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Abstract

Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attrib-

uted to inherited factors by studies of twins, indicating the importance of additional genetic

screening to identify predisposition variants. However, only DNA damage repair (DDR)

genes have been investigated thoroughly in prostate cancer. To determine the comprehen-

sive germline mutation landscape in Chinese prostate cancer patients, we performed whole

exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and

identified deleterious germline mutations. A total of 36 deleterious germline variants in 25

genes were identified in 29% patients. Variants were found in eight pathways, including

DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an

independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven com-

mon deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and

validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and

SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B).

When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel

potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS,

LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and

validation cohorts, which have not been previously reported in prostate cancer patients in all

ethnic groups. Taken together, this study reveals a comprehensive germline mutation land-

scape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition

genes to lay the groundwork for the optimization of genetic screening.
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Author summary

Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to

inherited factors, indicating the importance of additional genetic screening to identify

predisposition variants. However, only DNA damage repair (DDR) genes have been stud-

ied thoroughly in prostate cancer. To determine the comprehensive germline mutation

landscape in Chinese prostate cancer patients, we performed whole exome sequencing in

100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious

germline mutations. A total of 36 deleterious germline variants in 25 genes were identified

in 29% patients. Variants were found in eight pathways, including DNA methylation,

DDR, and tyrosine-protein kinase. These findings were validated in an independent Chi-

nese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-

variant-containing genes were found in discovery cohort and validation cohort with three

genes not described before (LDLR, MYH7 and SUGCT) and four genes previously

reported. When comparing with that of a cohort of East Asian healthy individuals, 12

non-DDR novel potential predisposition genes were identified using the discovery and

validation cohorts, which have not been previously reported in prostate cancer patients in

all ethnic groups.

Introduction

Inherited genetic factors notably contribute to breast cancer, colorectal cancer, and prostate

cancer susceptibility. In prostate cancer, approximately 42% of disease risk is attributed to

inherited factors, which makes it one of the most inheritable cancers [1]. Whole exome

sequencing (WES) has been shown to be one of the most cost-effective methods to investigate

germline mutations associated with inherited human cancers. According to the National Com-

prehensive Cancer Network 2020 clinical practice guidelines on prostate cancer, germline

mutation testing is recommended in patients with high risk, very high risk, regional metasta-

ses, and distant metastases [2]. In addition, genetic testing in prostate cancer is also used to

select the optimal therapeutic strategy. Germline mutations in several DNA damage repair

(DDR) genes, such as BRCA1 and BRCA2, which have been verified as susceptibility factors

for prostate cancer, are also predictors of the response to poly(ADP-ribose)polymerase inhibi-

tor therapy or platinum-containing chemotherapy [3–5]. Additionally, germline mutations in

other DDR genes such as MLH1, MSH2, MSH6, and PMS2 have been reported to predict

response to immunotherapy in advanced prostate cancer patients [6,7]. Finally, previous stud-

ies have demonstrated that patients with metastatic prostate cancer and harboring germline

mutations of specific variants in DDR would have variable responses to systemic hormone

therapy depending on such variants [8–11].

With the development and reduction of the cost of WES, a growing body of studies have

used WES to investigate the germline mutation landscape and its association with clinical

characteristics in prostate cancer patients. A multi-institutional study involving 150 metastatic

castration-resistant prostate cancer (mCRPC) patients identified germline mutation variants

enriched in several biological pathways, including androgen receptor (AR) signaling, phospha-

tidylinositol-4,5-bisphosphate 3-kinase (PI3K), Wnt, cell cycle, and DNA repair pathways

[12]. Another study investigating the mutations in a 20 DDR genes reported that 11.8% of met-

astatic prostate cancer patients carried germline mutations and that the incidence of germline

mutations in men with localized prostate cancer was significantly lower [13]. Using a clini-

cian-selected multigene panel, a cross-sectional study of 3,607 men with a personal record of
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prostate cancer revealed that approximately 17% of patients carried a pathogenic germline var-

iant [14]. In 2019, a study using a panel composed of 18 DDR genes and comprising 316 Chi-

nese prostate cancer patients reported that 9.8% of these patients carried pathogenic germline

mutations [15]. More recently, in a cohort of 246 Chinese patients, Wu et al.[16] found that

31% of prostate cancer patients harbored pathogenic germline mutations in a panel of selected

276 DDR genes [16].

Although in recent years there have been substantial advances in dissecting the germline

mutation landscape in prostate cancer, no consensus has been achieved regarding the most

adequate selection of genes for assessment. Consequently, considerable variations in the results

of these studies are expected. In addition, most of the studies conducted up to date thoroughly

investigated only DDR genes, hindering obtaining a comprehensive overview of the germline

mutation landscape in other genetic pathways involved in the pathogenesis of prostate cancer.

Moreover, in the most commonly used gene panels, only DDR genes involved in homologous

recombination and mismatch repair pathways were included, and many other important

DNA repair pathways such as base excision repair, nucleotide excision repair, direct damage

reversal/repair were omitted [17]. Furthermore, most of the previous studies have investigated

the germline mutation landscape in the Caucasian population, and populations of other eth-

nicities such as the Chinese population have not been thoroughly investigated. Given that

genetic effects are ethnic-specific, it is of great necessity to dissect the germline mutation land-

scape in Chinese prostate cancer patients [18].

To explore the genetic basis of prostate cancer in Chinese patients and to identify candidate

predisposition genes, in this study we performed WES of germline DNA from 100 prostate

cancer patients in Hong Kong and compared our results with East Asian individuals from the

GnomAD cohort. Our results were then validated in another independent Chinese prostate

cancer cohort in Shanghai. Moreover, gene function enrichment analysis and correlation anal-

ysis with clinical characteristics were conducted. The results of this study provide a compre-

hensive germline mutation profile of Chinese prostate cancer.

Material and methods

Ethics statement

The study in Hong Kong was approved by the Joint Chinese University of Hong Kong–New Ter-

ritories East Cluster Clinical Research Ethics Committee (The Joint CUHK-NTEC CREC) (CREC

2015.444). The study in Shanghai was approved by Fudan University Shanghai Cancer Center,

Shanghai, China (050432-4-1911D). All patients had signed informed consent for the studies.

Study design

We undertook a study of germline mutations among patients with prostate cancer using WES.

We then compared our results with 9,197 East Asian individuals from the GnomAD v2.1.1

cohort [19] and validated our results in an independent Chinese cohort of 167 patients with

prostate cancer. Finally, germline genotypes were correlated with patient clinical characteristics.

Enrollment of patients

From 2008 to 2016, a total of 100 Chinese men with known prostate cancer in Hong Kong were

included. The independent validation cohort consisted of 167 ethnically Chinese men with

prostate cancer in Shanghai. Patients would be recruited into the studies if they contained either

one of the following inclusion criteria: (1) age of diagnosis less than 60 years old, or (2) Gleason

score greater than 7, or (3) metastatic disease at presentation. Clinical and demographic
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information were prospectively collected through the electronic medical records. Personal and

family history of cancer were obtained in person by a standardized questionnaire.

DNA extraction and WES

Genomic DNA was extracted from patients’ peripheral blood mononuclear cells by using a

QIAamp DNA Blood Mini Kit. Afterwards, genomic DNA was randomly fragmented by Cov-

aris technology into 150bp and 250bp and size-selected DNA fragments were purified and

hybridized to the exome array for enrichment. High-throughput sequencing was performed in

DNBseq sequencing platforms by BGI. By applying the Burrows-Wheeler Aligner, the paired-

end reads were aligned to the human reference hg19 [20]. After removing the PCR duplicates

by Picard, variant calling was performed by the Genome Analysis Toolkit [21].

Data analysis of germline mutations

The sequencing data analysis was focused on the presence of single-nucleotide variants as well

as small insertions and deletions. Variants were included for further analysis when they met

the following criteria: (i) Minor allele frequency (MAF) < 0.01 in any East Asian population

database including ExAC, 1000 Genomes and GnomAD v2.1, (ii) Variants in the exonic

regions, (iii) variants with total coverage > 20x, (iv) variants with Fisher score > 60, and (v)

variant allele frequency/fraction (VAF)� 25%. A comprehensive predisposition gene panel

was prepared for further analysis (S1 Table). There were three criteria for selecting genes into

the predefined predisposition gene panel: (i) genes associated with hereditary cancers [17,22–

24], (ii) cancer-associated genes (oncogenes and tumor suppressor genes based on Catalogue

of Somatic Mutations in Cancer)[25] and (iii) prostate cancer predisposition genes from previ-

ously published papers [26–28]. Variants were also kept in the list if their corresponding genes

were included in predefined predisposition gene panel. The selected variants were then anno-

tated according to the ACMG guideline [22]. Functional classification of variants, pathway

analysis of deleterious germline mutation genes, and correlation with clinical data were con-

ducted. An independent cohort of 167 patients from Shanghai were analyzed by the same pipe-

line and the results was compared with the finding of our cohort. The workflow of our data

analysis was shown in Figs 1 and S1.

An R package called clusterProfiler was applied to conduct enrichment analysis of GO and

KEGG [29–32]. A software called Weka was used to conduct the logistic regression [33]. The

Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct

protein–protein interaction (PPI) networks [34]. The structure model of protein was generated

by the online tool SWISS-MODEL [35].

Statistical analysis

The demographic and clinical characteristics of the Hong Kong cohort were presented by descrip-

tive statistics. Fisher’s exact tests was used to test the difference between the two groups with

respect to dichotomous variables while Wilcoxon rank-sum tests were applied to detect the differ-

ences between the two groups in terms of continuous variables. Odd ratios (ORs) and 95% confi-

dence intervals (CIs) were used to assess the association between the presence of deleterious

germline variants and clinical characteristics. Fisher’s exact tests were employed to compare the

frequencies of deleterious germline variants identified in our cohort with that in the East Asian

individuals from the GnomAD v2.1.1 cohort. Fisher’s exact tests, ORs and CIs were calculated by

MedCalc statistical software version 19.2.6 (MedCalc Software bv, Ostend, Belgium; https://www.

medcalc.org; 2020). For the cases like singleton observation of a pathogenic variant, 0.5 was

added to all cells (a, b, c, d) during the calculation with MedCalc [36,37]. Statistical analyses were
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performed with PRISM software version 9.0.2 and R version 4.0.5. All statistical tests were two-

sided and Bonferroni adjusted. P< 0.05 was considered statistically significant.

Results

Patient characteristics

A total of 100 Chinese men in Hong Kong with prostate acinar adenocarcinoma were

included. The median age of participants was 71 (range 48–81) years old. According to the

Fig 1. Overview of the data analysis strategy to identify candidate prostate cancer susceptibility genes. A total of

100 Hong Kong patients with prostate cancer were included. The patient characteristics are summarized in Table 1.

Germline samples were whole exome–sequenced and aligned to human genome assembly hg19 before variant calling

and annotations. All germline variants were identified and filtered by (i) MAF< 0.01 in any East Asian population

database including ExAC, 1000 Genomes and GnomAD v2.1., (ii) variants in the exonic region, (iii) variants with total

coverage> 20x, (iv) variants with Fisher score> 60, and (v) VAF� 25%. Among the 60,621 variants after filtering,

4,205 variants belonging to a predefined list of 1,166 genes were annotated as pathogenic or likely pathogenic

(deleterious), variant of uncertain significance (VUS), likely benign, or benign (benign) according the ACMG

guidelines. The 1,166-gene list is provided in S1 Table. We also performed functional classification of variants and

correlations with clinical characteristics of patients. Our data were validated with an independent prostate cancer

cohort (n = 167 patients). MAF, minor allele frequency; VAF, variant allele frequency/fraction.

https://doi.org/10.1371/journal.pgen.1010373.g001
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National Comprehensive Cancer Network guideline on risk stratification and staging criteria

[38], these patients were divided into the following groups: localized disease without lymph

node metastasis (nine patients with low risk, four patients with intermediate risk, two patients

with high risk, 51 patients with very high risk), regional disease with lymph node metastasis

(six patients), and distant metastatic disease (28 patients). Other detailed demographic charac-

teristics are summarized in Table 1.

Landscape of germline mutations

Applying filters for quality and rarity in population databases, we identified 60,621 high-confi-

dence coding variants. Next, we conducted in-depth manual analyses of variants in 1,166

genes that included (i) genes associated with hereditary cancers [17,22–24], (ii) cancer-associ-

ated genes (oncogenes and tumor suppressor genes based on the Catalogue of Somatic Muta-

tions in Cancer) [25], and (iii) prostate cancer predisposition genes from previously published

studies [26–28]. When 60,621 high-confidence coding variants were mapped on the prede-

fined list of 1,166 predisposition genes, 4,205 variants were obtained and annotated according

to American College of Medical Genetics and Genomics (ACMG) recommendations [22]. By

Table 1. Clinicopathological characteristics of the Hong Kong and Shanghai cohorts.

Characteristic Hong Kong cohort (n = 100) Shanghai cohort (n = 167)

Age of presentation, N (%)

<50 years 1 (1%) 2 (1.2%)

50–59 years 19 (19%) 36 (21.6%)

60–69 years 27 (27%) 75 (44.9%)

70–79 years 38 (38%) 52 (31.1%)

�80 years 15 (15%) 2 (1.2%)

Ethnicity

Han Chinese 100 (100%) 100 (100%)

PSA at diagnosis (ng/mL), N (%)

<4 3 (3%) 2 (1.2%)

4–9 24 (24%) 16 (9.6%)

10–19 11 (11%) 13 (7.8%)

20–49 14 (14%) 37 (22.2%)

50–99 16 (16%) 22 (13.2%)

�100 32 (32%) 70 (41.9%)

ISUP Grade Group, N (%)

1 15 (15%) 4 (2.4%)

2 1 (1%) 7 (4.2%)

3 1 (1%) 14 (8.4%)

4 33 (33%) 40 (24%)

5 50 (50%) 96 (57.5%)

Metastasis status, N (%)

M0 72 (72%) 61 (36.5%)

M1 28 (28%) 105 (62.9%)

Personal history of cancers 8 (8%) 6 (3.6%)

Family history of cancers�, N (%)

No 98 (98%) 164 (98.2%)

Unknown 2 (2%) 3 (1.8%)

�Family history of cancers refers to first-degree relatives with prostate cancer only.

https://doi.org/10.1371/journal.pgen.1010373.t001
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applying criteria from the ACMG, variants were classified into three categories: either benign

and likely benign (benign), variant of uncertain significance (VUS), or pathogenic and likely

pathogenic (deleterious). Among 4,205 exonic variants, finally 36 variants (0.9%) were anno-

tated as deleterious, 2,475 variants (58.9%) were VUS, and 1,694 variants (40.3%) were benign

(Fig 1).

A total of 36 deleterious variants were found in 29 patients (29/100, 29%). A total of seven

patients had two deleterious variants. Additionally, two recurrent variants were found in more

than one patient: stop-gain variant rs200662726 of lysine methyltransferase 2C (KMT2C) and

frameshift deletion variant rs752118948 of succinyl-CoA:glutarate-CoA transferase (SUGCT),

which were identified in two and four patients, respectively (Fig 2). Notably, there was also a

frameshift insertion variant detected in KMT2C.

Regarding the mutation type of the 36 deleterious variants, 12 (33.3%) variants were nonsy-

nonymous single-nucleotide variant, 11 (30.6%) variants were stop-gain mutations, 7 (19.4%)

variants were frameshift deletions, and 6 (16.7%) variants were frameshift insertions (Fig 3A).

At the gene level, 36 deleterious variants were identified in 25 genes and SUGCT had the larg-

est number of deleterious variants (4%) (Fig 3B).

Concerning the functional categories of the deleterious variants, the largest number of vari-

ants were located at genes related to DNA methylation (33.3%, 12/36), followed by variants

related to the DDR pathway (19.4%, 7/36) and the tyrosine-protein kinase pathway (16.7%, 6/

36). The remaining variants were involved in G-protein-coupled receptor (GPCR) signaling

(11.1%, 4/36), peroxisome pathway (11.1%, 4/36), MAPK/ERK pathway (2.8%, 1/36), ErbB

Fig 2. Pathway categorization of deleterious germline variants and clinical characteristics of 29 prostate cancer patients. A total of 36 deleterious

variants were identified in 29 patients. Each column corresponds to a patient. The upper section shows the patient’s clinical characteristics [T stage, PSA

level, ISUP grade, age, CRPC status and metastasis status]. CRPC1: castration-resistant within one year after starting androgen depletion therapy (ADT);

CRPC0: castration-resistant more than one year after starting ADT; M0N0: neither distant metastasis nor regional lymph nodes metastases; M0: no

distant metastasis; M1: distant metastasis.

https://doi.org/10.1371/journal.pgen.1010373.g002
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signaling pathway (2.8%, 1/36), and cell cycle (2.8%, 1/36) (Fig 4A). Regarding the proportion

of the mutations in prostate cancer patients, 10% (10/100) of patients carried variants in DNA

methylation pathway, 6% in DDR, 6% in tyrosine-protein kinase pathway, 4% in GPCR signal-

ing and 4% in peroxisome pathway (Fig 4B).

Comparison of the mutation frequency in prostate cancer patients with

that in the general population

To compare the frequencies of deleterious germline variants detected in our cohort with those

in the general population, we retrieved data of East Asian individuals from the GnomAD

v2.1.1 cohort (n = 9,197 individuals) [19]. By using the cutoff of False Discovery Rate (FDR)�

0.05, 15 out of 36 deleterious variants identified in the Hong Kong cohort were found to have a

statistically higher expected frequency compared with GnomAD controls (Fig 5A) (S3 Table).

When the odds ratio (OR) and 95% confidence interval (CI) were evaluated for each variant,

three identified variants in previously reported DDR genes, FANCI, PMS2 and RAD9B, were

found to have a higher mutation frequency in our cohort compared with the East Asian Gno-

mAD controls. In addition, all the four tyrosine-protein kinase pathway genes (CHD4, EGFR,

ERBB3, and FGFR3) and three out of seven DNA methylation pathway genes (DNMT3A,

KMT2C, and MYH7) had significantly higher mutation frequency compared with controls.

Variants in the GPCR signaling pathway genes ADGRG1 and LDLR, the peroxisome pathway

gene SUGCT, and the cell cycle pathway gene NUP98 were also found to be significantly

Fig 3. Mutation frequency of deleterious variants and genes. (A) The number and frequency of each mutation type among 36 deleterious

variants. (B) The mutation frequency of 25 deleterious germline genes. Genes are ordered by frequency, and mutations are stratified by

mutation type.

https://doi.org/10.1371/journal.pgen.1010373.g003
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enriched (Fig 5B). To the best of our knowledge, except the three DDR genes, the other 11

genes have not been reported as candidate predisposition genes in Chinese prostate cancer

patients (S3 Table). Notably, CHD4 had two different variants with a much higher frequency,

whereas the other genes only had one variant. Four patients in our cohort harbored the p.

V96Lfs�28 variant in SUGCT and two patients carried the p.R904X variant in KMT2C.

Validation in an independent prostate cancer cohort in Shanghai

By applying the same filters used for the Hong Kong cohort, we validated the previous results

using WES data from an independent cohort of 167 Shanghai Chinese prostate cancer patients

(S1 Fig). In this cohort, 63% of patients were diagnosed with metastatic prostate cancer upon

presentation to the clinic (Table 1). A total of 45 deleterious germline variants located at 28

genes were identified among 42 patients. The percentage of patients with deleterious germline

variants in the independent cohort (25.1%) was similar with that in the Hong Kong cohort

(29%) (S2A Fig). Additionally, the Hong Kong and Shanghai cohorts had similar mutation

types proportion in terms of nonsynonymous (33.3% vs 24.4%) and frameshift deletion (19.4%

vs 22.2%) (S2B Fig). Regarding the proportion of deleterious germline variants according to

gene function categories, the two cohorts shared three out of the top four categories, which

were DNA methylation, DDR, and GPCR signaling pathways (S2C Fig). Seven common dele-

terious genes were found in both cohorts, namely FANCI, ITGA6, LDLR, MYH7, PABPC1,

RAD54B and SUGCT (S3A and S3C Fig). Two common deleterious variants rs758404026

(PABPC1, p.P446Rfs�30) and rs566695492 (ITGA6, p.D114Efs�6) were also present in both

cohorts (S3B and S3C Fig).

Fig 4. Categorization of germline mutations among (A) 36 deleterious variants and (B) the patient cohort (N = 100). The pathways are ordered by

frequency.

https://doi.org/10.1371/journal.pgen.1010373.g004
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Using the cutoff of FDR� 0.05, 16 deleterious variants in the validation cohort were found

to be enriched compared with the GnomAD controls (Fig 6A) (S4 Table). The ORs and 95%

CI were calculated for each variant (Fig 6B).

Among all the significant deleterious variants found in the discovery (S3 Table) and valida-

tion cohorts (S4 Table), 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4,

DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were

identified (S3 and S4 Tables), which could be considered as part of the multigene panel for

prostate cancer patients, especially Chinese patients.

Enrichment analysis of VUS-containing genes

During the classification of variants by the ACMG guideline, 684 and 801 VUS-containing

genes were detected in the Hong Kong and the Shanghai cohorts, respectively. When these

genes were investigated using Gene Ontology (GO) enrichment analysis, the functional term

“double-strand break repair” was found to be enriched in both cohorts (S4A and S4B Fig).

Additionally, to further investigate the function of the VUS-containing genes, we per-

formed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In both

cohorts, the analyzed genes were enriched in the PI3K-Akt signaling and prostate cancer path-

ways (S5A and S5B Fig). In the PI3K-Akt signaling pathway, 46 and 58 VUS-containing genes

were enriched in the Hong Kong and Shanghai cohorts, respectively, and among them there

were 40 genes in common in both cohorts (S6A Fig, S5 Table). The distribution of VUS-con-

taining genes in the PI3K-Akt signaling pathway (hsa04151) is represented using different col-

ors according to the cohort they were enriched in (S6B Fig). As shown in the figure, many

genes associated with cell survival and cell cycle progression were affected. In the prostate

Fig 5. Deleterious germline mutations detected in the Hong Kong cohort compared with East Asian controls. (A) Deleterious germline mutations

significantly enriched (False Discovery Rate�0.05) in the Hong Kong cohort compared with 9,197 East Asian individuals from the GnomAD v2.1.1. (B) Odds

ratio of deleterious germline mutations significantly enriched in the Hong Kong cohort compared with 9,197 East Asian individuals from the GnomAD v2.1.1.

https://doi.org/10.1371/journal.pgen.1010373.g005
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cancer pathway, 26 and 32 VUS-containing genes were detected in the Hong Kong and the

Shanghai cohorts respectively, with 20 genes shared by both cohorts (S7A Fig, S6 Table). The

VUS-containing genes were also highlighted in prostate cancer pathway (hsa05215) (S7B Fig)

To investigate the association between the deleterious-variant-containing genes and the

VUS-containing genes in the PI3K-Akt signaling pathway, we constructed a protein-protein

interaction network using the STRING database. In the Hong Kong cohort, two categories of

genes interacted closely through the nodes of ERBB family (EGFR, ERBB2, and ERBB3) and

BRCA1 (S8A Fig). In the Shanghai cohort, two categories of genes were linked closely by the

nodes of ERBB family (EGFR, ERBB2 and ERBB3), HRAS, and TP53 (S8B Fig).

Comparing the frequencies of VUS in the PI3K-Akt signaling pathway with that in the gen-

eral population of East Asian individuals, 57 out of 92 VUS in the Hong Kong cohort (S7

Table) and 77 out of 147 VUS in the Shanghai cohort (S8 Table) were significantly enriched

using the cutoff of p-value�0.05.

Interestingly, among those significant variants (p-value�0.05), some VUS were located in the

same gene, such as the four sites of ERBB2 in the Shanghai cohort and four sites of TSC2 in the

Hong Kong cohort. For ERBB2, the 4 variant sites were in two pairs, which were R100Q, R143Q,

A466V, and R499Q (S9A Fig, S9 Table). Notably, R100Q and R143Q were both located in linked

regions of parallel beta-sheets in receptor L domain (RLD) I (S9B Fig). The other pair was formed

by A466V and R499Q (S9B Fig). A466V was located in the N terminal of a beta-strand inside the

RLD III, whereas R499Q was located in the linked region of an alpha-helix and a beta-strand.

Both RLD I and III were important in the stabilization of ERBB2 homodimer.

In TSC2, five significant variants were identified in the Hong Kong cohort. Except R1285Q,

the other four variants were in two pairs in the protein structure (S10A and S10D Fig) (S9

Table). All these five variants were located in the dimerization domain. Two pairs of sites con-

tributed to the generation of two small pocket-like motifs (S10B and S10C Fig).

Fig 6. Comparison of the Shanghai cohort and East Asian individuals in the GnomAD. (A) Deleterious germline mutations significantly enriched (False

Discovery Rate (FDR)�0.05) in the Shanghai cohort compared with the 9,197 individuals from the GnomAD v2.1.1. (B) Odds ratio of deleterious germline

mutations significantly enriched in the Shanghai cohort compared with the East Asian individuals.

https://doi.org/10.1371/journal.pgen.1010373.g006
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Association between deleterious-variant-containing genes / VUS-

containing genes and clinical outcomes

To investigate the association between the 46 VUS-containing genes in the PI3K-Akt signaling

pathway (S5 Table) and the clinical outcomes, using logistic regression we constructed a

model to predict the risk of metastasis in the Hong Kong cohort and then validated its perfor-

mance in the Shanghai cohort.

For metastasis, the best prediction model in the Hong Kong cohort was composed of base-

line Prostate-Specific Antigen (PSA), International Society of Urological Pathology (ISUP)

grade, COL1A1, CSF3R, ERBB2, ITGB8, TSC1 and TSC2. The performance of the model was

compared with that of a control model, including only baseline PSA and ISUP grade. The area

under the curve (AUC) of the constructed model was 0.927, whereas that of the control model

was 0.809, indicating the better performance of the constructed model. This was validated in

the Shanghai cohort, in which the constructed model had an AUC of 0.738, whereas that of the

control model was 0.697 (baseline PSA and ISUP grade) (Fig 7).

Fig 7. Receiver operating characteristic (ROC) curves for the prediction of metastasis in the Shanghai cohort. The

model included baseline Prostate-Specific Antigen (PSA), International Society of Urological Pathology (ISUP) grade,

and COL1A1, CSF3R, ERBB2, ITGB8, TSC1 and TSC2 expression level. The model was built using the Hong Kong

cohort by logistic regression, and then validated in the Shanghai cohort. According to the area under the curve (AUC),

the constructed model showed a better performance than a control model, including only baseline PSA and ISUP

grade.

https://doi.org/10.1371/journal.pgen.1010373.g007
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However, we did not find any association between deleterious-variant-containing genes

and clinical characteristics including age, ISUP grade, PSA level, metastasis, and castration

resistance within one year in the Hong Kong (S11 Fig) and the Shanghai cohort (S12 Fig).

Discussion

Prostate cancer is one of the most heritable cancer among common cancer types, with approxi-

mately 42% of risk attributed to inherited factors [1]. Here, we sequenced germline DNA from

100 Hong Kong Chinese prostate cancer patients using WES and identified many deleterious

variants segregated in different genetic pathways. Our findings were further validated in an

independent Shanghai Chinese cohort of 167 prostate cancer patients. To the best of our

knowledge, our study is the most comprehensive analysis of the germline mutation landscape

in Chinese prostate cancer patients to date.

In the Hong Kong cohort, 29% (29/100) of patients harbored 36 deleterious germline muta-

tion and seven patients carried two variants. In the Shanghai cohort, a similar percentage of

patients carrying deleterious germline mutation (25.1%, 42/167) was reported, with three

patients harboring two variants. In 2020, Wu et al.[16] revealed that 31% of the patients in a

246 Chinese prostate cancer patient cohort harbored a pathogenic germline mutation. The dif-

ferent proportion between our cohort and Wu et al.[16] cohort can be attributed to the differ-

ent approach used to detect the mutations. Although in this study we sequenced all the

germline mutation genes and filtered by a predefined list of 1,166 genes, the cohort of the

study by Wu et al.[16] was evaluated using a 276 DDR gene panel for sequencing (S13 Fig and

S10 Table). In a cross-sectional study including 3,607 multi-ethnic men with a personal history

of prostate cancer and using a 24 genes panel, approximately 17% of patients carried a patho-

genic germline variant [14]. The differences between this and our study may be also contrib-

uted to the different ethnicity of the population analyzed [39] as well as to the gene panel used

(S13 Fig and S10 Table).

Some interesting differences were identified when comparing our results with recent stud-

ies regarding the localization of the variants identified. In Nicolosi et al.[14] study, the top 10

genes with pathogenic variants were as follows: BRCA2 (4.74%), CHEK2 (2.88%), ATM
(2.03%), MUTYH (2.37%), APC (1.28%), BRCA1 (1.25%), HOXB13 (1.12%), MSH2 (0.69%),

TP53 (0.66%), and PALB2 (0.56%). After comparing the deleterious genes and VUS-contain-

ing genes of the Hong Kong and Shanghai cohorts with those in Nicolosi et al.[14] cohort, we

found that 6 out of 10 genes were identified in three cohorts. Additionally, three genes har-

bored a similar mutation proportion, which were BRCA2 (4.74% vs. 3% vs. 4.19%), MUTYH
(2.37% vs. 3% vs. 2.4%) and APC (1.28% vs. 2% vs. 2.4%) (Nicolosi et al. cohort vs. Hong Kong

cohort vs. Shanghai cohort) (S14A Fig and S11 Table).

However, in Nicolosi et al.[14] cohort, CHEK2 (2.88% vs. 1% vs. 1.2%) harbored a signifi-

cant higher mutation frequency while ATM (2.03% vs. 10% vs. 3.59%), APC (1.28% vs. 2% vs.

2.4%) and MSH2 (0.69% vs. 2% vs. 2.4%) harbored significant lower mutation frequencies

compared with the Hong Kong and Shanghai cohorts (Nicolosi et al. cohort vs. Hong Kong

cohort vs. Shanghai cohort) (S14A Fig and S11 Table). The majority of races in the Nicolosi

et al.[14] cohort (N = 3,607) was white (N = 2,594; 71.9%), followed by Ashkenazi Jewish

(N = 234; 6.5%), African American (N = 227; 6.3%), Hispanic (N = 78; 2.2%), Asian (N = 73;

2.0%) and others (N = 401; 11.1%)[14]. Thus, for germline mutations, Chinese population

with prostate cancer carried significant different mutation patterns in CHEK2, ATM, APC and

MSH2, compared to white with prostate cancer.

On the other hand, for the ethnic characteristics in prostate cancer, Chinese population had

significant lower incidence and mortality rates compared with white [40]. However, the
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mortality-to-incidence rate ratio was somewhat higher in China than the Asian average and

much higher than the North American average [41]. Moreover, some studies have reported

that Asian-Pacific people were more likely to have high-grade prostate cancer than white

American,which was not attributed to the later stage of diagnosis [42–44]. Another study indi-

cated that Chinese population was more likely to have poorly differentiated prostate cancer

than American and Japanese [45]. These characteristics indicated that Chinese population

may have biological differences that increase the susceptibility to have poorly differentiated

prostate cancer with lower incidence rate and higher mortality-to-incidence ratio when com-

pared with white.

Therefore, based on the differences in germline mutation frequencies and ethnic character-

istics, we speculated that higher mutation frequency of CHEK2 in white could be the possible

biological point for higher incidence rate and higher mutation frequency of ATM, MSH2, and

APC in Chinese could be the possible biological reason for more advanced disease and higher

mortality-to-incidence ratio.

In the study by Wu et al.[16], BRCA2 pathogenic variants were the most common identified

variants (5.3%), followed by variants in POLN (2.4%), POLG (1.2%), ALKBH2 (0.8%), and in

other 56 DDR genes. After comparing the deleterious genes and VUS-containing genes of the

Hong Kong and Shanghai cohorts with those of the Wu et al.[16] cohort, 11 out of 14 genes

were identified in three cohorts and two genes shared a similar mutation frequency, which

were BRCA2 (5.3% vs. 3% vs. 4.19%) and RAD9B (0.8% vs. 1% vs. 0.6%) (Wu et al. cohort vs.

Hong Kong cohort vs. Shanghai cohort) (S14B Fig and S11 Table).

Seven common deleterious genes were found between the Hong Kong cohort (7/25, 28%)

and the Shanghai cohort (7/28, 25%), namely FANCI, ITGA6, LDLR, MYH7, PABPC1,

RAD54B and SUGCT (S3 Fig). FANCI and RAD54B were associated with DDR, MYH7 and

PABPC1 were associated with DNA methylation, and ITGA6 and LDLR were linked to GPCR

signaling pathway. Approximately one third of genes were shared between the Hong Kong

cohort and Shanghai validation cohort, demonstrating the reliability of the pipeline applied.

In this study, we have also explored the functional enrichment of genes harboring deleteri-

ous variants. In 2015, Robinson et al.[12] conducted whole exome and transcriptome sequenc-

ing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC patients. By combining

the germline mutation results with the somatic mutation results, they identified the enrich-

ment of six pathways including AR signaling, PI3K, WNT signaling, DNA repair, cell cycle,

and chromatin modifier. In the Hong Kong cohort, the deleterious genes were enriched in the

following pathways: DNA methylation, DNA repair, tyrosine-protein kinase, GPCR signaling,

peroxisome, MAPK/ERK, ErbB signaling, and cell cycle. In the Shanghai validation cohort,

deleterious genes were associated with 10 pathways: DNA methylation, DNA repair, tyrosine-

protein kinase, GPCR signaling, peroxisome, ILK signaling, hydrolase, chromatin regulation/

acetylation, regulation of AR, and regulation of lipid metabolism. Thus, four out of the six

enriched pathways reported by Robinson et al.[12] cohort were found in the Hong Kong and

the Shanghai cohorts (S2C Fig).

We also identified 12 novel non-DDR predisposition genes (ADGRG1, CHD4, DNMT3A,

ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT), which have not

been previously reported in prostate cancer patients in all ethnic groups (S3 and S4 Tables).

These candidate genes had a higher mutation frequency in the Hong Kong and Shanghai

cohorts than the East Asian controls with an OR�1 and FDR�0.05. Two novel predisposition

gene MYH7 and LDLR belong to the ACMG published recommendations for reporting sec-

ondary findings in clinical exome and genome sequencing (ACMG SF v2.0)[22] (N = 59) (S1

Table) while DNMT3A, CHD4, ERBB3, NT5C2, and NUP98 belong to the panel of 716 cancer

driver genes from TCGA and ICGC identified by the platform OncoVar [46] (S2 Table).

PLOS GENETICS Germline mutation landscape and twelve novel predisposition genes in Chinese prostate cancer patients

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010373 September 12, 2022 14 / 25

https://doi.org/10.1371/journal.pgen.1010373


Furthermore, they were enriched in eight different pathways (DNA methylation, tyrosine-pro-

tein kinase, GPCR signaling, regulation of lipid metabolism, ILK signaling, hydrolase, peroxi-

some, and cell cycle), which did not include the DDR pathway.

Interestingly, 3 out of 12 novel non-DDR genes (DNMT3A, HMBS and MYH7) were related

to DNA methylation that contributes significantly to the development and progression of

prostate cancer [47–50]. Not only significant changes of DNA methylation are observed

between normal prostate and prostate cancer tissue [51,52], but also the changes of DNA

methylation are associated with carcinogenesis and progression of prostate cancer by silencing

tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance [53].

Moreover, interplay among DNA methylation, cancer metabolism and androgen receptor reg-

ulation has been reported to play an important role in prostate cancer [53]. Recently, a study

revealed a novel epigenomic subtype associated with hypermethylation and somatic mutations

in TET2, DNMT3B, IDH1 and BRAF by whole-genome bisulfite sequencing paired with

whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases

[54]. Of note, DNMT3A found in our study is the close and important paralog of DNMT3B,

both of which are DNA methyltransferases playing an essential role in DNA methylation

[55,56].

For the other two novel non-DDR genes, CHD4 and ERBB3 were involved in the tyrosine-

protein kinase pathway. Although it is rare to observe dominant mutations of tyrosine kinases

in the oncogenic alterations of prostate cancer [57], we should not overlook the importance of

tyrosine-protein kinase pathway. Members of nonreceptor tyrosine kinase (NRTK) including

Src, FAK, JaK1/2, and ETK were involved in the cell proliferation, migration, invasion, angio-

genesis, and apoptosis of prostate cancer [58]. Moreover, Src has been reported to promote

CRPC through the regulation of canonical and non-canonical AR binding site associated

genes [59]. Of note, Src could enhance ERBB2/ERBB3 signaling and biological functions

through positively modulating ERBB2 and ERBB3 heterocomplex formation and function

[60]. Recently, a study revealed that somatic mutation frequencies of FOXA1, ZNF292 and

CHD1 in Chinese patients were remarkedly higher than those of Western cohorts by whole-

genome, whole-transcriptome and DNA methylation data of 208 pairs of tumor tissues and

matched healthy control tissues from patients with primary prostate cancer [51]. Therefore,

the importance of somatic mutation of CHD1 and germline mutation of CHD4 has been dem-

onstrated in Chinese patients with prostate cancer compared to Western cohorts, highlighting

the ethnic characteristics of CHD family genes in Chinese population.

Another two novel non-DDR genes, ADGRG1 and LDLR were related to GPCR signaling

pathway, which is known to play a vital role in cancer initiation and progression, including

tumor growth, invasion, migration and metastasis [61]. A variety of GPCRs related with repro-

ductive function have been reported to be implicated in the oncogenesis and progression of

prostate cancer, including gonadotropin-releasing hormone (GnRH) receptor, luteinizing hor-

mone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and

kisspeptin receptor [62]. By specifically blocking the GnRH receptor, a GPCRs targeted drug,

Degarelix, a FDA approved drug, is applied to treat advanced prostate cancer by decreasing

the amount of testosterone [63]. Another GPCR signaling pathway related gene, LDLR, whose

mutation type has been demonstrated to be closely related with the phenotype of familial

hypercholesterolemia [64], was reported to be associated with higher Gleason grade in prostate

cancer [65].

To date, the multigene panel for Chinese prostate cancer patients is based on the genetic

knowledge from the European and American populations. However, the differences in genetic

background among ethnic groups may affect its efficacy in clinical practice. Moreover, the cur-

rent multigene panel for prostate cancer contains primarily DDR genes involved in
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homologous recombination and mismatch repair. Nonetheless, susceptibility genes from other

functional pathways could also be involved in the pathogenesis and development of prostate

cancer. Therefore, these 12 novel non-DDR predisposition genes (S3 and S4 Tables) could be

considered as part of the multigene panel for prostate cancer patients, especially Chinese

patients.

Apart from the analysis of deleterious variants, we studied VUS, which were thought to

have uncertain significance in the annotation step according to the ACMG guidelines.

Recently, Federici and Soddu reviewed the studies in hereditary breast and ovary cancers and

highlighted the need to seek easily applicable ways to accurately classify VUS, as well as to

increase the amount of usable information from next generation sequencing data [66]. In our

study, using GO and KEGG enrichment analysis of VUS-containing genes in both cohorts, we

consistently found DDR related terms, PI3K-Akt signaling pathway, and prostate cancer

pathway.

Several studies have demonstrated that somatic mutations in the PI3K-Akt pathway could

coordinate PTEN [67], mTOR [68], AR, MAPK, Wnt [69] and TGF-β signaling pathways [70]

to play an important role in the tumorigenesis, progression, and treatment in prostate cancer.

However, except one study by Robinson et al.[12], there are no available studies on the land-

scape of germline mutations in genes of PI3K-Akt pathway. Robinson et al.[12] reported that

mCRPC harbored genomic alterations of driver genes in the PI3K pathway, such as AKT1,

PTEN, PIK3CA, PIK3CB, and PIK3R1. Additionally, another study reported that mutations in

PIK3CA were correlated with poor survival in prostate cancer [71]. Of note, in the study by

Robinson et al.[12], PI3K-Akt pathway was listed as one of the top enriched pathways accord-

ing to KEGG enrichment analysis of a list of 13,972 mutated genes (S12 Table) (S15A Fig).

Here, 281 genes were found in the PI3K-Akt pathway, which were overlapping with most of

VUS-containing genes of the PI3K-Akt pathway found in the Hong Kong (N = 46) and Shang-

hai cohorts (N = 58) (S15B Fig and S13 Table). Given that the study by Robinson et al.[12]

investigated the genomic alterations in Caucasian population, our study was the first one to

reveal the germline mutation landscape in PI3K-Akt signaling pathway in Chinese prostate

cancer patients.

Protein-protein interaction networks analysis of deleterious genes and the VUS-containing

genes in the PI3K-Akt signaling pathway revealed that these two groups of genes interacted

closely with each other in both cohorts by the nodes of ERBB family (EGFR, ERBB2 and

ERBB3), BRCA1, HRAS, and TP53. A recent study revealed that the combined protein expres-

sion patterns of EGFR, ERBB2, and ERBB3 were associated with a higher risk of progression

and mortality in prostate cancer [72]. HRAS, as one of the Ras oncogene family, was found to

have increased amplification rate in hormone-resistant prostate cancer compared with hor-

mone-sensitive prostate cancer [73]. Finally, several studies have shown that TP53 is one of the

most commonly mutated genes in primary prostate cancer and that it plays a crucial role in

the development and progression of prostate cancer [74,75].

When comparing the frequencies of VUS in the PI3K-Akt signaling pathway with that in

the East Asian population, 57 VUS in the Hong Kong cohort (S7 Table) and 77 VUS in the

Shanghai cohort (S8 Table) were found to significantly differ (P�0.05). Investigating the

impact of such variants on the protein structure, we found that in ERBB2, one pair of variants

located at RLD I and the other pair was near RLD III, which are important domains for the sta-

bilization of ERBB2 homodimer (S9 Table)[76]. As for TSC2, the four significant variants were

distributed and located to the dimerization domain, contributing to generate two small

pocket-like motifs (S9 Table). Of note, alanine (A) to valine (V) and proline (P) to leucine (L)

mutations were not associated with a change in amino acid property [77,78], whereas serine

(S) to valine (V) mutation resulted in a change from a polar uncharged side chain to an
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hydrophobic chain, which would possibly affect the structure of the small pocket-like motif of

A1235V and S1222V. None of these variants was recorded as natural variant in UniProt data-

base [79]. Besides, there was a significant deletion of S1440_D1446 located at the proximity of

the C-terminal of the dimerization domain (S9 Table). Therefore, we considered that all the

variants and the deletion could result in possible dysfunction of the dimerization domain of

TSC2, which may be related to carcinogenesis [80,81].

Regarding the clinical factors and the deleterious-variant-containing genes, we did not

observe a relationship between the presence of deleterious-variant-containing genes and clini-

cal characteristics. However, by using logistic regression strategy, we found and validated that

several VUS-containing genes (COL1A1, CSF3R, ERBB2, ITGB8, TSC1 and TSC2) in the

PI3K-Akt signaling pathway can improve the predicting of metastasis in prostate cancer

patients in Hong Kong and Shanghai cohorts.

There were several strengths of this study. First, the sample size of this study was compara-

ble to prior studies. We included 100 patients in the primary cohort and 167 patients in the

validation cohort. Second, we had an independent cohort from Shanghai for validation, mak-

ing the results more reliable. Finally, the most updated pipeline and variant annotation infor-

mation form the ACMG were applied in this study.

Although we identified that some variants are pathogenic for the protein they code for and

absent in a set of control individuals, more investigations are needed to confirm their substan-

tial implications in prostate cancer.

In conclusion, we dissected the comprehensive germline mutation landscape of Chinese

prostate cancer patients using WES and identified 36 deleterious variants in 25 genes that are

enriched in eight functional pathways. These findings were validated in an independent cohort

of 167 patients. Of note, 12 novel predisposition genes were identified that have not been pre-

viously reported in prostate cancer patients in all ethnic. Moreover, by investigating the infor-

mation of VUS, a group of mutation genes in PI3K-Akt pathway were consistently detected in

both cohorts. Besides, a logistic regression model for metastasis prediction using the expres-

sion levels of such genes was built. Together, these findings help to unveil the comprehensive

germline mutation profile of Chinese prostate cancer and could be helpful for the optimization

of cancer screening as well as risk assessment and development of personalized therapy.

Supporting information

S1 Fig. Overview of the data analysis strategy to identify candidate prostate cancer suscep-

tibility genes in the validation cohort. A total of 167 patients with prostate cancer were

included. Germline samples were whole exome–sequenced and aligned to human genome

assembly hg19 before variant calling and annotations. All germline variants were identified

and filtered by (i) MAF < 0.01 in any East Asian population database including ExAC, 1000

Genomes and GnomAD v2.1., (ii) variants in the exonic region, (iii) variants with total

coverage> 20x, (iv) variants with Fisher score > 60, and (v) VAF� 25%. Among the 105,504

variants after filtering, 7,510 variants belonging to a predefined list of 1,166 genes were anno-

tated as pathogenic or likely pathogenic (deleterious), variant of uncertain significance (VUS),

likely benign, or benign (benign) according the ACMG guidelines. The 1,166-gene list is pro-

vided in S1 Table. MAF, minor allele frequency; VAF, variant allele frequency/fraction.

(TIF)

S2 Fig. Comparison of the deleterious germline mutation frequency in the Hong Kong and

Shanghai cohorts. (A) Overall proportion of deleterious germline variants among prostate

cancer patients. Overall proportion of deleterious germline variants according to (B) mutation
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types and (C) gene function categories.

(TIF)

S3 Fig. Comparison of common deleterious genes/variants between the Hong Kong and

Shanghai cohorts. Number of common deleterious (A) genes and (B) variants in both

cohorts. (C) Details of common deleterious genes/variants. Common variants are shown in

red. The (#) following the variant name represents the number of the variant detected in the

cohort. N.A. indicates “not available.”

(TIF)

S4 Fig. Gene Ontology enrichment analysis of variants of uncertain significance (VUS)-

containing genes in the (A) Hong Kong and (B) Shanghai cohorts. The functional categories

of GO enrichment were subsequently ranked by the gene ratio (x-axis), which was the percent-

age of the number of genes present in this GO term over the total number of genes in this cate-

gory.

(TIF)

S5 Fig. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of vari-

ants of uncertain significance (VUS)-containing genes in (A) the Hong Kong and (B)

Shanghai cohorts. Top 20 KEGG pathways were ranked by gene ratio (x-axis), which was the

percentage of identified genes over the total genes of a given pathway/term.

(TIF)

S6 Fig. PI3K-Akt signaling pathway (hsa04151) highlighted with variants of uncertain sig-

nificance (VUS)-containing genes from the Hong Kong and Shanghai cohorts. (A) The

overlapping VUS-containing genes in PI3K-Akt signaling pathway in two cohorts were sum-

marized in the Venn diagram. (B) VUS-containing genes appeared in both cohorts, in only

Hong Kong cohort and in only Shanghai cohort were highlighted in green, gray, and red,

respectively.

(TIF)

S7 Fig. Prostate cancer pathway (hsa05215) highlighted with variants of uncertain signifi-

cance (VUS)-containing genes from the Hong Kong and Shanghai cohorts. (A) The over-

lapping VUS-containing genes in prostate cancer pathway in the two cohorts are summarized

in the Venn diagram. (B) VUS-containing genes that appeared in both cohorts, in only Hong

Kong cohort and in only Shanghai cohort are highlighted in green, gray, and red, respectively.

(TIF)

S8 Fig. Protein-protein interaction network between proteins encoded by the deleterious-

variant-containing genes and the variants of uncertain significance (VUS)-containing

genes in the PI3K-Akt signaling pathway in the (A) Hong Kong and (B) Shanghai cohorts.

Proteins encoded by both categories, by only deleterious-variant-containing genes, and by

only VUS-containing genes in the PI3K-Akt signaling pathway are highlighted in red, blue,

and green, respectively. The size of rectangle and font size of protein name are represented

depending on the number of edges (connectivity/degree) that each node (protein) has. The

more edges, the bigger the node and the font size, the more connective the protein is. The

active interaction source is experiments only. The thickness of the edges is represented the

strength of data support. The thicker the edges, the more strength the experiments support.

(TIF)

S9 Fig. Structure of the extracellular domain encompassing amino acids 23–629 of recep-

tor tyrosine-protein kinase ERBB2 and location of the four variants. The structure model of
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ERBB2 (GenBank accession: NM_001289937) was generated using the online tool SWISS--

MODEL (https://swissmodel.expasy.org/) with the template of Cryo-EM structure of Receptor

tyrosine-protein kinase erbB-2 (SMTL ID: 6bgt.1.A). (A) Four variants in two pairs (closely

located within 50 amino acids) were marked and linked, namely R100Q and R143Q (with a

molecular distance of 8.31 Å); A466V and R499Q (16.97 Å). (B) The locations of the four vari-

ants among the domains of ERBB2.

(TIF)

S10 Fig. Structure of TSC complex subunit 2 (TSC2) and location of the four variants. The

structure model of TSC2 (GenBank accession: NM_001318831) was generated using the

online tool SWISS-MODEL (https://swissmodel.expasy.org/) with the template of Cryo-EM

structure of human TSC complex (SMTL ID: 7dl2.1). (A) Four variants in two pairs (closely

located within 50 amino acids) were marked and linked, from left to right, A1235V and

S1222L, P1071L and A1079V. (B) Structure model of the pair sites A1235V and S1222L (sepa-

rated by 12.67 Å). (C) Structure model of the pair sites P1071L and A1079V (6.71 Å). (D)

Locations of the four variants among the domains of TSC2.

(TIF)

S11 Fig. Association between deleterious-variant-containing genes and clinical outcomes

in the Hong Kong cohort. (A) Risk of deleterious-variant-containing genes based on clinical

characteristics (metastasis and castration resistance within one year) were calculated. (B, C,

and D) The difference of clinical characteristics (age, ISUP grade, and PSA) between the dele-

terious-variant-containing genes carriers and the non-carriers were analyzed. “ns” indicates

“not significant.”

(TIF)

S12 Fig. Association between deleterious-variant-containing genes and clinical outcomes in

the Shanghai cohort. (A) Risk of deleterious-variant-containing based on clinical characteristics

(metastasis and castration resistance within one year) were calculated. (B, C, and D) The differ-

ence of clinical characteristics (age, ISUP grade, and PSA) between the deleterious-variant-con-

taining genes carriers and the non-carriers were analyzed. “ns” indicates “not significant.”

(TIF)

S13 Fig. Venn diagram of the gene panels from our study and other two studies. The gene

panels from our study, those from the study by Wu et al.[16], and those from the study by

Nicolosi et al.[14] are shown in yellow, blue, and green, respectively. The gene names of the

gene panels are listed in S10 Table.

(TIF)

S14 Fig. Summary of the gene mutation frequency in the three cohorts compared. In the

Hong Kong and Shanghai cohorts, the mutated genes included those with a deleterious variant

and the variant of uncertain significance (VUS)-containing genes. (A) Comparison of the fre-

quency of the top 10 genes from Nicolosi et al.[14] cohort in the Nicolosi et al. cohort, the

Hong Kong cohort, the Shanghai cohort, as well as the combined Hong Kong and Shanghai

cohort. (B) Comparison of the frequency of the top 10 genes from Wu et al.[16] cohort in the

Wu et al. cohort, the Hong Kong cohort, the Shanghai cohort, as well as the combined Hong

Kong and Shanghai cohort.

(TIF)

S15 Fig. KEGG enrichment analysis of the 13,972 variant-containing genes from the study

of Robinson et al.[12]. (A) Top 20 KEGG pathways were showed after analyzing 13,972 vari-

ant-containing genes (S12 Table) from the study of Robinson et al.[12] (B) Venn diagram of

PLOS GENETICS Germline mutation landscape and twelve novel predisposition genes in Chinese prostate cancer patients

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010373 September 12, 2022 19 / 25

https://swissmodel.expasy.org/
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s010
https://swissmodel.expasy.org/
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010373.s015
https://doi.org/10.1371/journal.pgen.1010373


the genes in the PI3K-Akt pathway from the study by Robinson et al.[12] (red), the Hong

Kong cohort (green) and the Shanghai cohort (blue). The frequency of the genes in the

PI3K-Akt pathway from three cohorts is listed in S13 Table.

(TIF)

S1 Table. Summary of predefined predisposition gene panel of 1,166 genes.

(XLSX)

S2 Table. Panel of 716 cancer driver genes from The Cancer Genome Atlas (TCGA) and

International Cancer Genome Consortium (ICGC) identified by the platform OncoVar.

(XLSX)

S3 Table. Details of 36 deleterious germline variants identified in the Hong Kong cohort.

(XLSX)

S4 Table. Details of 45 deleterious germline variants identified in the Shanghai cohort.

(XLSX)

S5 Table. Summary of the VUS-containing genes in the PI3K-Akt signaling pathway

enriched in the Hong Kong (N = 46) and Shanghai (N = 58) cohorts.

(XLSX)

S6 Table. Summary of the VUS-containing genes in the prostate cancer pathway enriched

in the Hong Kong (N = 26) and Shanghai (N = 32) cohorts.

(XLSX)

S7 Table. Variants of PI3K-Akt pathway in the Hong Kong cohort (sorted by p value).

(XLSX)

S8 Table. Variants of PI3K-Akt pathway in the Shanghai cohort (sorted by p value).

(XLSX)

S9 Table. Summary of variants in TSC2 and ERBB2.

(XLSX)

S10 Table. Summary of gene panels in three studies.

(XLSX)

S11 Table. Summary of frequency of variants detected in cohorts.

(XLSX)

S12 Table. Gene list of 13,972 variant-containing genes from the study of Robinson et al. [12].

(XLSX)

S13 Table. Frequency of the VUS-containing genes in the PI3K-Akt signaling pathway

enriched in the Hong Kong cohort, the Shanghai cohort and variant-containing genes in

the PI3K-Akt signaling pathway enriched in the study of Robinson et al. [12].

(XLSX)

S14 Table. Sequencing Coverage and Quality Statistics of Whole exome sequencing (WES).

(XLSX)
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