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Abstract: Natural landmarks are the main features in the next step of the research in localization of
mobile robot platforms. The identification and recognition of these landmarks are crucial to better
localize a robot. To help solving this problem, this work proposes an approach for the identification
and recognition of natural marks included in the environment using images from RGB-D (Red, Green,
Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that
are present in the environment is performed. The extraction of edge points of these landmarks is
done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed
through the Sl0 algorithm, which minimizes the standard deviation of the normals at each point.
Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural
landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to
the filtered edges and determines to which structure they belong to in the current scenario: stairs or
doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified.
The approach proposed here has been validated with real robot experiments. The performed tests
verify the efficacy of our proposed approach.
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1. Introduction

An ability that is expected in autonomous robots is the capacity of collecting useful information
from their surroundings. For that, in general, robots use sensors to acquire raw data and generate the
useful information from the surrounding environment through some embedded computer processing.
With this information provided, a robot can perform a large range of tasks including robot localization,
which are algorithms that enable a robot to calculate its pose (position and orientation) in relation
to an origin in a given map. This approach is one of the most studied mobile robotic problems [1].
One such approach to localization is the extraction and use of natural landmarks. The use of natural
landmarks in mobile robot localization remains a challenge due to the differences in shape, design
and the influence of illumination conditions. As an example, a simple algorithm for object recognition
has a large number of false positives or false negatives in recognizing different types of doors and
staircases in office buildings.

Therefore, we propose an approach for natural landmarks identification and recognition to be used
in mobile robots localization. We use 3D edge clouds created from the data given by the above devices
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as the underlying structure. The proposed approach uses the edges of planes as a key characteristic of
the natural landmark. We tested our approach in an indoor environment of a faculty building. On the
recognition phase, we filter the resultant cloud and apply a recognition unsupervised algorithm that is
also a proposal of this work, in order to retrieve intrinsic geometric characteristics regarding doors and
stairs (or similar structures). The proposed algorithm is validated by way of real robot experiments,
which demonstrate the performance of our method. The experiments were performed to demonstrate
the algorithm efficacy in detecting the marks. Our approach achieves numbers as high as 96.5% in
precision and 98.9% of accuracy.

Technological improvements with low-cost 3D sensors (e.g. RGB-D sensors) has enabled robots
to perceive the environment as a 3D spatial structure. Note that more complex types of landmarks
appear from this kind of data that includes, besides RGB (intensity), points in 3D world coordinates,
thus increasing by one the dimension of data. Ambiguities and other problems such as illumination
that occur using only 2D coordinates and RGB data can be solved here, however at a higher cost.
The effectiveness of landmark identification and recognition is associated with the existence of marks
in the environment, and also with sensor precision and frame rate, and with the capacity of the robot
system processing. Nonetheless, a problem that remains is to define what type of low-level features can
be used for landmark selection, mainly considering that several novel devices can provide more useful
data, such as the Kinect cameras, ZED cameras, Bumble-bee cameras, and Minoru stereo cameras.

Several types of sensors are used for the robotic localization problem [2,3]. However, taking
into account the relation between the sensor cost-reliability and measurement errors, camera-based
sensors are, so far, the most accurate. They also have the advantage of being inexpensive and
intuitive to human interaction. In addition, the visual sensors are able to recover environmental
data, allowing the computation of particular information of the scenario that contributes to a more
robust robot localization approach. One of the techniques used to localize robots is called a global
view and it is approached by Lee et al. [4], Peipei et al. [5] and by Nascimento et al. [6]. In all
of these approaches, ceiling mounted cameras provide an overview of the environment and the
robotic platforms. Their approaches contain severe limitations regarding an environment that has
corridors and rooms. Furthermore, several vision based localization techniques can be found in the
literature [2,3,7,8]. The most used and researched localization algorithms (MCL [7], KF [8], EKF [3], etc.)
aim to correct the errors accumulated over time coming from robot displacement.

Catadioptric cameras [9], fish-eye cameras [10], stereo cameras [11] or the more recent RGB-D
devices [12] are widely used in mobile robotics. For landmark based localization, which can be
either artificial or natural, the usual technique is done by means of identification and recognition of
objects (landmarks) in the environment and posterior calculation of the robot’s pose with respect to
the found object. Artificial landmarks such as Quick Response codes (QR-codes) have been being
used recently in mobile robot landmark localization [13,14]. Specific designed patterns are also used
in artificial landmark localization [15] in order to attend specific purposes or to overcome specific
problems, such as the ones found in industry [16]. In contrast, natural landmarks are also used in
mobile robot localization. The most common natural landmarks are lamps on the ceiling [17,18].
Finally, in natural landmark recognition, some authors use descriptors (SIFT [19] or SURF [12]) for
acquiring characteristics from the environment.

Regarding natural landmarks, Liu et al. [20] propose an approach for the extraction of
characteristics using the data captured by a 2D laser scanning. The algorithm extracts reference
points (i.e., points relating to borders, curved segments of center, among others) that could be from
a natural landmark. The process is basically done through a proposed curvature scale geometrical
identification approach.

Furthermore, Rous et al. [21] propose an approach for mobile robot navigation based on the
observation of natural landmarks contained in a certain scene using a monocular camera attached
to the robot as the main sensor. The algorithm applies an analysis in the structures’ detection and
chooses the most relevant one for the robot navigation task. However, this detection depends on
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prior knowledge about the structure that would be found. Examples of such structures would be
doors or previously chosen objects. The process begins with a selective orientation based on the
Hough-transform (OHT). This process generates a lattice of convex polygons. The homogeneous
polygons are segmented and merged in the reference region, and finally an extraction is performed.

Xiong and Choi [22] correct the estimated robotic platform position based on the comparison
between natural landmarks and some references assigned in the scene. The approach uses a fish-eye
camera and the error correction process makes use of an estimation concerning the relationship between
the natural landmark identification along with the distortion of the sensor calibration data. Another
work by Haytham et al. [23] proposes a 2D mapping and localization approach applied to UAV.
Such application has as its main objective to reduce the accumulated error from robot displacement.
The authors present a method for real-time matching of 2D characteristics.

Finally, Chai et al. [24] introduce an approach to identify straight lines and homogeneous colors
within the environment. From these particular environmental area features, the algorithm would
be able to identify objects in order to use these objects as natural landmarks. Their work compares
selected points using the Harris corner detector. They take as a guideline for the selection of natural
landmarks a combination of straight lines to form convex polygons. Notice that Rous et al. [21],
whose work is described above, make use of polygon features as well. In contrast, Chai et al. [24] also
demonstrate a method for detecting lines in order to simplify the creation of polygons.

The main difference between the aforementioned works and the method that we propose in this
paper is the generality of our approach. Since the identification stage has been introduced in our
previous work [25], here we demonstrate that our recognition process is generic in the sense that it can
recognize staircases and doors independent of the robot pose and the state of the object (closed door,
opened door, semi-opened door). More importantly, the recognition step is performed in real-time
without the need of an offline training step and without jeopardizing the accuracy of the recognition
process. The next two sections will explain the two stages of our proposed approach. First, we will
explain in the following section the steps in the identification of features from natural landmarks. After
that, we will explain the steps of the second stage, which is the recognition of the natural landmarks
using the identified features.

2. Stage 01: Natural Landmark Identification

The identification of features in natural landmarks can be divided into seven sub-steps.
These steps are grouped into two groups: segmentation and filtering. First, we segment the captured
scene using the three identified sub-steps: Narrow Down Filter, Estimation of Planes and Plane Edge
Calculation. Later, we filter the segmented scene in order to generate a final cloud of edge points for
object recognition.

Figure 1 presents a diagram of the identification stage. The segmentation aims to pre-process the
cloud resulting in a cloud containing only the points of interest. These points will then be treated and
used in feature calculations. Afterwards, the resulting cloud is filtered in order to minimize the noise in
the data. The final sub-steps in the filtering group perform calculations to estimate key characteristics
from the observed landmarks.
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Figure 1. Natural landmark identification stage.

2.1. Segmentation Sub-Steps

We use an RGB-D sensor (the Kinect) mounted on the mobile robot platform to acquire RGB and
depth images from the surroundings. The Point Cloud Library (PCL) is used to transform raw RGB-D
data (Xi, Yi, R, G, B, D) to a point cloud Pi = (Xi, Yi, Zi, Ri, Gi, Bi), where i = 1..N and N is the total
number of points in the cloud. The point cloud is the chosen structure for data handling in our work.
Note that a point is the most primitive geometric entity, thus allowing any geometric algorithm to be
implemented over it. In fact, a Narrow Down Filtering (NDF) algorithm has to be applied for reducing
the size of the point cloud, in order to allow real-time processing and decrease computational cost.
We notice that structures such as walls, doors, staircases, pillars, and so on, have similar shapes from
bottom up. Therefore, the filter is also used to minimize the size of the cloud, resulting in a target
area of a horizontal rectangle, which, in turn, eliminates useless data present in the border of the field
of view.

After the image acquisition, the NDF will prepare the image by returning points that have key
characteristics (edge features) used in the landmark detection. The NDF, consequently, decreases the
field of view of the robot to a slim horizontal rectangle with respect to the Kinect coordinate system [26].
The filter parameters can be seen in Table 1.

Table 1. Narrow Down Filter parameters.

Axis Lower Values Higher Values

y −0.6 m 0.2 m
x −0.6 m 0.6 m

The following step is to identify the existing planes within the reduced field of view. The existing
planes are present in almost any landmark. Usually, natural landmarks are corridors, water fountains,
pillars, doors, staircases, and so on. By looking for these regular geometries (i.e., planes) in scene, we
can find the predominant plane within the field of view. We use the RANSAC (RANdom SAmple
Consensus) algorithm (available in the PCL) to estimate the predominant plane. This algorithm was
modified in order to find the major planes in the rectangle box from the NDF. The major planes are
characterized by having the highest number of inlier points.

The modified plane estimation will exclude movable objects such as chairs, boxes, and so on,
resulting in a cloud only with all features. This is perceptible in Figure 2 where there is a chair in the
robot’s field of view. This object is then ignored after the NDF and the modified plane estimation steps.
All detected planes are gathered in another cloud containing only estimated planes.
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Figure 2. RANSAC and Narrow Down Filter result.

From the cloud of planes, we can start the detection of 3D edges. This procedure will minimize
the number of used points. As a result, the edges can be computed quickly. The edges are found
by using the Concave Hull algorithm, which is used to compute the envelope of a set of points in
a given plane. From the given points, a non-convex polygon is generated that represents the area
occupied by these points. However, as we can see in Figure 3, the segmentation step is not robust
enough. The influence of robot orientation, object inclination and environment illumination can alter
the result of the segmentation step. Therefore, planes with distortion and with outlying points are
created as a result. Thus, we still need to pass the resulting cloud through another filtering process, the
filtering sub-steps.

Figure 3. Images resulting from the segmentation step.

2.2. Filtering Sub-Steps

The filtering sub-steps are initiated using the Sl0-norm algorithm. This algorithm will minimize
the number of outliers, i.e., points that are not able to be classified as edge points but have been
included in the resulting cloud from the previous step. This error in inclusion usually is due to
environment disturbances or sensor noise. After the elimination of these outliers, the normal of each
point in the cloud is calculated. These normals are then compared with the normals of previous points
and the normals of following points. The points that do not have their normals parallel to the previous
one or to the following one are classified as corner (edge) points. These edge points are gathered in a
third cloud, called edge cloud. This new cloud is filtered once more through the Sl0-norm algorithm,
which will minimize the standard deviation of the angles between normal. Each aforementioned part
of the filtering step will be described below.

The filter starts by traveling through each point of the resulting cloud and computing its normal.
We assume that each detected point is on the surface of the observed object. Therefore, the normal
of each point is orthogonal to the detected plane. The normal calculation is based on the work of
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Hoppe et al. [27]. Note that the influence of sensor noise and illumination variation has a direct
impact on RGB-D sensor data acquisition. Thus, we need to filter the resulting cloud once more
minimizing the number of outlier points in the cloud. When the curvature angle of a point (the angle
between the normal vector and the surface plane) is different from approximately 90◦ (with a threshold
sigma_min = 0.01), then it is characterized as an outlier. The band-pass filter diminishes the number
of points that will be candidates as edge points in the next sub-step.

After diminishing the amount of points, a comparison between normals of each pair of neighbor
points is performed. Then, the difference angle (θ) between each pair of normal is calculated. In a
region containing edge points, there is a high variance in direction between a pair of normal. When
the calculated angle θ is bigger then 45◦, the points from the normals are considered edge points.
The resulting points, which are considered edge points (Pei), usually lie in a wall corner.

This procedure is not fail-proof. Once again, the sensor noise can influence the selection of edge
point with false-positives. For this reason, the following algorithm is used to minimize the presence of
non-edge points by considering edge points the resulting vector of maximized zero components.

This sub-step filters the resulting keypoints using the smooth l0-norm minimization algorithm [28].
Following this approach, we adopt the l0 norm of a non-zero components vector s, where s = [s1, ..., sN ]

and s is the vector containing the calculated angles and its respective point in the edge cloud and
si = θi

i−1. To compute this, we assume that:

ν(si) =

{
0, 45◦ < si < 90◦,
1, otherwise.

(1)

Therefore, the l0 norm of s is as follows:

‖s‖0 =
N

∑
i=1

ν(si). (2)

The function ν is discontinuous. Thus, the norm is also discontinuous. From this analysis, we can
per pass this issue by performing a smooth approximation of ν(si). To this end we used a differentiable
zero-mean Gaussian function as follows:

fσ(s) = exp
(
−s2

2σ2

)
, (3)

we have:

lim
σ→0

fσ(s) =

{
0, s 6= 0,
1, s = 0.

(4)

Consequently, limσ→0 fσ(s) = 1− ν(s), and, therefore, by defining:

Fσ(s) =
N

∑
i=1

fσ(si), (5)

we can have
lim
σ→0

Fσ(s) = N − ‖s‖0. (6)

and we take [N − Fσ(s)] as an approximation of the ‖s‖0:

‖s‖0 ≈ N − Fσ(s), (7)

where σ is a trade-off between the accuracy and the smoothness of the approximation.
Equation (7) demonstrates the equivalence between the minimization of ‖s‖0 norm and the

maximization of Fσ(s). This is only possible for a small σ. Therefore, the Normal Problem Equation can be
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written as x = A ∗W, where W is a weight vector, A is the measurements matrix and the pseudo-inverse
of A is Apinv. From the pseudo-inverse, we calculate the initial value of W as W = Apinv ∗ x.

Thus, we perform the multiplication for each cell of the vector of the initial value of W by
a weighted fraction of an approximation of its l0-norm (σ). The approximation σ is the standard
deviation of a zero-mean Gaussian function. Hence, we perform the subtraction of the residual from
W. This is found through the error projection on Apinv. The process is repeated until a threshold is
achieved and the decreased value of σ reaches the reference Σ (see Algorithm 1).

Algorithm 1. Smooth l0-norm Algorithm

INPUT Data: W = SL0(A,x,Σmin,Apinv);
OUTPUT Result: return weight vector W;
1: W = Apinv ∗ x;
2: σ = 2 ∗max(abs(W));
3: µ0 = 2;
4: L = 3;
5: σdecrease = 0.5;
6: Σmin = 0.01
7: While (σ < Σmin);
8: For (i = 1 : L);
9: δ = W. ∗ exp(−abs(W).2/σ2);
10: W = W − µ0 ∗ δ;
11: W = W − Apinv ∗ (A ∗W − x);
12: end for;
13: σ = σ ∗ σdecrease;
14: end while;

The results after the filtering process are presented in Figure 4. The key points that results from
the filtering sub-steps are demonstrated in the four sub-figures (doors and a staircase).

Figure 4. Results from the filtering sub-steps. Here, four cases of observation can be seen: closed door
(far left), an open door (middle left), an open door with a vision of 45◦ (middle right) and a staircase
with a vision of 45◦ (far right).

3. Stage 02: Natural Landmark Recognition

The second phase of our approach is to recognize the natural landmarks in front of the robot.
This is performed after separating the estimated key points. These points are now composing the
edge point cloud. From these points, we will identify and recognize natural landmarks such as
doors and staircases. Note that these types of natural landmarks are commonly seen in an indoor
environment (e.g., a faculty building). These types of natural landmarks are not well addressed in
literature regarding natural landmark recognition applied to mobile robot localization. To perform the
landmark recognition, we use the depth and geometric information from the cloud that was processed
in the identification stage. Similarly, the recognition stage can also be seen as a block diagram divided
in four steps as shown in Figure 5.



Sensors 2017, 17, 1824 8 of 16

Figure 5. Natural landmark recognition stage.

The method applied here consists of filtering the resulting cloud in order to retrieve the intrinsic
geometric characteristics regarding doors and stairs. First, the projection of the cloud on the plane XY
is performed (floor plane), and several clusters of points are created. All the points of the cloud are
then computed iteratively, and their spatial information (position and normal orientation) is extracted.
The spatial information of the points are used to classify them as belonging to a certain landmark
type. The doors or stairs characteristics are acquired when the difference between points is observed.
We call this behavior a cluster “jump”. From these characteristics, the algorithm classifies the jumps.
It is able to differentiate between stairs or doors jumps. Therefore, the proposed recognition part has
the following four steps:

• Step (1) Project cloud on the floor plane;
• Step (2) Travel clusters (Jumps);
• Step (3) Classify jumps (Stairs or Doors);
• Step (4) Return the most appealing object (Final Recognition).

3.1. Cloud Projection

The projection of the resulting cloud from the identification step follows a criteria that states that
a given cloud point P(x′, y′, z′) and its projection P′ determine a line in which the direction vector s
coincides with the normal vector N of the projection plane E (Figure 6). The projection of point P into
p′ follows the Matrix: 

x′

y′

z′

1

 =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 .


x

y

z

1

 .

Figure 6. Orthogonal projection.

Note that all points of the cloud are projected in the XZ plane, that is, by the sensor definition,
a plane that is parallel to the ground if the sensor is in the upright position. For natural landmarks
such as doors, it is observed that the resulting cloud after the projection forms a region with grouped
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points (Figure 7 top). However, in the stairs landmarks, the resulting cloud is a set of lines (Figure 7
bottom). These groups of points and lines are clusters of doors and clusters of stairs, respectively.

Figure 7. Images resulting from the projection step. Both top figures are clusters from the detection of
doers and both bottom figures are from stairs.

3.2. Cluster Traveling

The points are gathered nearby well defined clusters in the resulting projections from doors,
similar to dots. This is the opposite in the staircase clusters that are well defined lines. After the
projection, the cloud is submitted to an iterative procedure in which each point is visited and its spatial
disposition is stored. After an empirically defined number of 15 points are visited, each consecutive
point is analyzed and compared to the previous and to the next ones. This process is repeated until the
last point is analyzed. When the difference between consecutive points matches a certain threshold,
it is stated that the iteration has left the cluster, and the current point belongs to another cluster. This is
called a cluster jump.

3.3. Jump Classification and Final Recognition

As mentioned above, a feature classification is achieved when a jump happens. Each cluster
should be traveled and classified accordingly. For example, just before the jump, the point P1(x1, z1)
is submitted to a comparison with a previous point P0(x0, z0) and to the next point P2(x2, z2). If it is
observed that the previous point P0 is similar to the current point P1 and the values of the next point
P2 have increased, the jump is classified as a door jump. This is true because points belonging to
door clusters are concentrated in a confined space. Stair jumps are classified when P0 is much smaller
than P1, P2 is greater than P1 and there is a large variation in the depth(z) coordinate of P2 from P1,
suggesting P2 belongs to another cluster (another line in Figure 7 bottom).
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4. Experiments and Results

To verify and validate our approach, a total of eight experiments were performed to demonstrate
their success. For the experiments, the robotic platform used was the TurtleBot 2 robot, which has
a Microsoft Kinect 1 (Figure 8), and a Gyroscope and wheel odometry from the base of the robot,
as capture sensors. The base and the Kinect were connected to a notebook, 86 GHz and 4 GB RAM.
As software, the ROS framework was used in Ubuntu 14.04. We did not use any other type of sensor.

Figure 8. Turtlebot robot.

We use doors and staircases as natural landmarks in the experiments. We performed tests with
different states of doors (open door, closed door and half closed door) and staircases with different
widths. The difference between the semi-open state and open state is that, in the first, the door is not
fully opened; in the second, the door is completely opened. All doors and staircases are from the
same kind of environment (university buildings). However, in the considered environments, there
are modern and older buildings, which, besides obeying a standard, produced little differences in the
elements. Doors and stairs follow a standard of construction all around the world (in the geometrical
sense). Color, texture and material can be different; however, the main features that are used by the
algorithm are still present everywhere. For example, the measures of a door ranges from 0.60 m to
1.15 m in width, from 2.10 m to 2.20 m in height and between 0.10 m up to 0.15 m in depth. In the case
of stairs, they should be some 0.2 m high and 0.3 m deep (the width does not matter in this case). More
than that causes problems to the building users. This standard in construction enables us to look for
this same pattern in the landmark observation, as we can see in Figure 7. Therefore, our algorithm is
robust to color, texture and material variation. The only two exceptions for doors are double doors and
sliding doors, which will be treated in future works due to their difference in the geometry. As we use
the geometry of the landmark to identify it, we do not need an offline training step to recognize the
natural landmark.

This experiment uses 5000 (thousands) samples. These were taken in series during the algorithm
running and with the robot in front of the landmark (varying the angle of observation). Each sample
is a captured frame. We identify and recognize natural landmarks in each frame according to the
features presented in an online fashion. The tests were performed with 0◦ and 45◦ viewing angles.
The approach was successful in detecting both doors and stairs, having a very low index w.r.t. false
positives and unidentified cases, as shown below. Figure 9 displays the detection data of all features at
both angles.
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Figure 9. Recognition results. From top to bottom, left to right we see the detection of a closed door in
0 degree angle, a closed door in 45 degree angle, a partially closed door in 0 degree angle, a partially
closed door in 45 degree angle, an open door in 0 degree angle, an open door in 45 degree angle, stairs
in 0 degree angle and stairs in 45 degree angle.

In Table 2, one can observe the confusion matrices at angles 0◦ and a 45◦. Our approach had a
98.9% average of successful cases of natural landmarks (doors and stairs) recognition at a 0◦ viewing
angle. By changing the viewing angle to 45◦, our approach decreased the rate of success in 0.86%.
We performed an additional analysis, in which we found that the majority of false positives are due to
noise from the Kinect sensor or erroneously identified planes. Furthermore, we present the distances
(real and measured) between the robot and the landmark centroid in Table 3. The distances are
measured in the z- (depth) and x- (width) axis of the Kinect sensor.
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Table 2. Recognition confusion matrices.

0◦ Measurement
Landmark Predicted

Open
Door

Semi-Open
Door

Closed
Door Stairs

Open Door 5000 0 0 0
Semi-Open Door 0 5000 0 0

Closed Door 0 0 5000 0
Stairs 0 0 161 4791

45◦ Measurement
Landmark Predicted

Open
Door

Semi-Open
Door

Closed
Door Stairs

Open Door 4983 0 0 17
Semi-Open Door 0 4979 0 21

Closed Door 0 0 4999 1
Stairs 0 0 167 4647

Table 3. Mean measured distances (in meter).

Features Angle Real
Cen (z)

Real
Cent (x)

Measured
Cen (z)

Measured
Cen (x)

Open Door 0 1.4 0 1.41 0.004
H-Open Door 0 1.8 0 1.81 0.004
Closed Door 0 1.5 0 1.49 0.008

Staircase 0 1.2 0 1.191 0.022
Open Door 45 1.6 0 1.583 0.014

H-Open Door 45 1.5 0 1.482 0.04
Closed Door 45 1.5 0 1.493 0.021

Staircase 45 1.3 0 1.28 0.007

Table 4 presents a maximum mean absolute error for the half-open door with a 45◦ viewing angle
in the z-axis of 0.018 m. This error was due to the empty space in front of the sensor that increases the
difficulty in measurement by the Kinect 1.0 depth sensor. The maximum mean absolute error increased
in the x-axis with a value less than 0.09 m in both the ladder and in the closed door cases with a 45◦

viewing angle. This table also presents the precision values of all four landmarks in each measured
viewing angle (0◦ and 45◦). The lower precision rate is in the ladder case with and observation angle
of 45◦, which had a precision rate of 96.5%.

Table 4. Absolute error and precision.

Features Angle (◦) Precision (%) Absolute Error
z (m)

Absolute Error
x (m)

Open Door 0 100 0.01 0.004
Semi-Open Door 0 100 0.01 0.051

Closed Door 0 100 0.01 0.018
Stairs 0 96.7 0.009 0.078

Open Door 45 99.6 0.017 0.066
Semi-Open Door 45 99.5 0.018 0.024

Closed Door 45 99.9 0.007 0.086
Stairs 45 96.5 0.02 0.086

When analyzing the accuracy results of our approach through Table 5, we can state that it was
satisfactory. Our approach had a 98.9% as the lower accuracy rate, again in the stair recognition
cases with an observation angle of 45◦. We also chose a state-of-art approach to object detection and
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recognition that has similar characteristics with our proposed work in order to compare our results.
The similarities of the chosen algorithm with our work are w.r.t. real-time processing, objects detection
and recognition, false positive treatment and result accuracy. With this in perspective, the YOLO
(You Only Look Once) [29] approach was used, which is characterized by being a deep neural network
for objects detection and recognition in real time. The authors make use of a neural network capable of
predicting and probabilistically affirming what object is referred to, after analyzing the image, besides
processing in real time in a range of 45 frames per second. The YOLO approach was applied within
the scope of identifying the objects treated in this work: doors and stairs. It is necessary to also note
that such a comparison was only designed to analyze the accuracy results that our algorithm possesses
in landmark recognition, since the YOLO model is a deep neural network not designed for mobile
robotics, as our case is. That is, it has a longer processing time in addition to requiring previous
training. We used the same database captured from the 5000 frames to test both approaches w.r.t.
accuracy, and we only used the YOLO database to train the neural network. Taking this into account,
our algorithm obtained a considerable result when compared to YOLO results.

Table 5. Comparison accuracy values with YOLO (You Only Look Once).

0◦ Measurement
Landmarks YOLO % Our Approach %
Open Door 95.3 100

Semi-Open Door 97.0 100
Closed Door 100 100

Stairs 94.57 99.1
45◦ Measurement

Landmarks YOLO % Our Approach %
Open Door 93.6 99.0

Semi-Open Door 94.47 99.0
Closed Door 99.9 99.1

Stairs 95.5 98.9

The decreased values in both Precision and Accuracy in the staircase feature is due to the fact
that some points in the stair cluster may be grouped when the projection forces two edges of staircase
steps together, so the algorithm may conclude that there are a few door clusters. Notice that filtering
techniques can be applied to minimize this situation and guarantee better results. Also taking into
account the sensor-related deficiencies that are beyond the scope of this research, there are some
situations that cannot be addressed by this algorithm. We can classify these situations into two
main groups: environmental deficiencies and deficiencies related to the algorithm. Environmental
deficiencies are caused by the incidence of light or by occlusions. It was possible to see, in the semi-open
door case, that the algorithm is robust w.r.t. occlusion. However, ambient lighting is still a problem
to be solved. This can be minimized if the RGB-D sensor is improved. In future works, we aim to
change it to a Stereo RGB-D Zed Camera [30]. The second group is related to the algorithm, in which
they derive from the descriptors that we use in our approach. Line projections can sometimes be
confused, in the cases of a double door or a corridor being as straight as a closed door, which will also
be corrected in future works.

5. Conclusions

This paper has proposed a robust for detecting natural landmarks using 3D point cloud data.
The intention of this work was to propose a landmark recognition approach to be later used in
localization. In dynamic unstructured environments such as industries, offices, faculties, and so on,
mobile robots will depend on 3D data to localize themselves. Furthermore, with the pose of the
detected objects, and thus with a natural landmark localization approach, a mobile robot can customize
its trajectories with more efficiency. Therefore, we present here a generic approach to identify and
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recognize natural landmarks, based on the treatment of clustering process and application of noise
minimization. The generalization is with respect to the robot pose in relation to the natural landmark.
Height and depth information are extremely useful to mobile robots.

Our approach is performed online without the need of an offline training step preceding the
landmark recognition. Furthermore, as our approach is based on landmark geometry, it also works
with pillars, hallways, walls and so on, given the proper configuration. The performed experiments
demonstrate that, when the robot is in front of the landmark, our approach has a 100% success in the
classification of doorways (independent of the state of the door) and a 95.8% success in the classification
of staircases. When the robot is in a 45◦ orientation with respect to the landmark our approach achieves
an average of 99.74% success in classifying doorways and a 92.94% success in classifying staircases.

The case where two or more doors are close to one another separated by a pillar or a small
wall represented a drawback in our approach. Cases such as this are usually interpreted as the wall
being a closed door and the doors being the wall plane. We will approach this problem in future
works by including these cases in the identification stage of the algorithm. Future works will also
use this approach in the localization based on natural landmarks. This new localization approach
is being currently researched to consider state-of-the-art advances in object recognition and visual
odometry, and by considering other objects such as trash cans, water fountains, fixed tables, and so on.
Finally, we aim to apply the recognition of natural landmarks to SLAM (Simultaneous Localization
and Mapping) algorithms, where marks can be used to handle problems such as the kidnapped robot,
border mapping, loop closure detection and relocation.
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