 -l 19.6 0.31 20.0 0.71 19.5 0.12
M2 1 40.0 0.56 0.07 3.1 0.62 41 0.67 39.3 0.59 41.5 0.41 40.2 0.12 40.2 0.78
M3 1 77.2 0.37 0.29 4.4 0.42 76 0.30 77.7 0.48 77.8 0.23 77.8 0.40 76.6 0.04
M4 2 27.4 0.35 0.44 4.7 0.44 24.9 0.43 27.0 0.22 26.7 0.43 26.0 0.12
M5 2 30.0 0.33 0.21 2.8 0.25 29 0.58 32.6 0.22
M6 2 48.6 0.37 0.40 5.1 0.39 50 0.46 48.2 0.42 48.3 0.29 48.3 0.18 48.7 0.45 53.2 0.10
M7 2 74.9 0.50 0.18 5.5 0.46
M8 3 14.9 0.30 0.40 3.3 0.27 13.3 0.16 13.3 0.35 11.9 0.07
M9 3 60.0 0.68 0.07 4.4 0.70 60.1 -l

M10 4 3.2 0.61 0.39 13.6 0.64 4 0.78 3.4 0.55 3.3 0.49 3.3 0.33 3.2 0.59 3.1 0.49
M11 4 36.9 0.34 0.24 3.2 0.37 36.3 0.40
M12 4 76.1 0.58 0.41 12.5 0.57 77 0.50 76.5 0.52 76.5 0.50 76.5 0.24 76.5 0.55
M13 4 96.5 0.29 0.19 2.0 0.39 98 0.41 99.2 0.4 96.5 0.32 95.2 -l

M14 5 5.1 0.18 0.21 0.8 0.25 2 0.35
M15 5 93.5 0.75 0.26 16.8 0.75 95 0.72 95.5 0.6 93.5 0.36 93.5 0.63 93.9 0.18

aChromosome. bLocation. cAverage effect of allelic substitution (absolute value). dMinor allele frequency. ePercentage of genetic variance explained 
by the QTL. fMultiple regression on known QTL genotypes. gOne QTL was falsely identified at 10 cM on chromosome 4. hReported estimate of the 
additive effect. iOnly the positions with the 16 largest effect estimates were included. Five QTL were falsely identified at 52.6 cM on chromosome 
1, 65.4 cM on chromosome 3, and 3.0, 3.7 and 75.8 cM on chromosome 4. jTwo QTL were falsely identified at 3.1 and 4.8 cM on chromosome 4. 
kHalf the difference between the estimated genotypic value of the 22 and 11 genotypes. lNot estimated.
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QTL detected by each studyFigure 2
QTL detected by each study. In (A)-(F) the M-QTL identified, and not found, by each study are shown, in relation to the 
simulated average effect of allelic substitution and minor allele frequency.
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Accuracy of reported QTL locations
The accuracy in estimates of QTL location was mostly very
high (Figure 3). Location estimates in LDmulti and
LDHap were most accurate, with the majority of their esti-
mates within 1 cM, and none more than 2 cM, from the
correct position. Some of the location estimates in
LDBayes, LDLA1 and LDLA2 were very accurate but others
were less so. Nearly all the positions reported in LABayes
were at least 1 cM from the simulated location, which
might be expected as a reduced density of the markers
were used. In LDmulti and LDHap, the accuracy of esti-
mated locations increased with the size of the simulated
effect.

Accuracy of reported QTL effects
Whilst all the studies had good estimates of QTL location
for at least some of the M-QTL, there were bigger differ-
ences between studies in how well they estimated QTL
effects. The most accurate estimates of effect size were in
LDLA1, LDHap and LDBayes, which were generally
within 30% of the simulated values (Figure 4). They were
of comparable accuracy to estimates from our multiple
regression for small effect sizes, but slightly less accurate
for larger effects.

Effect estimates from LABayes and LDLA2 showed most
variation in accuracy. In LABayes, accuracy increased with
effect size. Surprisingly, estimates in LDLA2 decreased in
accuracy with rising MAF. The overall least accurate esti-
mates of effect size were from LDmulti; they were mostly
40–60% from the actual value.

Bias in reported QTL effects
In Figure 4, symbols indicate which QTL effects were over-
estimated and which were underestimated. All the studies
showed some indication of bias in effect estimates. In
LDmulti, all the QTL effects were underestimated. All but
one of the effects were also underestimated in LDLA1. In
LDHap and LDBayes (results not shown), QTL effects
were overestimated for reported QTL when the variance
explained by the QTL was low and underestimated for
QTL when the explained variance was high, and there was
a similar tendency in LABayes (results not shown). In
LDLA2, effects were underestimated for QTL with low
MAFs and overestimated for reported QTL with high
MAFs. There were no similar signs of any bias in the esti-
mates of effect size from our multiple regression model.

Epistatic QTL analyses
Searches for epistatic QTL were included in LDmulti and
LDHap. A brief summary of the methods used in given in
Table 3. Two epistatic pairs were reported in LDmulti and
seven in LDHap. No epistasis was simulated in the data-
set.

Discussion
The aim of distributing a common dataset was not to pro-
vide an in-depth comparison of alternative methods for
QTL analysis, but rather to see how much the results over-
lapped when different groups performed an exhaustive
analysis of a single dataset. Regardless, it is possible to
observe marked differences in the power and accuracy of
the analyses performed. The results from LDHap were best
overall in this dataset. This study had the highest power
for a controlled Type 1 error, detected all the M-QTL with
the largest effects and had among the best location and
effect size estimates. LABayes and LDBayes had the second
highest power for QTL detection. However, LDBayes had
the highest number of false positives. We reduced the
number of putative QTL to include from LDBayes, based
simply on effect size, but further work on the reliability of
the effects found is needed before this method can be use-
fully applied in fine-mapping. Despite this, the selected
effect size estimates from LDBayes were comparably accu-
rate to those from LDHap and some estimates of QTL
location were very accurate, although others were not.
LABayes had accurate estimates of large QTL effects but
the estimates were much less accurate for small effects.
The estimates of QTL location were generally slightly
worse than in LDHap and LDBayes, which was probably
because only information from every tenth marker was
included. The QTL found in LDHap, LABayes and
LDBayes were partially complimentary, together account-
ing for 14 of the 15 M-QTL.

LDHap and LABayes both used information from several
markers in detecting QTL, suggesting that such multima-
rker methods may have higher power to find QTL. How-
ever, the results could also be due to specifics of Blossoc
and this Bayesian approach. The key gain of the Blossoc
method over the other approaches was detection of the
QTL at 60 cM on chromosome 3 (M9), which had the sec-
ond largest simulated effect. Interestingly, this QTL was
also reported in LABayes, but it was only found when a
lower marker density was used.

LDLA1 had similar accuracy in estimates of QTL effects as
LDHap and LDBayes, although fewer QTL were detected.
All three studies used single markers as a surrogate for
QTL genotype to estimate QTL effects, suggesting that this
information is sufficient once QTL have been located. Sur-
prisingly, estimates from the single locus model (LDHap)
were as accurate as estimates from the multiple loci mod-
els. This may be because a polygenic effect was simultane-
ously estimated in the single locus model. In our
individual regressions on QTL genotype, the estimated
effects were mostly less accurate than the estimates from
our multiple regression and nearly all overestimated the
simulated effect. A multiple locus model can, however,
resolve the effect of one QTL from several linked posi-
Page 9 of 13
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Accuracy in estimates of QTL locationFigure 3
Accuracy in estimates of QTL location. In (A)-(F) the absolute difference between the estimated and simulated position 
for the M-QTL that were detected, is shown in relation to the simulated average effect of allelic substitution, for each study. 
Lines represent significant relationships (p < 0.05 in least squares linear regression) and regression equations and R2 values are 
given. P-values were: (A) 0.12, (B) 0.7, (C) 0.046, (D) 0.07, (E) 0.005, (F) 0.5.
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Accuracy and bias in estimates of QTL effectsFigure 4
Accuracy and bias in estimates of QTL effects. In (A), a function of the square root of the estimated genetic variance of 
the QTL divided by the simulated genetic variance is shown. In (B)-(G), the difference between the estimated and simulated 
effect (average effect of allelic substitution) as a percentage of the simulated effect is shown. Potential relationships between 
the degree of inaccuracy and the simulated effect, minor allele frequency and percentage phenotypic variance explained by the 
QTL were tested by least squares linear regression for each study and the one with the lowest p-value (not dependent on out-
liers) is illustrated in (A)-(F). In (A), a relationship with the square of minor allele frequency and a zero intercept was fitted. 
Lines show significant relationships (p < 0.05) and regression equations and R2 values are given. Symbols indicate which values 
were overestimated and which were underestimated. (G) shows the comparable relationship with simulated effect for our 
multiple regression model. P-values were: (A) 0.003, (B) 0.6, (C) 0.3, (D) 0.006, (E) 0.15, (F) 0.07, (G) 0.0005.
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tions. In LDHap, the number of potential QTL was
reduced by, arbitrarily, selecting the most significant effect
within a 5 cM interval. A single marker analysis was also
reported in LDmulti, in which 108 individual markers
were significant, but only 9 remained significant in the
final multiple regression.

The power of QTL detection was reasonable in LDmulti
and estimates of location were accurate. But this study had
the least accurate estimates of QTL effects and they were
consistently underestimated. Unlike in LDHap and
LDLA1, effects were estimated after phenotypes had been
pre-corrected for a polygenic effect and this seems to
explain the difference. In LDLA1, the estimated variance
of the polygenic effect was substantially lower in the final
multiple regression model than in the model with no QTL
and in LABayes, fitting a polygenic effect as well as multi-
ple QTL gave an estimated polygenic variance close to
zero. Both suggest that pre-correcting for the polygenic
effect may remove a large part of the variance that could
be explained by the QTL. It is recommended that QTL
effects estimated by the method in LDmulti, are re-esti-
mated simultaneously with a polygenic effect using the
raw data [15]. The impact of pre-correction and its rela-
tionship to fitting single and multiple loci should be eval-
uated in more detail.

LDLA1 and LDLA2, with restricted analyses, had the low-
est power. More interesting, however, was which QTL they
detected. In both, the aim was described as finding the
most important QTL with reduced effort. In actuality, the
QTL identified in LDLA1 appeared to be a random sample
of the QTL; the QTL with the two largest effects were not
detected but several with small effects were. The QTL
reported in LDLA2 were those with the highest MAF and
several with large effects were missed. In LDLA1 the prob-
lem was that for some of the QTL, no nearby markers were
selected in the initial screening procedure. The large
reduction in marker density also meant that some of the
location estimates were poor. In LDLA2 an important lim-
itation was only allowing for two QTL per chromosome.
Additionally, only marker data from the last two genera-
tions was used and this may explain why some of the loca-
tion and effect estimates were less accurate in this study.
Unfortunately, because of the restrictions imposed in
LDLA1 and LDLA2, neither provides a good basis for eval-
uating LDLA compared to a pure LD or LA analysis.

Aside from LDBayes, the studies had a similar Type I error
rate. However, there appeared to be considerable differ-
ences in stringency between the approaches. The highest
thresholds were applied in LDmulti and LDHap. In
LDmulti a Bonferroni correction was used and thresholds
corresponding to even lower p-values were used in
LDHap. It is plausible that more QTL could have been

detected in these studies, without an increase in Type 1
error, if lower thresholds had been chosen. It would have
been interesting to compare the power and false positive
rate of the different analyses with changing thresholds, to
see how much of the apparent differences between the
methods were a consequence of the threshold choice.
Unfortunately, none of the studies gave details of esti-
mates that were judged non-significant. For similar
projects in the future, it would be useful to ask partici-
pants to provide a list of their top-rated results, irrespec-
tive of significance, so that the effect of different
thresholds could be investigated. Surprisingly, none of the
studies reported permutation analyses to derive chromo-
some or genome-wide significance levels, although such
empirically determined significance thresholds are well
established in traditional QTL mapping.

Most studies did not report confidence intervals for esti-
mates of QTL location or effect size. Hence, in assessing
which QTL were detected by each study, we imposed a cri-
terion that the estimated location must be within 5 cM of
an M-QTL and this limited the amount of location inaccu-
racy. A preferable method would have been to determine
whether a QTL lay within a confidence interval for a given
estimate and how the confidence interval for the effect
size compared to the simulated effect. This may have been
particularly useful in separating estimates with very simi-
lar locations. It would also have been interesting to com-
pare the size of the confidence intervals between studies as
another means of evaluating the power of the different
methods.

One of the aims of the exercise was to explore whether
existing methods could distinguish the effects of closely
linked loci. Two QTL were simulated at 27.4 and 30 cM on
chromosome 2 (M4 and M5, respectively) and they were
both detected in our multiple regression model. None of
the studies (with the cut-off we applied to LDBayes)
reported both these QTL. In LDHap, the minimum dis-
tance restriction prevented both from being found and in
LABayes there was not enough resolution to separate
them. A pair of close, but slightly further apart (6 cM) QTL
was reported in LABayes but one of these was a false pos-
itive. The reason the two QTL were not detected in
LDmulti is probably related to the significance threshold.
Developing methods that fully utilise high-density marker
maps to correctly identify closely linked QTL remains a
future challenge.

Two studies (LDmulti and LDHap) investigated epistasis.
All the inferred interactions were false positives. In both
studies, tests were performed in two stages, with only the
markers passing the first test being tested in the second
stage. In LDmulti, the second-round threshold was Bon-
ferroni corrected for the number of pairs passing the first
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test. In LDHap, an arbitrary threshold of p < 10-6 was used.
Evidently the thresholds were not sufficiently stringent.
Further research is needed on appropriate significance
thresholds for epistatic analyses.

Conclusion
In this dataset, the best methods for detecting QTL were
Blossoc [11] followed by a Bayesian linkage analysis [7],
both of which used information from multiple markers to
infer QTL genotypes. The two studies that aimed to
increase the efficiency of QTL detection by reducing the
amount of analysis had lowest power and were not effec-
tive in identifying the QTL with the largest effects. Esti-
mates of QTL location were generally very good. There
were bigger differences in how well the methods esti-
mated the QTL effects. Here, two of the models that were
most accurate used single markers in place of QTL geno-
type and simultaneously fit a polygenic effect. Although in
this case estimates from a single locus model were as accu-
rate as from a multilocus model, fitting multiple loci
should allow closely linked QTL to be distinguished. A
valuable approach might be to first locate QTL by a mul-
timarker/haplotype method and then fit the closest mark-
ers in a multilocus model, to estimate QTL effects. For
future such projects, we recommend that participants pro-
vide a list of their top-ranked effects, and report confi-
dence intervals for QTL location and effect size estimates.
Areas that we suggest for further work include significance
thresholds, closely linked QTL and epistatic effects.

List of abbreviations used
GWA: genome-wide association; QTL: quantitative trait
loci; LA: linkage analysis; LD: linkage disequilibrium;
LDLA: combined linkage disequilibrium and linkage
analysis; MAF: minor allele frequency.
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