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Elevated light intensity 
compensates for nitrogen 
deficiency during chrysanthemum 
growth by improving water 
and nitrogen use efficiency
Sara Esmaeili1, Sasan Aliniaeifard1*, Shirin Dianati Daylami2, Soheil Karimi2, Aida Shomali1, 
Fardad Didaran1, Arkadiusz Telesiński3, Edyta Sierka4 & Hazem M. Kalaji5

Identifying environmental factors that improve plant growth and development under nitrogen (N) 
constraint is essential for sustainable greenhouse production. In the present study, the role of light 
intensity and N concentrations on the biomass partitioning and physiology of chrysanthemum was 
investigated. Four light intensities [75, 150, 300, and 600 µmol m−2 s−1 photosynthetic photon flux 
density (PPFD)] and three N concentrations (5, 10, and 15 mM N L−1) were used. Vegetative and 
generative growth traits were improved by increase in PPFD and N concentration. High N supply 
reduced stomatal size and gs in plants under lowest PPFD. Under low PPFD, the share of biomass 
allocated to leaves and stem was higher than that of flower and roots while in plants grown under 
high PPFD, the share of biomass allocated to flower and root outweighed that of allocated to leaves 
and stem. As well, positive effects of high PPFD on chlorophyll content, photosynthesis, water use 
efficiency (WUE), Nitrogen use efficiency (NUE) were observed in N-deficient plants. Furthermore, 
photosynthetic functionality improved by raise in PPFD. In conclusion, high PPFD reduced the adverse 
effects of N deficiency by improving photosynthesis and stomatal functionality, NUE, WUE, and 
directing biomass partitioning toward the floral organs.

Nitrogen (N) is one of the most important nutritional elements for plants and the main constituent of many 
essential molecules such as chlorophyll, amino acids, and nucleic acids1–3. It also plays a crucial role as signal-
ing molecule in form of nitric oxide under stress condition4. The deficiency of N is often a limiting factor for 
plant growth and development5,6. Modern agriculture approaches to maximize the efficiency of resources. N is 
known as the most consumed fertilizer used to increase crop production7. However, more than half of the N that 
used in agriculture is lost through leaching and evaporation8. Excessive use of chemical fertilizers, especially N 
fertilizers, increases the cost of crop production and greenhouse gas emissions, as well as soil and groundwater 
pollution9,10. Therefore, optimization of crop production under nitrogen restriction conditions is a major chal-
lenge in agriculture11.

Light is the primary energy source for photosynthesis. Light intensity, quality (spectrum), and duration 
(photoperiod) influence plant growth and development12,13. The main absorption spectra of the chlorophyll 
pigments are in the range of blue and red light, therefore, these two spectra are mainly used for plant production 
in controlled environments13. Besides light quality, the intensity of the light also exerts a broad range of physi-
ological effects on plant growth and performance14–16, including, N uptake and allocation17.

Light is among the environmental factors that affect the absorption and reduction of nitrogen in plants18. 
Light intensity and N concentration have been shown to play a crucial role in the N uptake and leaf N content 
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of plants. It was shown that raise in light intensity increases the activity of enzymes involved in N metabolism19. 
In addition provision of adequate irradiance increases the N assimilation in plant leaves by providing enough 
energy for CO2 fixation20.

Today, there is a high tendency to produce ornamental plants in greenhouses and controlled environments 
and there is a need to determine the desirable PPFD for plant growth in an approach with the highest resource 
use efficiency. The nature and extent of plant response to light intensity are dependent on the N status of the 
plant and vice versa21,22. Therefore, optimizing the N concentration of nutrient solution based on light intensity 
can be effective in achieving the best growth and yield of ornamental plants. To our knowledge, so far, no study 
has examined the effect of increasing light intensity as an effective strategy and environmentally compatible to 
reduce growth defects under N deficient conditions and increase nitrogen use efficiency (NUE).

Chrysanthemum is one of the most popular ornamental plants, which ranked second place after roses in the 
ornamental industry worldwide23. Given that, both light and N are the most important limiting factors for the 
growth and yield of chrysanthemum. In this study, we hypothesized that light intensity may affect N metabolism 
and an increase in light intensity may compensate for N deficiency.

Here, we investigated the changes of the morphological and physiological characteristics, as well as, biomass 
partitioning of chrysanthemum in response to different combinations of light intensity and N concentrations of 
the nutrient solution. This study provides valuable insights into the interactive regulation of light intensity and 
N supply to improve the quality of chrysanthemum production.

Results
N constraint intervention in chlorophyll fluorescence is more pronounced in old leaves rather 
than young leaves under different PPFDs.  To evaluate the effects of different N supplies under vari-
ous PPFDs on photosynthesis functionality, FV/FM of chrysanthemum young and old leaves was measured. An 
increase in FV/FM was observed by the increase in PPFD while the effect of N concentration was negligible. How-
ever, the effect of N concentration on FV/FM on old leaves of plants grown under 75 µmol m−2 s−1 was consider-
able compared to old leaves of plants grown under other PPFDs. Under low light intensity, FV/FM decreased by 
6% and 17% by an increase in N concentration from 5 to 10 and 15 mM N L−1, respectively (Fig. 1A). PIABS was 
increased by raise in PPFD but the effect of N concentration was negligible on young leaves. In old leaves, how-
ever, by the increase in N concentration from 5 to 10 and 15 mM N L−1, 27% and 45% decline displayed by plants 
grown under 75 µmol m−2 s−1. In contrast, the old leaves of plants grown under 150, 300, and 600 µmol m−2 s−1, 
showed higher PIABS, when fed by 10 and 15 mM N L−1 compared to that of plants under similar PPFD but fed 
by 5 mM N L−1 (Fig. 1B). Considering the effects of PPFD on PIABS of plants under N constraint revealed that, 
increase in PPFD enhanced PIABS of plants indicated by 13%, 22%, and 32% increase in young leaves and 2%, 
23%, and 38% increase in old leaves by raise in PPFD from 75 to 150, 300 and 600 µmol m−2 s−1, respectively 
(Fig. 1B).

Chlorophyll concentration of leaves were strongly associated with nitrogen content under 
high PPFD but not under low PPFD.  Chlorophyll content increased stepwise by the increase in both 
PPFD and N concentration (Fig.  2A). By increase in N concentration from 5 to 10 and 15  mM  N L−1 , the 
increase in chlorophyll content was 24% and 38% under 75 µmol m−2 s−1, 10% and 39% under 150 µmol m−2 s−1, 
11% and 27% under 300 µmol m−2 s−1 and 19% and 30% under 600 µmol m−2 s−1 (Supplementary Fig. 1). Fur-
thermore, under N constraint (5 mM N L−1), an increase in PPFD compensated for chlorophyll synthesis. By 
raise in PPFD form 75 to 150, 300 and 600 µmol m−2 s−1, 40%, 60% and 76% increases were observed in chlo-
rophyll content (Fig. 2A). Comparing the chlorophyll content of young and old leaves revealed that, regardless 
of N concentration and PPFD, the chlorophyll content of old leaves was smaller than young leaves. Moreover, 
in both young and old leaves increase in PPFD increased the chlorophyll content of the leaves regardless of N 
concentration. In young leaves, a raise in N concentration increased the chlorophyll content of plants under each 
PPFDs (Fig. 2A). In old leaves, however, a contrasting trend was observed in the chlorophyll content of leaves in 
plants grown under 75 µmol m−2 s−1 and plants grown under higher PPFDs. The chlorophyll content of the old 
leaves of plants under PPFDs higher than 75 µmol m−2 s−1 increased by raise in N concentration, while its con-
tent in plants grown under 75 µmol m−2 s−1 decreased by an increase in N concentration (Fig. 2A). The nitrogen 
content of the leaves increased by raise in PPFD in all N concentrations (Fig. 2B). The highest N content was 
observed in plants fed by 15 mM N L−1 under 300 µmol m−2 s−1 and plants fed by 10 and 15 mM N L−1 under 
600 µmol m−2 s−1. N content in plants grown under 300 and 600 µmol m−2 s−1 and 15 mM N L−1 was 33% higher 
than that of plants under the same N concentration but exposed to 75 µmol m−2 s −1 (Fig. 2B). When plants were 
fed by 10 mM N L−1, the N content of leaves was 16%, 29%, and 49% higher in plants grown under 150, 300, and 
600 µmol m−2 s−1 compared to the plants fed by 5 mM N L−1. In plants fed by 5 mM N L−1, the compensatory role 
of PPFD was conceived since 8%, 22%, and 31% increase in N content of leaves obtained by an increase in PPFD 
form 150 to 300 and 600 µmol m−2 s−1 (Fig. 2B).

Moreover, the correlation between N content of the leaves with chlorophyll content was negligible in 
plants exposed to 75 µmol m−2 s−1 but the chlorophyll conent of plants grown under 150 µmol m−2 s−1 and 
300 µmol m−2 s−1 was positively correlated with N content of the leaves. Nevertheless, when the PPFD reached 
600 µmol m−2 s−1 the correlation droped drastically (Fig. 2C; Supplementary Figs. 2, 3).

Stomatal aperture and gas exchange enhanced by raise in PPFD but not affected by N unless 
the PPFD was low.  Stomatal traits showed contrasting responses to N concentration when exposed to dif-
ferent light intensities. In plants grown under 75 µmol m−2 s−1, stomatal aperture, stomatal length and width and 
stomatal conductance decreased by the increase in N concentration (Fig. 3A-E). However, the opposing trend 
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was observed when plants were exposed to PPFDs higher than 75 µmol m−2 s−1. In plants grown under 150 and 
300 µmol m−2 s−1, stomatal length and stomatal pore length increased by the increase in N concentration while 
under 600 µmol m−2 s−1, increase in N concentration didn’t affect stomatal traits. A negligible increase in stoma-
tal width, stomatal pore width, and stomatal conductance was displayed by the increase in N concentration in 
plants grown under 150 µmol m−2 s−1 (Fig. 3A–E).

Light intensity affect the accumulation and partitioning of biomass under contrasting nitro-
gen regimes.  The total biomass was affected by PPFD and N concentration. By increase in N concentration, 
a stepwise elevation was observed in total biomass under each PPFD except for 75 µmol m−2 s−1. Regardless of N 
concentration, total biomass increased by raise in PPFD, except the biomass of plants under 5 mM N L−1 that did 
not differ under 75 or 150 µmol m−2 s−1 (Fig. 4A). Under N constraint, PPFD could compensate for N limitation 
for biomass accumulation. In plants fed by 5 mM N L−1 total biomass of plants grown under 600 µmol m−2 s−1 
was twofold of the plants grown under 75 and 150 µmol m−2 s−1 and 1.5-fold of the total biomass of plants under 
300 µmol m−2 s−1 (Fig. 4A).

Partitioning of biomass to different plant organs was also affected by both light intensity and N concentration 
(Fig. 4B). Root biomass showed 52% and 41% decline by the increase in N concentration from 5 to 10 and 15 
under 75 µmol m−2 s−1 (Fig. 4B). Increasing PPFD form 75 to 150 µmol m−2 s−1, partitioning of biomass to root 
decreased by 0.8% and 12% respectively by increase in N concentration from 5 to 10 and 15. Same as the plants 
exposed to 150 µmol m−2 s−1, by the increase in N concentration form 5 to 10 and 15, respectively 17% and 16% 
increase in the partitioning of biomass to the roots were detected in plants exposed to 300 µmol m−2 s−1 (Fig. 4B). 
However, the reduction in the partitioning of biomass to root was more drastic under 600 µmol m−2 s−1 in plants 
fed by 10 and 15 mM N L−1 compared to the plants fed by 5 mM N L−1, indicated by 45% and 55% reduction in 
root biomass, suggesting the compensatory effect of high PPFD on the partitioning of biomass to root under N 
constraint (Fig. 4B).

Partitioning of biomass to leaves increased when N concentration raised from 5 to 10 and 15 mM N L−1 
under all PPFDs. By increase in N concentration from 5 to 10 and 15 respectively, the increase in partitioning 
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Figure 1.   Quantum yield of PSII (FV/FM) (A), and performance index per absorbed light (PIABS) (B) of young 
(Y) and old (O) leaves of chrysanthemum plants grown under different light intensits (75, 150, 300, and 
600 µmol m−2 s−1) and nitrogen (N) concentrations (5, 10, and 15 mM N) at 70 days of cultivation. Vertical bars 
are means ± SD. Within each graph, interactive effects of light intensity and nitrogen concentration are shown. 
Different letters (a–d) denote a significant difference between treaments (P < 0.05).
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of biomass to leaves were recorded as 7% and 38% in plants under 75 µmol m−2 s−1, 38% and 17% in plant under 
150 µmol m−2 s−1, 5% and 75% increase in plants under 300 µmol m−2 s−1, and 47% and 70% in plants under 
600 µmol m−2 s−1 (Fig. 4B).

Partitioning of biomass to stem increased by raise in N concentration from 5 to 10 and 15 mM N L−1 by 6% 
in plants under 75 µmol m−2 s−1 and 16% and 9% in plants under 600 µmol m−2 s−1. In contrast, in plants grown 
under 150 and 300 µmol m−2 s−1, a small reduction was observed in biomass partitioning to stem indicated by 
10% and 3% decrease respectively by raise in N concentration from 5 to 10 and 15 mM N L−1. A 5% decline in the 
partitioning of biomass to stem was also displayed by plants grown under 300 µmol m−2 s−1 and fed by 15 mM N 
L−1 compared to plants under the same PPFD but 5 mM N L−1 (Fig. 4B).

Partitioning of biomass to flower was also affected by N concentration and PPFD. In plants grown under 
75 µmol m−2 s−1, a 10% increase in the partitioning of biomass to flower was observed by raise in N concentra-
tion from 5 to 10 mM N L−1. Whereas, an increase in N concentration from 5 to 15 mM N L−1 resulted in a 38% 
decline in biomass partitioning to flower (Figs. 4B, 5). Increase in N concentration from 5 to 10 and 15 mM N L−1 
cut down on partitioning of biomass to flowers by 20% and 3% under 150 µmol m−2 s−1. As well, 33% increase in 
biomass partitioning to flowers observed in plants under 300 µmol m−2 s−1 when N concentration increase from 
5 to 15 mM N L−1. In plants grown under 600 µmol m−2 s−1, an increase in N concentration from 5 to 10 mM N 
L−1 reduced biomass partitioning to flower (Fig. 4B).

Overall, comparing the partitioning of biomass to different organs revealed that, under low PPFD, the share 
of biomass allocated to leaves (26%) and stem (41%) was higher than that of flower (19%) and root (13%), while, 
in plants grown under high PPFD, the share of biomass allocated to flower (27%) and root (23%) increased at 
the expense of biomass accumulation in leaves (23%) and stem (13%) (Fig. 4C,D).

WUE decreased by higher N concentration under low PPFD while increased by higher N con-
centration under high PPFD.  WUE was affected by N concentration but came to contradictory effects in 
plants grown under 75 µmol m−2 s−1 compared to plants grown under 150, 300 and 600 µmol m−2 s−1 (Fig. 6A). 
Under 75 µmol  m−2  s−1, by increase in N concentration form 5 to 10 and 15 mM N L−1, 25 and 43% reduc-
tion in WUE was observed, conversely, 8% and 77% increase under 150 µmol m−2 s−1, 94% and 54% increase 
under 300 µmol m−2 s−1 and 15% and 72% increase under 600 µmol m−2 s−1 were detected in WUE of plants 
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Figure 2.   Chlorophyll content of the leaves (A), Nitrogen content of leaves (B), and the correlation between 
N and chlorophyll cntent (C) of the leaves of chrysanthemum plants grown under different light intensits (75, 
150, 300, and 600 µmol m−2 s−1) and nitrogen (N) concentrations (5, 10, and 15 mM N) at 70 days of cultivation. 
Vertical bars are means ± SD. Within each graph, interactive effects of light intensity and nitrogen concentration 
are shown. Different letters (a–d) denote a significant difference between treaments (P < 0.05).
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by the increase in the concentration of N from 5 to 10 and 15 mM N L−1, respectively (Fig. 6A). Considering 
the effect of PPFD on WUE of plants grown under N constraint revealed that increase in PPFD from 75 to 
150 µmol m−2 s−1 did not affect the WUE of plants and when PPFD was raised to 300 µmol m−2 s−1 a negligible 
increase was observed, whereas when PPFD reached to 600 µmol m−2 s−1, WUE of plants increased to twofold 
of WUE of plants under 75 µmol m−2 s−1 (Fig. 6A). The correlation of total biomass with WUE also increased by 
the increase in PPFD under N constraint, indicating that the water uptaken by the plant were efficiently utilized 
for biomass accumulation. The correlation of PIABS with WUE was more profound on young leaves compared 
to old leaves; since the correlation was strongly negative under low PPFD and raised sharply under high PPFD 
in young leaves, while in old leaves the increase in correlation by raise in PPFD was slighter than that of young 
leaves (Fig. 6B). In addition, under N constraint, the correlation between PIABS and WUE was affected by PPFD. 
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Figure 3.   Stomatal lenght (A), stomatal pore lenght (B), stomatal width (C), stomatal pore width (D), and 
stomatal conductance (gs) (E) of chrysanthemum plants grown under different light intensits (75, 150, 300, and 
600 µmol m−2 s−1) and nitrogen (N) concentrations (5, 10, and 15 mM N) at 70 days of cultivation. Vertical bars 
are means ± SD. Within each graph, interactive effects of light intensity and nitrogen concentration are shown. 
Different letters (a–d) denote a significant difference between treaments (P < 0.05).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10002  | https://doi.org/10.1038/s41598-022-14163-4

www.nature.com/scientificreports/

WUE was negatively correlated with PIABS of young and old leaves under N constraint but an increase in PPFD 
strengthen the correlation and increase it from − 76 to − 50% in young and old leaves under 75 µmol m−2 s−1 to 
99% and 61% under 600 µmol m−2 s−1 (Fig. 6B). The effect of PPFD on increasing WUE under N constraint was 
more pronounced than that of old leaves. Moreover, according to correlation results, WUE and PIABS are more 
closely associated in young leaves compared to the old leaves (Fig. 6B; Supplementary Figs. 2, 3).

Carbohydrate level depleted by increasing N concentration of nutrient solution under low 
PPFD, while accumulated by exposure to higher PPFDs.  A contrasting trend was observed on the 
effect of N concentration on soluble carbohydrates under different light intensities (Fig. 7). In plants grown under 
75 µmol m−2 s−1 the carbohydrate decreased by 44% and 57% by an increase in N concentration from 5 to 10 and 
15 mM N L−1, respectively (Fig. 7). In contrast, in plants grown under PPFDs higher than 75 µmol m−2 s−1, the 
carbohydrate content increased by raise in N concentration. Under 150 µmol m−2 s−1, 88% increase in carbohy-
drate was detected in plants fed by 10 and 15 mM N L−1 compared to 5 mM N L−1 (Fig. 7). Moreover, by raise in 
N concentrations from 5 to 10 and 15 mM N L−1, 2- and 3-fold increases were observed in the carbohydrate of 
plants grown under 300 and 600 µmol m−2 s−1 (Fig. 7). Regardless of N concentration, a raise in PPFD increased 
soluble carbohydrates. When plants were fed by 5 mM N L−1, 9%, 32%, and 12% reduction were observed in 
carbohydrates by the increase in PPFD from 75 to 150, 300 and 600 µmol m−2 s−1. However, in plants fed by 
10 mM N L−1, raise in PPFD from 75 to 150, 300 and 600 µmol m−2 s−1 resulted in 2-, 3- and 5-fold and under 
15 mM N L−1 2-, 5- and sevenfold increase in carbohydrate contents were observed by the increase in PPFD from 
75 to 150, 300 and 600 µmol m−2 s−1, suggesting a positive role of PPFD on carbohydrate synthesis (Fig. 7). Our 
data also revealed that a negative correlation existed between WUE and carbohydrate under N constraint and 
low light (− 70%) and a raise in PPFD ameliorated the negative correlation, since under 600 µmol m−2 s−1 and N 
constraint, 61% correlation was detected between WUE and carbohydrate (Fig. 6B; Supplementary Figs. 2, 3).

NUE decreased by higher N concentration while increased by higher PPFDs.  NUE was increased 
by raise in PPFD, while declined by the increase in N concentration under all PPFDs (Fig. 8A). The highest NUE 
was associated with plants fed by the lowest N concentration and grown under the highest light intensity. When 
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intensity and nitrogen concentration are shown. Different letters (a–d) denote a significant difference between 
treaments (P < 0.05).
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plants were fed by 5 mM N L−1, NUE was increased by 77% and 169% by raise in PPFD from 75 to 300 and 
600 µmol m−2 s−1 and remained unchanged in plants grown under 150 µmol m−2 s−1 (Fig. 8A). In other words, a 
raise in PPFD compensated for the adverse effects of N constraint on NUE since the highest PPFD was associ-
ated with the highest NUE in plants grown under 5 mM N L−1. Under 300 and 600 µmol m−2 s−1, NUE of plants 
fed by 10 mM N L−1 was threefold of NUE of plants grown under 75 and 150 µmol m−2 s−1. Under 150, 300, and 
600 µmol m−2 s−1, when plants were fed by 15 mM N L−1, NUE was 2-, 3- and 7-fold of NUE of plants grown 
under 75 µmol m−2 s−1 (Fig. 8A).

C:N ratio was decreased by raise in N concentration from 5 to 10 and 15 mM N L−1 by 56% and 66% respec-
tively, in plants under 75 µmol m−2 s−1 and reduced by 14% and 7% in plant under 150 µmol m−2 s−1. Under 
300 µmol m−2 s−1 however, C:N ratio showed 34% and 38% increase by raise in N concentration from 5 to 10 
and 15 mM N L−1 (Fig. 8B).

The relation between NUE and biomass accumulation was also affected by PPFD. Under N constraint 
(5 mM N L−1) NUE was negatively correlated (− 73%) with total biomass while, when PPFD was raised to 
600 µmol m−2 s−1, a positive correlation (58%) was detected between NUE and total biomass (Fig. 8C). Chloro-
phyll content was also demonstrated a negative correlation (− 78%) with NUE under low light and N constraint, 

Figure 5.   Interaction effect of light intensity and concentration of nitrogen (N) on the flowering of 
chrysanthemum. Plants were exposed to different concentrations of nitrogen (N) (5, 10, and 15 mM N) and 
light intensities (75, 150, 300, and 600 µmol m−2 s−1).
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whereas, under 600 µmol m−2 s−1 and N constraint the negative correlation ameliorated to a 24% positive cor-
relation (Fig. 8C; Supplementary Figs. 2, 3).

Discussion
FV/FM reflects the maximum photochemical quantum yield of PSII24. In this research, variation in FV/FM under 
different treatments was negligible. However, the change in FV/FM was more detectable in old leaves under high 
N concentration compared to young leaves, suggesting that the dependency of FV/FM value to N concentration 
depends on leaf age and PPFD. The fact that plants respond to N supply by redistributing N from older leaves to 
the youngest can elaborate on the dependency of FV/FM to leaf age25. Moreover, under the N constraint condition, 
the correlation between NUE and FV/FM showed opposite trends by the increase in PPFD. Under N constraint and 
low PPFD, a strong positive correlation was detected between NUE and FV/FM of young leaves, which reduced 
to a strongly negative correlation by raise in PPFD. Whereas, the correlation was strongly negative in old leaves 
under low PPFD and ameliorated to a small positive correlation under high PPFD. This finding may explain that 
under N constraint, old leaves invest more N for increasing photosynthesis efficiency compared to that of young 
leaves because young leaves invest N for other pathways like biomass accumulations or carbohydrate synthesis 
since the correlation of NUE with total biomass and carbohydrate was higher than the correlation between NUE 
and FV/FM under high PPFD and N constraints.

PIABS is a delicate parameter derived from chlorophyll fluorescence that indicates the photochemical perfor-
mance of photosynthesis26–28. The reduction in PIABS of old leaves under low PPFD by raise in N concentration 
indicates the decline in energy conversion ability and the photosynthesis apparatus activity, which is also por-
trayed by light curves of plants under different PPFDs and N concentrations (Supplementary Fig. 4). This reduc-
tion in energy conversion potential accounts for reduced NUE and WUE under low PPFD. This circumstance 
was accompanied by a reduction in soluble carbohydrates which is the output of the photosynthesis process. 
The correlation between PIABS with NUE and WUE was negative under low light and low N concentration, while 
under high PPFD a positive correlation was detected. This finding allows us to postulate that increase in PPFD 
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compensates for N limitation by increasing PIABS, denoting higher efficiency of energy conversion that further 
provides energy for N uptake and increases the requirements for water uptake.

The negative correlation between chlorophyll content and N content under high PPFDs may account for the 
increase in the use of N in other processes besides chlorophyll synthesis since by increase in PPFD the increase 
in the correlation between NUE and total chlorophyll was lower than the correlation between NUE and other 
parameters like biomass and C:N balance. This may explain, in part, the strong reduction in correlation between 
chlorophyll and N content under high PPFD. In this regard, previous reports also proposed the effect of PPFD 
on the allocation of N between photosynthetic and non-photosynthetic pools as well as different N allocation 
between Rubisco and light-harvesting29,30. Besides, our data demonstrated a compensative role of PPFD for 
chlorophyll synthesis under N constraint conditions despite the negative correlation maintained among the N 
content of the leaves and chlorophyll content. This discrepancy suggests that high PPFD tends to tune the balance 
between the use of N among different pathways, while under low PPFD the negligible correlation between N 
content with chlorophyll, biomass, and C:N ratio explains the lack of balance between partitioning of N to dif-
ferent pathways under N constraint. Furthermore, the close relationship between N metabolism and light signals 
can be the other explanation for the role of PPFD in compensation of N constraint since N uptake is regulated 
by shoot-borne light signals, has shown to up-regulate the expression of root nitrogen transporters and enhance 
N uptake eventually31,32. Also, an association between high light intensity, plant water uptake, transpiration and 
the uptake of soil nitrogen by roots were proposed which is governed by mass flow water movement31. Many 
studies have reported that chlorophyll a, chlorophyll b, and total chlorophyll content correlate strongly with leaf 
N concentration so that chlorophyll content is reduced with N deficiency33.

The fact that an increase in stomatal aperture and stomatal conductance was accompanied by an increase in 
WUE explains the increase in PIABS and the highest biomass accumulation observed under high PPFD. Under 
N constraint, this circumstance accounts for improved growth and physiological status of plants, proposing a 
compensative role of PPFD for N constraint. An increase in N concentration and PPFD positively affected the 
N content of the leaves. The same effect was also reported on Lolium perenne L.34. Light signaling within the root 
system may trigger N uptake through the mediation of root nitrogen transporters31,32, further consequence in 
the enhancement of plant water uptake, transpiration, and the acquisition of soil nitrogen by roots under high 
light condition31. The correlation between leaf N concentration and NUE was negative under the N constraint 
condition, however, a raise in PPFD weakened this negative correlation, suggesting enhancing the role of PPFD 
for NUE under N constraint condition.

The increase in total biomass by the rise in PPFD and N concentration in plants grown under PPFDs higher 
than 75 µmol m−2 s−1 can be explained by improve in dry and fresh weight of plant organs (Supplementary Fig. 5) 
as well as the number of leaves, number of flowers, and plant height (Supplementary Fig. 6), which were the result 
of improved photosynthetic traits along with elevation of NUE and WUE. Under N constraint the correlation 
between total biomass with NUE and WUE increased sharply by raise in PPFD. The increased efficiency of water 
and nitrogen use may account for the ameliorative effect of PPFD on biomass accumulation under N constraint. 
Root biomass increased by the increase in light intensity and N concentration, which is in agreement with previ-
ous reports35. Nevertheless, the share of root biomass in total biomass decreased by raise in N concentration at 
the expense of an increase in the partitioning of biomass to aerial organs indicated by an increase in biomass 
partitioning to leaves. The fact that partitioning of biomass to root was limited by raise in N concentrations can 
be elaborated by optimal partitioning theory which explains that the biomass is allocated to the organ of the 
plant that is exposed to the most limiting resource36–38. This partitioning strategy is thought to minimize the 
stress imposed by the limiting resource39. Contrary to N concentration, rise in PPFD has shown to increase the 
partitioning of biomass to root, which can be vindicated by increased carbon availability provided by higher 
photosynthesis functionality under high PPFDs40. Concurringly, our data revealed a higher C:N ratio under high 
PPFD. Moreover, the correlation between NUE and C:N ratio was increased by the increase in PPFD, suggesting a 
balance in the increase in carbon assimilation and N uptake. An increase in PIABS along with WUE led to elevated 
carbon assimilation. In order to N uptake keep pace with carbon assimilation to maintain the balance of C:N, root 
biomass increased to maximize N uptake under N constraint. This circumstance elaborates on the underlying 
mechanism through which PPFD compensated for N uptake under N constraint. Concurred with our results, 
the positive effect of PPFD on root biomass reported on lettuce14 and chrysanthemum41. Regardless of PPFD, 
increase in N concentration reduced the partitioning of biomass to flowers. However, in the same N concentra-
tion, a larger proportion of biomass is allocated to flowers by the increase in PPFD, which can be explained by 
the increase in the number of flowers displayed by increased PPFD and N concentration (Supplementary Fig. 6).

We observed that the adverse effects of nitrogen deficiency extended to the reproductive growth stage and 
eventually prolonged the flower emergence period and decreased the biomass partitioning to the flower under 
low PPFD The positive role of PPFD on the flower emergence period and the increasing number of flowers have 
been also declared in the previous study on chrysanthemum41. In addition, a strong genetic correlation between 
flowering date and NUE has been reported in wheat42. In the same line, our data denotes a close relationship 
between light intensity and NUE, which may in part explain the promoting effect of PPFD on flower emergence, 
regardless of N concentration, since under all N treatments the correlation between NUE and PFFD was high 
(R2 ≥ 98%). Moreover, the correlation between NUE and day to flowering was negative under high PPFD and 
positive under low PPFD, suggesting that, increase in NUE shortens day to flowering under high PPFD and 
remains the opposite effect under low PPFD (Supplementary Figs. 2, 3).

Under high PPFD, WUE improved by the increase in N concentration, which is in line with the results 
of a previous study on Robinia pseudoacacia43. However, according to our data, when PPFD was limited to 
75 µmol m−2 s−1, WUE decreased by raise in N concentration. Consistently, in Capsicum annum L., the WUE of 
shaded plants was far lower than unshaded plants44. On the other hand, under N constraint, PPFD compensated 
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for WUE under N deficiency. The compensative effect of PPFD on WUE under N constraint is portrayed by 
increased PIABS, C:N ratio, and total biomass.

On contrary with the N content of the leaves, NUE decreased by an increase in N concentration however, a 
raise in PPFD compensated for NUE of plants under N constraint. The same results were also reported in previous 
experiments on three genotypes of rocket salad45, corn46, and rice47. Being a complex physiological trait, NUE 
depends on N availability and the energy provided through photosynthesis to supply the energy required for N 
uptake46. Under the N constraint condition, a negative correlation was detected between N concentration and 
NUE, however, this negative correlation ameliorated by increase in PPFD. Raise in PPFD under N constraint 
also increased the correlation of NUE with PIABS and C:N ratio. Suggesting a role for PPFD on enhancing NUE 
via improving energy provision through photosynthesis for N uptake and maintenance of C:N balance.

Materials and methods
Plant materials and growth conditions.  The plant experiments were performed in accordance with rel-
evant guidelines and regulations. Rooted cuttings (9 cm long with three leaves) of chrysanthemum (Chrysanthe-
mum morifolium cv. Katinka) were sown in pots (14 × 10 cm) containing a mixture of cocopeat and perlite (2:1, 
v/v), then placed in four growth chambers (1 m × 1 m × 1 m) equipped with a fixed combination of red and blue 
LEDs with wavelength peaks at 660 ± 10 nm for red and 460 ± 10 nm for blue LEDs. Red and blue LEDs (70:30) 
were used because they are the main light spectra for photosynthesis and growth of chrysanthemum13. To pro-
vide different PPFDs, including 75, 150, 300, and 600 µmol m−2 s−1 and also to limit the production of heat by the 
light sources, LED light panels (provided by Iran Grow Light Co, Iran) were used. Light spectra and PPFDs were 
monitored using a Sekonic light meter (Sekonic C-7000, Japan). All plants were grown under the same climatic 
conditions, i.e. day/night temperature of 25/20 ± 2 °C, 50 ± 5% relative humidity (RH), and photoperiod 12/12 h 
light/ dark cycles. The nutrient solutions of different N levels were modified based on a full-strength Hoagland 
and Arnon solution and were applied to each pot three times per week (Table 1). The full-strength Hoagland 
solution, containing 15 mM N L−1 was the control solution and Hoagland and Arnon solutions with modified N 
concentration (5 and 10 mM N L−1) were used to apply N limitation.

The concentration of 15 mM N L−1 (control) was achieved via the full-strength Hoagland and Arnon solution. 
Concentrations of 10 and 5 mM N L−1 were achieved by total or partial substitution of KNO3 and Ca(NO3)2 as 
sources of nitrogen in the solution. Potassium and calcium levels were equalized across treatments by adding 
K2SO4 and CaCl2 into the solutions that had N limitations (Table 1)48.

Chlorophyll fluorescence analysis.  Fast induction of fluorescence transient (the so-called OJIP pro-
tocol) was performed on fully developed, mature leaves of plants after 45 days of growth. The samples were 
dark-adapted for 20 min. A Fluorpen FP 100-MAX (Photon Systems Instruments, Drasov, Czech Republic) was 
used for measuring the OJIP transients. Different biophysical and phenomenological parameters related to PSII 
status49 were investigated by JIP-test according to the protocol described by50.

The maximum quantum yield of PSII (Fv/FM) and Performance index per absorbed light (PIABS) was calculated 
using the Eqs. (1) and (2), respectively:

(1)Fv/FM = (FM−F0)/FM

(2)(RC/ABS) × (φP0/(1−φP0)) × (ψ0/(1− ψ0))

Table 1.   The composition of nutrient solutions of different N levels were modified based on a full-strength 
Hoagland solution.

Element
Full strength Hoagland 
solution (g/L)

Modified Hoagland solution containing 
10 mL nitrogen (g/L)

Modified Hoagland solution containing 
5 ml nitrogen (g/L)

KNO3 101.1 – –

CaCl2 – – 110.9

K2SO4 – 87.1 87.1

Ca(NO3)2⋅4H2O 236.1 236.1 236.1

MgSO4⋅7H2O 246.5 246.5 246.5

KH2PO4 136.1 136.1 136.1

H3BO3 2.86 2.86 2.86

MnCl2⋅4H2O 1.81 1.81 1.81

CuSO4⋅5H2O 0.08 0.08 0.08

Na2MoO2⋅2H2O 0.12 0.12 0.12

H2MoO2⋅H2O 0.09 0.09 0.09

ZnSO4⋅5H2O 0.22 0.22 0.22

FeNaEDTA 4.04 4.04 4.04
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Determination of chlorophyll and nitrogen content.  Total leaf nitrogen content was determined 
using 1 g samples of leaf tissue, based on the Kjeldahl method after 98% H2SO4 hot digestion. For measuring the 
chlorophyll content, Leaves were measured by using a SPAD-502 (Konica Minolta Corp., Solna, Sweden). This 
instrument determined the chlorophyll content in leaves non-destructively by considering leaf transmittance 
in red and near-infrared light spectra. three leaves were analyzed each time and three points were recorded per 
replicate leaf and were averaged51.

Determination of stomatal traits.  Stomatal morphological parameters including stomatal length, sto-
matal width together with pore length, and aperture were measured on the young fully developed leaves. A 
section of the leaf midway between the tip and the base and equal distance from each edge were used for micro-
scopic analysis. The abaxial surface of young developed leaves was coated by a thin layer of nail polish. The dry 
polish sample along with the adhered sticky tape was mounted on microscope slides, and stomatal morphologi-
cal details were investigated under a light microscope. Images were taken by Omax top-view software version 
3.5 and further analyzed using ImageJ software (U.S. National Institutes of Health, Bethesda, MD; https://​imageJ.​
nih.​gov/​ij/) to record stomatal length, stomatal width, pore length, and aperture52.

Stomatal conductance (gs) was investigated according to the method described by Fanourakis et al.53. In this 
calculation, stomatal pore depth was considered to be equal to the guard-cell width (i.e., stomatal width/2), 
assuming guard cells inflate to a circular cross-section. A 100 magnification was used to assess stomatal density. 
The number of stomata was counted on three randomly chosen areas of the same leaf from which stomatal size 
measurements were taken. Analysis was done on 1 mm2 of the middle of the leaf on both sides of the main 
vein52,53. Calculation of gs was done based on the following equation:

Morphological and growth measurements.  For biomass determination, the growing substrate was 
washed from the roots, and the plants were divided into flower, leaves, stem, and roots. The samples were 
weighed to determine their fresh weight (FW) and then dried in an oven at 60 °C for 72 h to reach a constant 
dry weight (DW).

Water use efficiency (WUE).  To determine irrigation water use efficiency (WUE), the amount of water 
used during the growth period was recorded and after measuring the dry weight of the flowers, it was calculated 
with the following equation described by Karam et al.54.

Nitrogen use efficiency (NUE).  Nitrogen use efficiency (NUE) was calculated according to the equation 
below7,55,56:

Measurements of carbohydrates.  Determination of leaf soluble sugar was determined by the anthrone 
method using glucose as the standard57. Fresh leaves (0.2 g) were extracted in 80% ethanol at 80 °C for 60 min. 
Then 3 mL of anthrone solution (150 mg anthrone in 100 mL 72% Sulfuric acid) was added to 0.1 mL of alcoholic 
extract. This mixture was placed in a water bath at 100 °C for 10 min and then cooled in an ice bath and the 
absorbance was spectrophotometrically recorded at 625 nm. The remaining solid part after extraction of soluble 
sugars was used to extract starch in 52% perchloric acid. Starch concentrations were determined by anthrone 
and were spectrophotometrically recorded at 630 nm as described by McCready57.

Statistical analysis.  The results represented the average mean values of six replications for each treatment. 
The data were analyzed using SAS software (version 9.4). The two-way analysis of variance (ANOVA) was per-
formed to find the significant differences (p ≤ 0.05) among treatments. Further, the Duncan multiple compari-
sons test was performed to compare the means. For analyzing chlorophyll fluorescence parameters, obtained 
data were subjected to two-way ANOVA, and for mean comparison, the Tukey multiple comparison tests were 
used. For stomatal characteristics, data obtained from one leaf were considered not independent, and for mean 
comparison, one-way ANOVA, as well as Tukey multiple comparison tests, were used.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

(3)gs =
(diffusion coefficient)×

(

stomatal density
)

×
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π× pore apperture÷ 2× pore length ÷ 2
)
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