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ABSTRACT: Aldose reductase plays a central role in diabetes
mellitus (DM) associated complications by converting glucose to
sorbitol, resulting in a harmful increase of reactive oxygen species
(ROS) in various tissues, such as the heart, vasculature, neurons,
eyes, and kidneys. We employed a comprehensive approach,
integrating both ligand- and structure-based virtual screening
followed by experimental validation. Initially, candidate com-
pounds were extracted from extensive drug and chemical libraries
using the DeepChem’s GraphConvMol algorithm, leveraging its
capacity for robust molecular feature representation. Subsequent
refinement employed molecular docking and molecular dynamics
(MD) simulations, which are crucial for understanding com-
pound−receptor interactions and dynamic behavior in a simulated
physiological environment. Finally, the candidate compounds were subjected to experimental validation of their biological activity
using an aldose reductase inhibitor screening kit. The comprehensive approach led to the identification of a promising compound,
demonstrating significant potential as an aldose reductase inhibitor. This comprehensive approach not only yields a potential
therapeutic intervention for DM-related complications but also establishes an integrated protocol for drug development, setting a
new benchmark in the field.

■ INTRODUCTION
Diabetes mellitus (DM) is an intricate metabolic condition
distinguished by persistent high blood sugar levels. Aldose
reductase, a key enzyme in the polyol pathway, plays a pivotal
role in the pathophysiology of diabetic complications.1,2 In the
normal physiological state, aldose reductase plays a minimal
role in glucose metabolism. However, under hyperglycemic
conditions, as seen in diabetes mellitus (DM), its activity
becomes significantly more pronounced. Hyperglycemia leads
to an increased level of influx of glucose into cells. Aldose
reductase catalyzes the reduction of excess glucose to sorbitol
utilizing nicotinamide adenine dinucleotide phosphate
(NADPH) as a coenzyme,3,4 a key step in the polyol pathway.
The accumulation of sorbitol, which is impermeable to cell
membranes, leads to osmotic stress and cellular swelling.5,6 In
this pathway, consumption of NADPH has significant
implications. NADPH is vital for regenerating reduced
glutathione, a primary cellular antioxidant that is crucial for
neutralizing reactive oxygen species (ROS). Additionally, it
serves as a substrate for NADPH oxidase (NOX) enzymes that
generate ROS.7−10 The dual role of NADPH, essential for both
ROS neutralization and production, adds a layer of complexity
to the cellular redox balance. Consequently, NADPH depletion

can limit NOX-mediated ROS production while simulta-
neously impairing the cell’s antioxidant defenses, potentially
exacerbating overall oxidative stress.11 These biochemical
changes have profound implications in various tissues. In the
lens of the eye, for instance, sorbitol accumulation causes
osmotic stress, contributing to cataract formation.12−14 In
peripheral nerves, the reduced nerve conduction velocity and
nerve blood flow, associated with oxidative stress and osmotic
imbalance, lead to diabetic neuropathy.15−17 Similar mecha-
nisms are implicated in diabetic cardiomyopathy, nephropathy,
and retinopathy. Given the centrality of aldose reductase in
mediating these harmful effects, it is a prime target for
therapeutic intervention. Inhibitors of aldose reductase have
the potential to mitigate the damaging impact of hyper-
glycemia on tissues, thereby reducing the risk or severity of
diabetic complications.18,19 This underscores the importance
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of research aimed at identifying and developing effective aldose
reductase inhibitors, as they hold promise for improving the
quality of life for individuals suffering from DM and its
complications.

Computer-aided drug design (CADD) has revolutionized
drug discovery, providing a more efficient alternative to
traditional methods. By utilizing advanced computational
techniques, CADD rapidly screens compound libraries,
reducing the need for labor-intensive laboratory testing.20

This expedites drug candidate identification, streamlining
synthesis, and evaluation. Integration of artificial intelligence,

particularly deep learning (DL), further transforms drug
development. DL models process large data sets, offering
insights into genetic and clinical data, facilitating new drug
target discovery, enhancing efficacy predictions, and optimizing
drug properties.21,22 DL’s efficiency in data analysis marks a
significant advancement, accelerating drug development for a
new era of precision in drug discovery.22,23 Furthermore,
molecular docking and molecular dynamics (MD) simulations
are essential in modern drug discovery, providing key insights
into drug−target interactions. Docking predicts the binding
affinity and orientation of small molecules within the target

Figure 1. Workflow integrates deep learning, molecular docking, MD simulations, and experimental evaluation in the quest for novel aldose
reductase inhibitors.

Figure 2. Illustrative depiction of active and decoy compounds.
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protein, simulating their pose and estimating binding affinity
through computational algorithms.24,25 In tandem, MD
simulations offer a dynamic perspective, showcasing a drug’s
behavior within the binding site over time. These simulations
track atomic and molecular movements, allowing researchers
to observe complex stability, identify potential binding events,
and understand conformational changes.26,27 Collectively,
molecular docking and MD simulations offer a comprehensive
understanding of drug−target interactions, guiding optimiza-
tion for increased efficacy and reduced toxicity,26,28 thus
enhancing the efficiency of drug discovery.

In this study, we employed a graph neural network algorithm
for training, utilizing active and decoy aldose reductase
inhibitor data sets. Subsequently, we screened both the FDA-
approved drug library and the commercial Enamine library to
identify potential aldose reductase inhibitor candidates. These
candidates underwent analysis via molecular docking and MD
simulations. Finally, the biological activity was confirmed using
an aldose reductase inhibitor kit to predict novel aldose
reductase inhibitors.

■ RESULTS AND DISCUSSION
The process of combining ligand-based virtual screening with a
deep learning algorithm and structure-based virtual screening
utilizing molecular docking and MD simulations for the
discovery of novel aldose reductase inhibitors is illustrated in
Figure 1. The current study involved seven steps, starting with
the download of data sets from the DUD-E database, followed
by the preparation of data sets for the deep learning model (1),
target data set preparation for deep learning model (2),
GraphConvMol algorithm configuration (3), prediction of
aldose reductase inhibitory activity with the trained Graph-
ConvMol model (4), structure-based virtual screening of
candidates with molecular docking and MD simulations (5),
and experimental validation of candidates in an enzyme activity
assay (6). Ultimately, a result analysis (7) was conducted to
assess the potential of compounds as novel aldose reductase
inhibitors.
Aldose Reductase Active and Decoy Data Sets and Its

Preprocessing Using RDKit. DUD-E (Database of Useful

Decoys: Enhanced) provides benchmark sets of protein−
ligand complexes, featuring experimentally verified active
compounds alongside decoys that lack binding affinity against
various diseases. These decoys exhibit comparable physico-
chemical characteristics to the active compounds, yet they
diverge in their two-dimensional topology.29 The DUD-E
database is extensively utilized for developing and benchmark-
ing computational docking methods.30,31

The aldose reductase data set in the DUD-E repository
(https://dude.docking.org/targets/ALDR) consist of 444
experimentally validated active compounds. Figure 2 illustrates
representative structures of active and decoy compounds with
labels identifying their respective classifications. Molecular
features, including molecular weight, LogP, Hbond donors,
Hbond acceptors, TPSA, and rotatable bonds, were computed
using RDKit, a freely available software toolkit for
cheminformatics, to facilitate comparison of the physicochem-
ical properties between active and decoy compounds. No
significant variance was observed in the distribution of
molecular descriptor values between active and decoy
compounds (Figure 3).
Deep-Learning Model Setup, Training, and Evalua-

tion. DeepChem is a Python library that is freely available and
open-source and designed for the application of deep learning
in drug discovery and cheminformatics. This versatile library
offers an extensive range of tools specifically constructed for
the handling of molecular data. DeepChem excels in
employing diverse deep learning algorithms to tackle various
tasks within the realm of drug discovery, including but not
limited to predicting molecular properties, conducting ligand-
based virtual screening, and optimizing chemical com-
pounds.32,33

In this study, the GraphConvMol model within the
DeepChem library played a crucial role in discerning key
distinctions between active and decoy compounds in the
aldose reductase data set. The GraphConvMol method offers a
means to comprehensively learn molecular representations,
establishing itself as a potent tool for cheminformatics
applications like predicting molecular properties and facilitat-
ing drug discovery.34,35 Therefore, the aldose reductase data
set was divided into training, validation, and test sets using an

Figure 3. Distribution of molecular descriptors in active and decoy compounds.
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8:1:1 ratio. The GraphConvMol model was then applied using
5-fold cross-validation.

To evaluate the model’s efficacy, various metrics such as the
Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve were calculated for the training,
validation, and test data sets. The ROC curve, derived from a
5-fold cross-validation on the training data set, demonstrated a
True Positive Rate (TPR) of 1 at an impressively low False
Positive Rate (FPR) with an AUC value of 0.995 (Figure 4).
These results indicate that the GraphConvMol model displays
excellent sensitivity in detecting positive instances, while
maintaining a low rate of false positives.

To assess the performance of GraphConvMol on DUD-E
data sets, various metrics including precision, recall, F1 score,
sensitivity, accuracy, and specificity were calculated for the
training, validation, and test data sets (Table 1). The training

data set demonstrated optimal performance in all evaluated
metrics. In the validation data set, 4 instances out of 900
negatives were incorrectly classified as positives, impacting the
precision of the model. Similarly, in the test data set, 3
instances out of 905 negatives were misclassified, reflecting a
slight reduction in precision. The recall values of 0.8 and 0.79
for the validation and test data sets, respectively, suggest the
model’s effectiveness in identifying true positives. The F1
scores, as detailed in Table 1, corroborate the model’s reliable
performance across all data sets.

Given the imbalance in the current data set, with a
significantly larger quantity of decoys compared to active
molecules, the Matthews correlation coefficient (MCC) was
employed to evaluate the GraphConvMol model’s efficacy,
given its suitability for unbalanced data sets. The averages of
MCC values obtained from 5-fold cross-validations were 1.00
for the training set and 0.89 for the validation set. An MCC of

1 signifies perfect prediction accuracy; thus, the values of 1.0
and 0.89 underscore the robustness and reliability of the
model. It is generally acceptable if the MCC value is higher in
the test set compared to the validation set. This occurs because
the model is trained using the training set and subsequently
assessed on new and unseen data, forming the validation data
set. Moreover, the fluctuation of the MCC value observed
during the 5-fold cross-validations indicates that the model is
not overfitting over the training.
Prediction of Aldose Reductase Inhibitory Potential

from FDA-Approved Drug and Enamine Compound
Libraries. The use of FDA-approved drugs for the discovery
of novel aldose reductase inhibitors has several benefits. Given
that FDA-approved drugs have undergone thorough preclinical
and clinical testing to establish their safety, dosing, and
pharmacokinetics, repurposing these drugs can result in
expedited timelines, reduced development expenses, and
increased probability of success. Besides FDA-approved
drugs, commercial small molecule libraries could be valuable
sources for the screening of aldose reductase inhibitors. In the
present study, a small molecule library, composed of 460160
compounds, from Enamine Ltd. was employed. The SMILES
strings of FDA-approved drugs and Enamine compounds
underwent analysis using the trained model employing the
GraphConvMol algorithm from DeepChem. This analysis
aimed to predict the potential for the aldose reductase
inhibitory activity. The predictions provided by the trained
model ranged from 0 (indicating no activity) to 1 (indicating
high activity) for the compounds. Most of the compounds
were predicted to be inactive, with only a small proportion
predicted as active. Out of a total of 3105 FDA-approved
drugs, 13 compounds were predicted to be active with
prediction values exceeding 0.95. Similarly, out of 460160
Enamine compounds, 169 compounds were predicted to be
active with the prediction values exceeding 0.95. To conduct
structure-based virtual screening in the next step, we selected
the top 30 FDA-approved drugs and 200 Enamine compounds
that were highly predicted by the GraphConvMol model.
Besides FDA-approved and Enamine compounds, 50 known
aldose reductase inhibitors from MedChemExpress LLC
( h t t p s : / / w w w . m e d c h e m e x p r e s s . c o m / T a r g e t s /
Aldose%20Reductase/) were also included for structure-based
virtual screening. These selected compounds were used as
inputs for molecular docking and MD simulations.
Structural Analysis of the Aldose Reductase Protein.

Aldose reductase, part of the prostaglandin G/H synthase

Figure 4. AUC-ROC curve of 5-fold cross validation of the training data set (A) and the confusion matrix entries for the training, validation, and
test data sets (B).

Table 1. Performance Metrics of GraphConvMol Modela

precision recall F1 score accuracy specificity

training 1.00 1.00 1.00 1.00 1.00
validation 1.00 0.80 0.89 0.99 1.00
test 1.00 0.79 0.88 0.99 1.00

aPrecision = true positives/(true positives + false positives); recall =
true positives/(true positives + false negatives); F1 score =
2((precision × recall)/(precision + recall)); accuracy = (true positives
+ true negatives)/total population; specificity = true negatives/(true
negatives + false positives).
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family, is also recognized under various aliases such as
prostaglandin G/H synthase 2 (PGH2) and prostaglandin-
endoperoxide synthase 2 (PTGS2).36 It consists of 316 amino
acids forming a single chain. The α-helices, β-sheets, and coils
occur in the overall protein structure (Figure 5). Therefore,
VADAR 1.8 statical values revealed that aldose reductase
consists of 35% α-helices, 24% β-sheets, 40% coils, and 27%
turns. As per Ramachandran plot analysis, 98% of all residues
were in favored regions and 99.8% of all residues were in the
allowed region, while there was one outlier (Glu84) of dihedral
angles phi (φ) and psi (ψ).
Binding Pocket Analysis. The functionality of a binding

pocket is dictated by both its shape and location within a
protein as well as the assembly of amino acid residues that
encompass it.37 The binding pocket residues of aldose
reductase were obtained using Discovery Studio’s ligand
interaction approach and mentioned as Val47, Trp111,
Trp79, His110, Tyr48, Trp20, Trp219, Cys298, Ala299,
Leu300, and Phe122. Furthermore, the active pocket residues
were confirmed from already published data.38 Therefore, the

binding sphere values were adjusted as X = 16.7143, Y =
−7.1528, and Z = 16.5962, and the radius value was fixed as
6.1040 concerning the binding pocket residues to study the
interaction of screened compounds in the active region of
aldose reductase (Figure 6).
Molecular Docking Analysis. The CDocker module

within Discovery Studio was employed to forecast negative
energy values, comprising the CDocker energy and the
CDocker interaction energy. CDocker energy encompasses
the holistic docking energy stemming from the 3D structural
and physicochemical attributes of the ligand and protein.
Conversely, the CDocker interaction energy specifically
denotes the energy linked with interactions between the ligand
and the receptor. This includes contributions from various
intermolecular forces, for instance, hydrogen bonding, van der
Waals forces, and electrostatic interactions, collectively
influencing the binding affinity. CDocker interaction energy
offers detailed insights into the intensity and nature of specific
interactions between the ligand and the receptor.39 Therefore,
FDA-approved and Enamine compound libraries, as well as

Figure 5. 3D structure (A) of the aldose reductase protein and the computed Ramachandran plot (B) calculated by Discovery Studio.

Figure 6. (A) manifests the 3D interaction of the bound ligand (green) with the target protein (aldose reductase). Additionally, the 2D interactions
between the ligand (fidarestat) and aldose reductase are depicted using different colors based on the interaction type (B).
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known aldose inhibitors from MCE such as Epalrestat and
Ponalrestat, were docked against aldose reductase individually
scored based on the minimum docking energy and interaction
energy values (Table 2). Aldose reductase-IN-2 (compound

5f), which is an investigational potent aldose reductase
inhibitor, demonstrated the most stable interaction with the
enzyme. Additionally, flavonoid compounds, such as hydroxy-
leuteolin and quercetin, exhibited strong interactions. Certain

Enamine compounds also displayed stable interactions with
the enzyme. Interestingly, known inhibitors such as Epalrestat
and Ponalrestat showed relatively weaker interactions (Table
2).
Molecular Dynamics (MD) Simulations. To assess the

stability of the screened compounds against aldose reductase,
the docked complexes were subjected to MD simulations using
GROMACS. These simulations were performed for a duration
of 100 ns to investigate the behavior and stability of the
complexes over time.
Root-Mean-Square Deviation (RMSD). The analysis of

molecular dynamics trajectories involved the computation of
RMSD to assess ligand fluctuations within the JAK2 protein’s
active site. Figure 7 illustrates the RMSD plot of the ligands,
providing valuable insights into the dynamic behavior and
stability of the ligand−protein interactions over the course of
the simulation.

The enamine compounds, namely, Z2376840565,
Z1438237770, Z234969329, and Z929520832, exhibited
consistently low RMSD values compared to the reference
compound (Epalrestat). Z1455087495 demonstrated fluctua-
tions similar to those of Epalrestat. Furthermore,
Z2272685769 and Z1603611557 also displayed a consistent
fluctuating pattern similar to that of Epalrestat, while
Z1603680543 and Z1455088903 revealed more fluctuating
RMSD values. Additionally, Aldose Reductase-IN-2 underwent
three conformational changes during the simulation. Initially, it
showed RMS deviation values of σ = 0.45 nm, which increased
to σ = 0.75 nm from 10 to 36 ns. Subsequently, it returned to
the initial position with σ = 0.4 RMSD values. From 60 to 100
ns, it continued to fluctuate between σ = 0.6 nm and σ = 0.65
nm.

The varying RMSD patterns observed in molecular
dynamics simulations of enamine compounds suggest distinct
dynamic behaviors and structural stabilities. Enamine com-
pounds Z2376840565, Z1438237770, Z234969329, and
Z929520832 exhibit low RMSD values, indicative of stable
conformations, possibly due to strong and consistent
interactions with the target protein. Furthermore,
Z1455087495 demonstrates fluctuations similar to those of
the reference compound Epalrestat, suggesting comparable

Table 2. Docking Energy Values (kcal/mol) of FDA-
Approved, Enamine Library, and Known Inhibitors
Compounds against Aldose Reductase, Calculated by
Discovery Studio

no. compound
CDocker

energy
CDocker interaction

energy

1 Aldose_Reductase-IN-2 −53.28 −56.53
2 6-Hydroxyluteolin −49.99 −41.58
3 Enamine_59

(Z929520832)
−48.43 −52.24

4 Enamine_173
(Z2376840565)

−47.98 −49.84

5 Quercetin −47.56 −42.30
7 Enamine_174

(Z2272685769)
−45.39 −46.32

9 Enamine_103
(Z1603680543)

−43.52 −51.27

10 Enamine_133
(Z1455088903)

−43.35 −53.11

11 Enamine_135
(Z1455087495)

−43.08 −48.65

12 enamine_109
(Z234969329)

−42.72 −46.08

14 Enamine_93
(Z1438237770)

−42.55 −39.85

15 Enamine_73
(Z1603611557)

−42.26 −49.46

34 Adrenalone Hydrochloride −38.10 −29.57
40 Glycylglycine −37.07 −28.83
42 Epinephrine

Hydrochloride
−36.57 −31.61

47 Akrl B10-IN-1 −36.16 −42.48
85 Ponalrestat −30.90 −44.22
255 Epalrestat −5.42 −38.12

Figure 7. RMSD values of screened compounds Z2376840565 (red), Z1438237770 (orange), Z234969329 (purple), Z929520832 (green), and
Z1455087495 (brown) in contrast to Epalrestat (blue) depicted in graph A, while RMSD values of Z2272685769 (red), Z1603611557 (green),
Z1603680543 (purple), Z1455088903 (brown), and Aldose Reductase-IN-2 (orange) in comparison with Epalrestat (blue) manifested in graph B.
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binding characteristics. Moreover, compounds Z2272685769
and Z1603611557 display consistent fluctuations, possibly
reflecting dynamic binding modes. In addition, Z1603680543
and Z1455088903 exhibit fluctuating RMSD values, implying
variable structural stability, while Aldose Reductase-IN-2
undergoes conformational changes, indicating dynamic struc-
tural transitions.

From the MD simulations of 100 ns, we identified the top 9
compounds that displayed stable RMSD values throughout the
trajectory (Figure 8). These selected compounds were further
evaluated in experimental assessments.
Structural Evaluation and Similarity Comparison. To

assess the structural resemblance among the chosen com-
pounds for experimental assessment, the RDKit’s Tanimoto
similarity measure was employed. The analysis revealed no
significant structural likeness between the selected compounds
and Epalrestat, as indicated by Tanimoto similarity E (Table
3). While no precise threshold exists for defining similarity, a
Tanimoto similarity score of 0.8 or higher is often regarded as
indicative of similarity, ranging from 0 to 1. Here, 0 represents
no similarity, while 1 indicates complete similarity. Even
though the selected compounds show limited overall similarity
to Epalrestat, it is still possible that these compounds share
specific common structural patterns. To detect these common
substructures, we employed the Maximum Common Sub-
structure (MCS) algorithm, which utilizes SMARTS (SMILES
Arbitrary Target Specification) in RDKit. No clear recurrent
structural motifs, apart from the benzene ring highlighted in
the red color, were obvious (Figure 9). This observation
suggests that factors other than structural motif, such as the
spatial orientation of particular conformations, could poten-
tially influence the inhibitory activity against aldose reductase.
Furthermore, we utilized similarity maps generated by
fingerprints in RDKit to ascertain whether the selected

compounds exhibit the structural motif present in Epalrestat
(Figure 9). The similarity maps of the selected compounds
revealed the presence of structural motifs of Epalrestat in their
chemical structures. These findings from the MCS and
similarity mapping offer valuable insights for guiding additional
optimization of the selected compounds.
gmx_MMPBSA Analysis. The gmxMMPBSA calculations

for a series of compounds alongside the reference compound
Epalrestat were further investigated to predict the binding
affinity. The ΔG values indicate the total binding free energy
between each compound and the target protein, with more
negative values reflecting stronger binding affinity (Table 4).
Comparing the ΔG values with Epalrestat revealed that
Z929520832 exhibits the most negative binding free energy
(−35.78 kcal/mol), suggesting the strongest binding affinity
among the screened compounds. Z1438237770 (−23.81 kcal/
mol) and Z1603611557 (−30.38 kcal/mol) also demonstrate
relatively strong binding affinities compared with Epalrestat
(−21.48 kcal/mol). The compounds Z2376840565 and
Z1455087495 show less favorable binding free energies
(−25.76 and −26.47 kcal/mol, respectively) compared to
Epalrestat but still indicate potential binding interactions.
Overall, Z929520832 is considered the most promising
compound due to its significantly more negative ΔG value,
indicating a stronger predicted binding affinity with the target
protein.
Experimental Validation. To validate the Insilco results,

we further investigated aldose reductase inhibitory activity of
nine compounds at a 10 μM concentration, aligned with the
reported IC50 range of Epalrestat for relevant efficacy.40

Epalrestat demonstrated a remarkable inhibition of aldose
reductase, achieving 90% inhibition. Noticeably, Z-565
(Z2376840565) also displayed a significant inhibition of
aldose reductase, reaching 80% inhibition (Figure 10).

Figure 8. Structures of compounds exhibiting stable RMSD values compared to the reference compound of Epalrestat.
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Considering that Epalrestat is recognized as a potent aldose
reductase inhibitor due to its irreversible inhibition mecha-
nism, it is reasonable to speculate that the inhibition potency
of the Z-565 compound might be quite noticeable. Other
selected compounds also demonstrated a certain degree of
inhibition. It may be worth considering that structural
modifications could be considered to enhance the inhibitory
activity of Z-565. This approach could potentially lead to
further improvements in its effectiveness as an aldose reductase
inhibitor.

Epalrestat showed the most significant reduction activity,
achieving a 92.22% decrease. This is followed by
Z2376840565, which demonstrates a 69.11% reduction. In
contrast, Z1603680543 exhibits the least reduction, lowering
the activity by only 16.35%. Comparing these with the binding
free energy (ΔG) results, Z929520832 displays the most
negative value at −35.78 kcal/mol, indicating strong binding
affinity despite its lower reduction activity percentage
compared to Epalrestat and Z2376840565. Z1438237770
and Z1603611557 also manifest relatively negative ΔG values,
suggesting remarkable binding affinity despite their low
reduction activity percentages. Z2376840565, with its 69.11%
reduction activity, exhibits a negative ΔG value (−25.76)
comparable to the reference Epalrestat (−21.48), indicating
significant inhibition and binding affinity. Z1603680543
demonstrates the least reduction activity (16.35%) and high
ΔG values (−18.72 kcal/mol). Z2376840565 and Z929520832
occupied third and fourth rank in molecular docking studies,
while Z1603611557 also comes under top 15 screened
compounds with docking energy values of −48.43, −47.98,
and 42.26 kcal/mol, respectively. Overall, Z2376840565 found
a promising candidate compound against aldose reductase
from screened compounds based on interaction inhibition,
whereas Z929520832 and Z1603611557 also appear encourag-
ing due to strong binding affinity and relative inhibition.

However, our study identified an inconsistency between
molecular docking results and biological evaluations, high-
lighting a significant challenge in using computational models
alone for predicting compound efficacy. This discrepancy
underlines the limitations of computational methods such as
molecular docking and MD simulations, especially in
accurately modeling complex biochemical interactions. This
finding emphasizes the need for caution in relying solely on
computational predictions and reaffirms the critical role of
experimental validation in drug discovery. It serves as a
reminder that computational tools should be used as initial
guides, complemented by thorough experimental testing to
ensure a comprehensive understanding of a compound’s
therapeutic potential. Acknowledging the observed discrep-
ancies between our computational predictions and biological
evaluations, we recognize the imperative need for compre-
hensive biophysical analyses in future studies. Techniques such
as isothermal titration calorimetry (ITC), differential scanning
fluorometry (DSF), and surface plasmon resonance (SPR) are
essential not only for accurately determining the binding
affinity of compounds to the target enzyme but also for
assessing their selectivity toward other proteins. This will
provide a more robust understanding of the compound
interactions at the molecular level and will be a crucial step
in our ongoing research efforts.T
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■ CONCLUSION
In conclusion, our study presents a comprehensive approach in
the identification and development of potential therapeutic
agents targeting aldose reductase, a key enzyme implicated in
complications associated with diabetes mellitus (DM). By
employing ligand-based and structure-based virtual screening,
we have successfully integrated advanced computational
methodologies with experimental validation to identify a
promising inhibitor of aldose reductase. Our research method-
ology not only led to the discovery of a compound with
significant potential as an aldose reductase inhibitor but also
exemplifies a novel and efficient pathway for drug discovery
and development. Further enhancement of the effectiveness of
Z-565 through structural modifications might provide a
valuable therapeutic potential for the treatment of DM-
mediated complications.

■ METHODOLOGY
Aldose Reductase Data Set, FDA-Approved Drug

Library, and Commercial Enamine Compound Library.
The DUD-E Web site was utilized to retrieve aldose reductase
active and decoy (https://dude.docking.org/). The active data
set consisted of 159 compounds, while the decoy data set
comprised 9000 compounds. All molecules were depicted as
canonicalized SMILES strings along with corresponding DUD-
E ID and ChEMBL ID numbers. The compounds were
differentiated as either active or decoy in the legend.
Furthermore, a FDA-approved drug library comprising 3105
compounds was sourced from the Selleck Chemicals Web site
(https://www.selleckchem.com). Enamine compound library
was obtained from the Web site of Enamine Ltd. (https://
enamine.net/compound-libraries/diversity-libraries). The Hit
Locator Library (HLL-460) consists of 460160 compounds,

Figure 9. Visual depiction of the common structural motif identified through Maximum Common Substructure (MCS) analysis using SMARTS
(A) and graphical representation illustrating the shared common structural motif through similarity maps (B).

Table 4. Binding Free Energy Calculation of Top Simulated
Compounds

Sr compounds ΔG(TOTAL) std dev

1 Z1438237770 −23.81 5.75
2 Z929520832 −35.78 4.04
3 Z1603611557 −30.38 5.47
4 Z2272685769 −18.34 8.64
5 Z2376840565 −25.76 6.83
6 Z234969329 −15.95 5.42
7 Z1603680543 −18.72 7.49
8 Z1455088903 −17.91 5.52
9 Z1455087495 −26.47 8.72
10 Epalrestat −21.48 4.39

Figure 10. Aldose reductase inhibitory activity of selected compounds
in comparison to Epalrestat.
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encompassing a wide range of chemical structures and
functionalities. The FDA-approved drugs and HLL-460 were
initially expressed in SDF (structure-data file) format and
transformed to SMILES strings by employing RDKit. In
addition, known 50 aldose inhibitors, as reference drugs, were
a c q u i r e d f r o m M e d C h e m E x p r e s s ( h t t p s : / / w w w .
medchemexpress.com/) in the SMILES strings format.
Molecular Descriptor Generation Using RDKit. To

derive molecular descriptors from the compounds, we
employed RDKit (https://www.rdkit.org), an open-source,
high-performance cheminformatics and machine learning
toolkit implemented in Python. The toolkit includes
capabilities for calculating molecular descriptors, generating
chemical features, and visualizing chemical data.
Deep Learning Architecture. The aldose reductase active

and decoy data sets underwent division into training,
validation, and test sets at an 8:1:1 ratio. Subsequently, deep
learning evaluation was performed using the GraphConvMol
model within DeepChem (https://deepchem.io/models). The
GraphConvMol, a graph convolutional neural network, excels
in learning features from graph-structured input data, like
molecular graphs. This model preprocesses molecular
structures into graphs, where atoms and bonds serve as
nodes and edges, respectively. Subsequent convolutional graph
layers are stacked to extract hierarchical features from these
molecular graphs. These layers consist of trainable parameters
with adjustable weights, enabling optimization of the learning
process to effectively capture molecular structure traits.

During the training phase, the model minimizes the loss
function concerning input molecular data sets. Through back-
propagation, the weights of the convolutional layers are
optimized, aiming to predict properties such as solubility,
bioactivity, and toxicity based on the given molecular
structures.
Aldose Reductase Structure Retrieval. The three-

dimensional structure of the human aldose reductase protein,
identified by the PDB ID 1PWM with a resolution of 0.92 Å,
was acquired from the Protein Data Bank (PDB) accessible at
https://www.rcsb.org/. The aldose reductase protein, compris-
ing alpha-helices, beta-sheets, coils, and turns, underwent a
comprehensive quantitative structural analysis utilizing the
VADAR Internet server (http://vadar.wishartlab.com/). Sub-
sequently, energy minimization and Ramachandran plot
analysis were carried utilizing UCSF Chimera and Discovery
Studio.41,42

Prediction of Active Binding Site. The positioning of a
ligand within a protein’s holo structure is a key determinant of
the protein’s binding pocket.43 The aldose reductase and
inhibitor (fidarestat) complex already available on PDB (PDB
ID: 1PWM) was further utilized for binding pocket analysis.
The identification of interacting amino acids was accomplished
through Discovery Studio’s ligand interaction approach,
ensuring precision in the generation of the binding site.
Additionally, the bound ligand was chosen, and the binding
sphere was created using the current selection approach within
the define Binding Site window of Discovery Studio.
Subsequently, the binding sphere was reduced with restrictions
specific to the selected amino acids for the accuracy and
precision of docking.
Molecular Docking. Molecular docking stands as the

extensively employed approach for assessing the interactions
between ligands and receptor.44 It forecasts the strength of
association or binding energy of a protein−ligand complex by

assessing its preferred orientation using scoring algorithms in
the process.37 The already bound ligand molecules and water
molecules were deleted from the protein. Furthermore, the
hydrogens were appended to the protein utilizing Discovery
Studio’s receptor preparation module. Moreover, the ligand
preparations for both reference and candidate compounds
included the generation of tautomers, adjustment of the
ionization states, and correction of any bad valences. These
tasks were performed by using the Ligands Preparation module
in Discovery Studio.

The molecular docking of ligands against the target protein
aldose reductase was conducted using the CDocker module in
Discovery Studio, employing default orientation and con-
formation settings. Therefore, the assessment of the best
docked complexes relied on selecting the lowest docking
energy values, measured in kcal/mol.
Molecular Dynamics (MD) Simulations. The protocols

for the MD simulation experiment were adapted as previously
published data of a 100 ns simulation.20 The top compounds
exhibiting the lowest docking energy were selected for a 100 ns
MD simulation. Additionally, Epalrestat, serving as a reference
compound, underwent MD simulations for comparative
analysis. The CHARMM36 force field was set up using the
solution builder protocol on the Web server of CHARMM-
GUI (https://www.charmm-gui.org/?doc=input/solution).
This same interface was employed to generate input files for
MD simulations using GROMACS.45 The solvation of the
system utilized the TIP3P-3 point water model within a cubic
box, employing periodic boundary conditions. Neutralization
was achieved by introducing counterions. Electrostatic and van
der Waals interactions were computed using the Verlet method
with a cutoff radius of 10, while the LINCS algorithm was
employed to maintain bond lengths during simulations.
Additionally, the particle mesh Ewald (PME) approach was
used for accurate electrostatic interaction calculations. The
steepest descent energy minimization method was applied to
prepare the solvated systems. Subsequently, two equilibration
phases were carried out, initially under constant temperature
and constant volume (NVT) conditions, followed by constant
temperature and constant pressure (NPT) conditions. A
Python script from CHARMM-GUI facilitated the conversion
of GROMACS topology (top) and parameter (top) files for
MD simulations. Furthermore, the investigation of the
structural behavior of protein−ligand complexes was con-
ducted using GROMACS version 2019.3 in a Linux system.46

A 2 fs time step was utilized to run MD simulations in
GROMACS.
Gmx_MMPBSA Analysis. A software tool named

gmx_MMPBSA (https://valdes-tresanco-ms.github.io/gmx_
MMPBSA/dev/) was developed to compute binding free
energies using trajectory data from molecular dynamics
simulations, basically for the assessment of binding free
energies of protein−ligand interactions. In this study, we
employed the MM/PBSA technique to predict binding free
energies from molecular dynamics trajectories conducted in
explicit solvent, analyzing the complex, receptor, and ligand
components separately. The trajectories ranging from 0 to 100
ns were utilized to evaluate the binding free energy of the top
complexes. The calculation of the binding free energy (ΔG) of
the lead compounds when bound to the protein was performed
using a specific equation:

= +G G G G( )binding complex protein ligand (1)
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In the preceding equation, Gcomplex represents the energy of the
ligand−protein complex, while Gprotein and Gligand denote the
energies of the protein and ligand, respectively, in a solvent
environment.
Aldose Reductase Enzyme Inhibition Assay. Nine

enamine compounds were purchased from Enamine Ltd.
Eplarestat, a reference compound, and the nine compounds
were dissolved in DMSO. Aldose reductase activity was
measured using the Aldose Reductase Inhibitor Screening Kit
(colorimetric) from Abcam (#ab283360, Abcam, UK)
following the manufacturer’s instructions at a final concen-
tration of 10 μM. The reactions were monitored at 340 nm in
the kinetic mode for 60−90 min at 37 °C using a microplate
spectrophotometer (Molecular Devices, San Jose, CA). To
address concerns about potential colorimetric interferences
due to the compounds’ structures, absorbance values were
corrected using corresponding controls which contained all
components except the substrate. All assays were performed in
triplicate.
Statistical Analysis. All values presented in Figure 9 were

expressed as the mean ± SD, derived from a minimum of three
independent experiments. Statistical significance was assessed
using a two-tailed Student’s t test, with a value of p < 0.05
considered statistically significant. The single (∗) and double
(∗∗) asterisks denote statistical significance at p < 0.05 and p <
0.01, respectively.
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