
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Zhang et al. BMC Bioinformatics          (2024) 25:332  
https://doi.org/10.1186/s12859-024-05950-z

BMC Bioinformatics

LDAGM: prediction lncRNA‑disease 
asociations by graph convolutional 
auto‑encoder and multilayer perceptron based 
on multi‑view heterogeneous networks
Bing Zhang1†, Haoyu Wang1*†, Chao Ma1, Hai Huang1, Zhou Fang2 and Jiaxing Qu2 

Abstract 

Background:  Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat 
a variety of complex human diseases, and it is crucial to establish a method to effi-
ciently predict lncRNA-disease associations.

Results:  In this paper, we propose a prediction method for the lncRNA-disease 
association relationship, named LDAGM, which is based on the Graph Convolutional 
Autoencoder and Multilayer Perceptron model. The method first extracts the functional 
similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, 
as well as the semantic similarity and Gaussian interaction profile kernel similarity 
of diseases. It then constructs six homogeneous networks and deeply fuses them 
using a deep topology feature extraction method. The fused networks facilitate feature 
complementation and deep mining of the original association relationships, captur-
ing the deep connections between nodes. Next, by combining the obtained deep 
topological features with the similarity network of lncRNA, disease, and miRNA interac-
tions, we construct a multi-view heterogeneous network model. The Graph Convolu-
tional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted 
nonlinear features are combined with the deep topological features of the multi-view 
heterogeneous network to obtain the final feature representation of the lncRNA-dis-
ease pair. Prediction of the lncRNA-disease association relationship is performed using 
the Multilayer Perceptron model. To enhance the performance and stability of the Mul-
tilayer Perceptron model, we introduce a hidden layer called the aggregation layer 
in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow 
of information between each hidden layer in the Multilayer Perceptron model, aiming 
to achieve optimal feature extraction from each hidden layer.

Conclusions:  Parameter analysis, ablation studies, and comparison experiments 
verified the effectiveness of this method, and case studies verified the accuracy of this 
method in predicting lncRNA-disease association relationships.
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Background
Long non-coding RNA (lncRNA) is a class of RNA molecules that do not encode 
proteins but have a transcript length exceeding 200 nucleotides. They play crucial roles 
in regulating various biological processes, including acting as molecular scaffolds in 
the nucleus, facilitating alternative splicing, modulating chromosome structure, and 
regulating translation in the cytoplasm. Additionally, they can promote or inhibit mRNA 
degradation and sequester miRNAs, among other functions [1]. Numerous experiments 
have illustrated the close association between lncRNAs and the development of 
diverse diseases. For instance, lncRNA KTN1-AS1 promotes non-small cell carcinoma 
progression by sponging miR-130a-5p and activating PDPK1 [2]. Similarly, lncRNA 
LINC00460 suppresses ANXA3 expression by up-regulating miR-2-433p, thereby 
impeding colon cancer epithelial-mesenchymal transition [3]. lncRNA UCA1 regulates 
apoptosis in cancer cells by modulating EZH2 activation of the PI3K/AKT pathway, 
leading to cisplatin resistance. UCA1 emerges as a promising therapeutic target for 
managing gastric cancer [4]. Furthermore, the upregulation of lncRNA IFNG-AS1 
expression correlates with an elevated risk of coronary artery disease [5].

In predicting lncRNA-disease associations, traditional experimental methods are 
often costly, labor-intensive, and prone to uncertainty. However, with the advancement 
of high-throughput sequencing technology, numerous databases focusing on lncRNA-
disease associations have emerged, including LncRNADisease [6], Lnc2Cancer [7], 
NONCODE [8], and OMIM [9]. These databases house extensive information regarding 
disease semantics and lncRNA-disease associations. Therefore, employing machine 
learning algorithms to predict lncRNA-disease associations offers a valuable approach to 
analyzing these relationships more rapidly and comprehensively.

For predicting lncRNA-disease association relationships, existing computational 
methods can be categorized into matrix decomposition-based methods, network-
based methods, random walk methods, machine learning, and deep learning methods 
[10–15]. In the realm of matrix decomposition-based approaches, Lu et  al. [16] 
devised an inductive matrix completion model. This model constructs matrices by 
amalgamating lncRNA-disease, disease-gene, and gene-gene interactions, then extracts 
primary feature vectors to complete the correlation matrices. Fu et al. [17] introduced 
a matrix decomposition model known as MFLDA, which decomposes heterogeneous 
data sources via matrix triple decomposition of data matrices into low-rank matrices, 
thus exploring and leveraging their intrinsic structure. Xuan et  al. [18] integrated 
three association networks: lncRNA-miRNA, miRNA-disease, and lncRNA-disease, 
to form a disease-weighted association network. They employed probabilistic matrix 
decomposition to infer potential lncRNA-disease associations.

In the domain of network-based approaches, Yang et al. [19] established a dichotomous 
network comprising coding, non-coding genes, and diseases. They leveraged known 
associations between diseases and causative genes and applied a propagation algorithm 
to uncover latent lncRNA-disease associations within this network. Li et  al. [20] 
integrated lncRNA-disease association probability matrices with integrated disease 
and lncRNA similarities. They proposed a model called NCPLDA, based on network 
similarity projection, for predicting unknown lncRNA-disease associations. Sheng et al. 
[21] proposed a multi-task prediction graph comparison learning model for GCLMTP. 
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This model first constructs heterogeneous graphs of lncRNAs, miRNAs, and diseases, 
extracts potential topological features from them based on graph comparison learning, 
and then performs prediction of association relationships.

In the realm of random walk-based approaches, Chen et  al. [22] introduced the 
IBWRLDA model, which integrates lncRNA expression similarity and disease 
semantic similarity to establish the initial probability vector of Random Walk with 
Restart (RWR). They employ an improved restart random walk algorithm for lncRNA-
disease association prediction. Sun et  al. [23] proposed the RWRlncD framework, a 
global network-based computational approach for inferring human lncRNA-disease 
associations. This method implements a random walk algorithm and restart method on 
the lncRNA functional similarity network. Yu et al. [24] developed the BRWLDA model 
for predicting associations between lncRNAs and complex diseases. BRWLDA utilizes 
the lncRNA functional similarity network, disease network, and available lncRNA-
disease associations to construct a directed bi-relational network. Double random walks 
are then applied on this bi-relational network for association prediction. Sheng et  al. 
[25] proposed the VADLP model, which first constructs a three-layer heterogeneous 
graph, extracts topological features using random walks, learns hidden topological 
relationships with a convolutional autoencoder, and models feature distribution with a 
variance autoencoder for association prediction.

In the realm of machine learning and deep learning methods, Wang et  al. [26] 
employed an auto-encoder neural network to obtain optimal feature vectors for lncRNA-
disease pairs. These vectors were then input into a deep random forest to predict 
potential lncRNA-disease associations. Yuan et  al. [27] initially computed similarity 
matrices for lncRNAs, genes, and diseases, integrating them. They then utilized a 
neural network to learn the nonlinear features of the integrated network, extracting 
neighborhood information to derive similarity scores. These scores were ranked to 
predict lncRNA-disease associations. Lan et al. [28] introduced a computational model 
called LDICDL. This model first utilizes an auto-encoder to denoise lncRNA and disease 
feature information. Then, it employs matrix decomposition for association relationship 
prediction. To address the limitations of matrix decomposition, a hybrid model was 
utilized. Shi et  al. [29] proposed an end-to-end model named VGAELDA, which 
integrates variational inference and a graph autoencoder for predicting lncRNA-disease 
associations. Xuan et al. [30] introduced GCNLDA, a graph convolutional network and 
convolutional neural network-based approach for inferring the association relationship 
of disease-associated lncRNA candidate genes. Lu et al. [31] proposed a computational 
framework for LDAEXC, which uses a deep autoencoder for feature extraction and 
inputs the extracted features into XGBoost for final prediction. Sheng et  al. [32] 
proposed a multichannel attention self-encoder-based model to predict the association 
between lncRNA and disease. The model first constructs a lncRNA-miRNA-disease 
complex graph, then utilizes a graph self-encoder to learn multiple representations from 
it, and finally employs a Random Forest classifier to make predictions.

Although the methods mentioned above have achieved satisfactory results, they still 
have some shortcomings. Matrix decomposition and network-based methods often 
overlook the nonlinear features within the data. Random walk methods can capture 
nonlinear features, but they are susceptible to propagation errors and the influence 
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of data noise. Machine learning methods sometimes struggle to uncover deeper 
information within the data and perform poorly with sparse or noisy data, similar to 
random walk algorithms. Deep learning methods, while effective, often require complex 
hidden layers to fit the data, resulting in poor performance with excessively sparse 
or noisy data. Additionally, deep learning methods entail significant computational 
requirements due to the complexity of hidden layers.

To address the shortcomings of existing methods, we propose LDAGM, a method 
for predicting potential associations between lncRNA and disease. Firstly, we extract 
functional similarity and Gaussian interaction profile kernel similarity of lncRNA and 
miRNA, as well as semantic similarity and Gaussian interaction profile kernel similarity 
of diseases. This results in the construction of six homogeneous networks. Leveraging 
the method of deep topology feature extraction proposed in this paper, we fuse these six 
homogeneous networks to extract deep topological features, thereby expanding the data 
feature space and mitigating issues stemming from sparse network nodes. Subsequently, 
we integrate the fused network with similar networks of lncRNA, disease, and miRNA 
interactions to construct a multi-view heterogeneous network. Nonlinear features are 
then extracted from this network using the graph convolutional autoencoder (GCN-AE) 
model. Finally, based on positive and negative lncRNA-disease pairs, we obtain the final 
feature representation of the lncRNA-disease pairs by combining the deep topological 
features of the multi-view heterogeneous network with the nonlinear features extracted 
by the GCN-AE. These representations are subsequently inputted into a multilayer 
perceptron (MLP) model for predicting lncRNA-disease association relationships.

To enhance the performance and stability of the MLP model, we propose an 
aggregation layer within the MLP architecture to aggregate and regulate the flow of 
information between each hidden layer. Each hidden layer corresponds to an aggregation 
layer, with the latter receiving outputs from both the corresponding hidden layer and 
the preceding aggregation layer. Through the utilization of forgetting gates and input 
gates, the data received by the aggregation layer undergoes filtering and integration to 
generate the output of the current aggregation layer. Ultimately, the output of the final 
aggregation layer provides the association score of lncRNA-disease pairs. To verify 
the effectiveness of the proposed method, we conducted ablation experiments on the 
proposed deep topological feature extraction and aggregation layer. Additionally, 
comparison experiments were performed with four models proposed in recent years 
to evaluate the overall performance of the LDAGM model. The main innovations and 
contributions of this study are summarized as follows: 

(1)	� This paper proposes a deep topological feature extraction method for integrating 
the functional similarity and Gaussian interaction profile kernel similarity of 
lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction 
profile kernel similarity of diseases.

(2)	� A graph-convolutional auto-encoder model is employed to extract nonlinear 
features from the multi-view heterogeneous network. These nonlinear features 
are then combined with deep topological features to obtain the final feature 
representation of lncRNA-disease pairs.

(3)	� An aggregation layer is introduced within the multilayer perceptron model to 
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aggregate and regulate the flow of information between each hidden layer. This 
enables each hidden layer to extract optimal features.

(4)	� Following a series of experimental comparisons, the effectiveness of the method 
described in this paper was confirmed.

Results and discussion
Experimental settings

In this section, a series of experiments are conducted using 5-fold cross-validation 
(5-CV) to compare and verify the superior performance of LDAGM. 5-CV splits 
the dataset into five disjoint subsets, with four subsets used for training the model 
and the remaining subset used for testing. All positive samples are selected and split 
according to 5-CV. To mitigate the negative effects caused by category imbalance, 
an equal number of negative samples as positive samples are randomly selected to 
train the prediction model. During testing, we randomly remove a portion of known 
associations from a positive sample of the test set and then test the trained model to 
evaluate the accuracy of LDAGM in mining potential associative relationships.

The experiments proceed as follows: firstly, evaluating the results of various 
hyperparameter settings on LDAGM; secondly, comparing LDAGM with four state-
of-the-art algorithms from recent years; thirdly, conducting ablation experiments on 
LDAGM to validate the effectiveness of the proposed modules; and finally, analyzing 
case studies of five diseases: lung cancer, breast cancer, prostate cancer, hepatocellular 
carcinoma, and osteosarcoma by utilizing open-source bioinformatics databases and 
calibration to verify the accuracy of LDAGM.

In the experiments mentioned above, a learning rate of 1e-2 and a weight decay of 
1e-5 were chosen for the training process. The model’s effectiveness was evaluated 
using seven classical metrics: AUC, AUPR, MCC, ACC, Precision, Recall, and 
F1-Score.

Effect of parameters

This section evaluates the impact of four parameters on the experimental results: the 
number of neurons, the number of hidden layers, and the dropout rate in the MLP, 
along with the embedding dimension of the GCN-AE. These parameters aim to 
achieve optimal algorithm performance. The number of neurons and hidden layers 
in the MLP affect the model’s fitting to the data. The Dropout rate influences the 
model’s robustness, with an appropriate rate enhancing its generalization capability. 
The embedding dimension of the GCN-AE affects the representation of features and 
the complexity of learned features by the model.

We consider the number of neurons to range from {5, 10, 20, 30, 40}, the number of 
hidden layers to range from {1, 2, 4, 6, 8}, the dropout rate to vary from 0 to 1 with a step 
size of 0.1 for each change, and the GCN-AE embedding dimension to range from {16, 
32, 64, 128, 256}. As depicted in Fig. 1 for Dataset 1, the optimal combination is achieved 
when the number of neurons is set to 40, the number of hidden layers is set to 2, the 
dropout rate is set to 0.1, and the GCN-AE embedding dimension is set to 128.
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Optimal Number of Deep Topological Feature Layers

The number of deep topological feature layers has varying impacts on the results. To 
determine the optimal number of deep topological feature layers for achieving the best 
outcomes, we explore different values ranging from {1, 2, 3, 4} and validate their effects. 
As depicted in Fig. 2, the results reach their optimum when the number of deep topo-
logical feature layers is set to 2.

Ablation studies

To verify the effectiveness of the deep topological feature extraction and aggregation 
layer, this section compares LDAGM with its three variants: (1) LDAGM-a, without the 
deep topological feature extraction and aggregation layer; (2) LDAGM-b, where deep 
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Fig. 1  Performance of LDAGM using different parameters. A Comparison of the AUC values under 
different numbers of neurons. B Comparison of the AUC values under different numbers of hidden layers. 
C Comparison of the AUC values under different Dropout rates. D Comparison of the AUC values under 
different GCN-AE embedding dimension
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Fig. 2  Performance of LDAGM across different layers of deep topological feature extraction. A Comparison of 
AUC values across varying numbers of deep topological feature layers. B Comparison of AUPR values across 
varying numbers of deep topological feature layers
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topological feature extraction is utilized but not the aggregation layer; and (3) LDAGM-
c, which employs the aggregation layer but not deep topological feature extraction.

As depicted in Fig. 3 and Table 1, LDAGM equipped with both deep topological fea-
ture extraction and the aggregation layer exhibits superior performance. Deep topologi-
cal feature extraction delves deeply into the association relationships among nodes in 
heterogeneous networks, thereby enriching the feature representation of such networks. 
Meanwhile, the aggregation layer facilitates controlled information transfer between 
each hidden layer through three gate mechanisms: input gate, forget gate, and update 
gate. This enables each hidden layer to extract optimal features. The synergistic combi-
nation of these two components leads to an overall enhancement in model performance.

Comparison with other classifiers

We compared the performance of LDAGM with other classifiers, including Support 
Vector Machine (SVM), Random Forest (RF), Graph Attention Network (GAN), 
EXtreme Gradient Boosting (XGBoost). As shown in Table  2, the performance of 
LDAGM achieves the optimum. 

Comparison of training set and test set with different ratios

To evaluate the performance of LDAGM on different proportions of training and testing 
sets, this section conducts training and testing by splitting the dataset into training and 

Fig. 3  Comparison of ROC curves (A) and PR curves (B) among LDAGM and its three variants

Table 1  Comparison of the evaluation metrics between LDAGM and its three variants, the results of 
LDAGM are optimal, as indicated in bold

The bold number is the highest value of each column and its clarifes the superiority of our mode

Method AUC​ AUPR MCC ACC​ Precision Recall F1-Score

LDAGM-a 0.952±0.0074 0.957±0.0032 0.881±0.0045 0.899±0.0078 0.859±0.0043 0.878±0.0021 0.763±0.0041

LDAGM-b 0.977±0.0062 0.981±0.0041 0.915±0.0052 0.920±0.0063 0.859±0.0074 0.910±0.0023 0.836±0.0043

LDAGM-c 0.965±0.0183 0.968±0.0145 0.896±0.0 0212 0.911±0.0171 0.877±0.0230 0.894±0.0244 0.793±0.0165

LDAGM 0.983±0.0058 0.988±0.0047 0.930±0.0233 0.941±0.0122 0.983±0.0106 0.925±0.023 0.939±0.0131
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testing sets at ratios of {1:2, 1:4, 1:6, 1:8, 1:10}. The corresponding metrics are presented 
in Table 3.

Comparison with other state‑of‑the‑art methods

To assess the performance effectiveness of the LDAGM algorithm in predicting 
lncRNA-disease association relationships, we compared it with four classical 
algorithms: DMFLDA [14], SDLDA [33], GAERF [34], and MAGCNSE [35].

DMFLDA employs the MLP model to predict lncRNA-disease associations via deep 
matrix decomposition. It utilizes a series of nonlinear hidden layers to directly learn 
potential features from the lncRNA-disease interaction matrix, aiming for a more 
accurate feature representation. SDLDA utilizes singular value decomposition and 
a deep learning framework to extract both linear and nonlinear features of lncRNA 
and disease. By integrating these features, it obtains a more accurate representation 
of lncRNA and disease pairs, which is then used for association prediction. GAERF 
first extracts nonlinear features of lncRNA and disease using a graph self-encoder. 
Subsequently, it employs a random forest classifier to learn these features and predict 
lncRNA-disease associations. MAGCNSE extracts features from the multi-view 
matrix of lncRNA and disease using a graph convolutional attention network. These 
features are then inputted into a stacked integrated classifier composed of multiple 
traditional machine-learning classifiers to make the final association prediction.

As illustrated in Fig. 4 and Table 4, LDAGM achieves AUC scores of 0.983, 0.953 on 
Dataset 1and Dataset 2, respectively. Additionally, its AUPR scores are 0.988, 0.951, 
respectively, outperforming the other methods.

As shown in Tables 5 and 6, paired t-tests of model performance metrics for differ-
ent datasets confirm that LDAGM is statistically significant when compared to other 
competing methods.

Table 2  Comparison LDAGM with other classifiers, the results of LDAGM are optimal, as indicated in 
bold

The bold number is the highest value of each column and its clarifes the superiority of our mode

Method AUC​ AUPR MCC ACC​ Precision Recall F1-Score

SVM 0.930±0.0065 0.920±0.0136 0.862±0.0087 0.916±0.0063 0.924±0.0125 0.783±0.0036 0.856±0.0045

RF 0.864±0.0145 0.853±0.0365 0.804±0.0754 0.884±0.0452 0.836±0.0478 0.840±0.0136 0.812±0.0175

GAN 0.949±0.0025 0.952±0.0069 0.906±0.0078 0.891±0.0085 0.939±0.0069 0.848±0.0074 0.899±0.0085

XGBoost 0.934±0.0074 0.924±0.0051 0.883±0.0062 0.905±0.0084 0.925±0.0093 0.825±0.0065 0.901±0.0071

LDAGM 0.983±0.0058 0.988±0.0047 0.930±0.0233 0.941±0.0122 0.983±0.0106 0.925±0.023 0.939±0.0131

Table 3  Comparison of training set and test set with different ratios

ratio AUC​ AUPR MCC ACC​ Precision Recall F1-Score

1:2 0.983±0.0058 0.988±0.0047 0.930±0.0233 0.941±0.0122 0.983±0.0106 0.925±0.023 0.939±0.0131

1:4 0.982±0.0072 0.876±0.0045 0.819±0.0043 0.959±0.0147 0.752±0.0108 0.927±0.0086 0.817±0.0087

1:6 0.979±0.0053 0.770±0.0033 0.705±0.0076 0.943±0.0085 0.634±0.0139 0.894±0.0144 0.752±0.0085

1:8 0.981±0.0046 0.670±0.0021 0.600±0.0062 0.952±0.0011 0.509±0.0136 0.913±0.0153 0.664±0.0065

1:10 0.977±0.0056 0.640±0.0042 0.578±0.0041 0.934±0.0072 0.403±0.0192 0.883±0.0175 0.543±0.0055
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Case studies

To further validate LDAGM’s performance in predicting lncRNA-disease associa-
tions, a specific case study is conducted as follows: Step 1, five target diseases: lung 

Fig. 4  Performance comparison between LDAGM and other state-of-the-art methods. A, B Comparison 
of ROC curves, AUC values, PR curves, and AUPR values on Dataset 1. C, D Comparison of ROC curves, AUC 
values, PR curves, and AUPR values on Dataset 2

Table 4  LDAGM metrics on two datasets

Dataset AUC​ AUPR MCC ACC​ Precision Recall F1-Score

Dataset 1 0.983±0.0058 0.988±0.0047 0.930±0.0233 0.941±0.0122 0.983±0.0106 0.925±0.023 0.939±0.0131

Dataset 2 0.953±0.0053 0.951±0.0036 0.770±0.0087 0.883±0.0044 0.915±0.0054 0.846±0.0069 0.879±0.0046

Table 5  Paired t-test between the performances of LDAGM and the competing methods for 
Dataset 1

Methods p value on Dataset 1

DMFLDA 0.0001485

SDLDA 0.0027289

GAERF 0.0025345

MAGCNSE 0.0867533
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cancer, breast cancer, prostate cancer, hepatocellular carcinoma, and osteosarcoma 
are selected. Step 2, all known positive samples in the dataset are selected, along with 
an equal number of negative samples from unknown lncRNA-disease pairs unre-
lated to the target diseases, to construct the training dataset. Step 3, all associations 
between the lncRNA and the target diseases are selected to construct the testing 
dataset. Step 4, after training on the training set, the test set is used for testing, with 
output scores sorted in descending order. Step 5, validation is conducted using LncR-
NADisease v3.0 [36] (http://​www.​rnanut.​net/​lncrn​adise​ase/​index.​php/​home) and 
Lnc2Cancer v3.0 [37] (http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​lnc2c​ancer/). If no evidence 
is found in both databases, consultation of PubMed literature is pursued.

Lung cancer, a leading cause of global mortality, validates 13 out of the top 15 lung 
cancer-related lncRNAs listed in Table  7. For instance, PVT1, directly regulated by 
the transcription factor YY1, plays a pivotal role in lung cancer by promoting its 
expression through transcription activation [38]. AFAP1-AS1, significantly up-reg-
ulated in lung cancer, contributes to the disease by regulating molecules associated 
with actin filament integrity [39].

Breast cancer, prevalent among women, confirms 12 out of the top 15 lncRNAs 
associated with the disease listed in Table  8. For instance, the expression of TUG1 

Table 6  Paired t-test between the performances of LDAGM and the competing methods for 
Dataset 2

Methods p value on Dataset 2

DMFLDA 0.0133635

SDLDA 0.0006963

GAERF 0.0053563

MAGCNSE 0.0003097

Table 7  The top 15 predicted lung cancer-associated lncRNAs

Rank lncRNA name Evidence

1 HOTAIR LncRNADisease v3.0 Lnc2Cancer v3.0

2 MALAT1 LncRNADisease v3.0 Lnc2Cancer v3.0

3 NEAT1 LncRNADisease v3.0 Lnc2Cancer v3.0

4 MEG3 LncRNADisease v3.0 Lnc2Cancer v3.0

5 BANCR LncRNADisease v3.0 Lnc2Cancer v3.0

6 HULC LncRNADisease v3.0

7 H19 LncRNADisease v3.0 Lnc2Cancer v3.0

8 PVT1 LncRNADisease v3.0 Lnc2Cancer v3.0

9 KCNQ1OT1 LncRNADisease v3.0

10 LINC00663 Lnc2Cancer v3.0

11 AFAP1-AS1 LncRNADisease v3.0 Lnc2Cancer v3.0

12 GAS5 LncRNADisease v3.0 Lnc2Cancer v3.0

13 MIR17HG Unconfirmed

14 HOTTIP LncRNADisease v3.0 Lnc2Cancer v3.0

15 CCAT2 LncRNADisease v3.0 Lnc2Cancer v3.0

http://www.rnanut.net/lncrnadisease/index.php/home
http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/
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significantly decreases in breast cancer and regulates sensitivity to cisplatin chemo-
therapy, making it a potential treatment target [40]. uca1, notably up-regulated in 
breast cancer, plays a pivotal role in disease progression by modulating the EZH2/p21 
axis and the PI3K/AKT signaling pathway. Silencing UCA1 increases drug-resistant 
cell sensitivity to tamoxifen, presenting it as a potential treatment target [41].

Prostate cancer, prevalent among men, validates 14 out of the top 15 lncRNAs 
associated with the disease listed in Table  9. For instance, MEG3 promotes H3K27 
trimethylation of EN2 by binding to EZH2, inhibiting prostate cancer development 
and serving as a potential treatment target [42]. HOTAIR, overexpressed in prostate 

Table 8  The top 15 predicted breast cancer-associated lncRNAs

Rank lncRNA name Evidence

1 TUG1 Lnc2Cancer v3.0

2 MEG3 LncRNADisease v3.0 Lnc2Cancer v3.0

3 HOTAIR LncRNADisease v3.0 Lnc2Cancer v3.0

4 MALAT1 LncRNADisease v3.0 Lnc2Cancer v3.0

5 BANCR LncRNADisease v3.0 Lnc2Cancer v3.0

6 HOTTIP LncRNADisease v3.0 Lnc2Cancer v3.0

7 UCA1 LncRNADisease v3.0 Lnc2Cancer v3.0

8 HULC LncRNADisease v3.0 Lnc2Cancer v3.0

9 MIR17HG Unconfirmed

10 TUSC7 LncRNADisease v3.0 Lnc2Cancer v3.0

11 PVT1 LncRNADisease v3.0 Lnc2Cancer v3.0

12 GAS5 LncRNADisease v3.0 Lnc2Cancer v3.0

13 HCG4 Unconfirmed

14 EWSAT1 Unconfirmed

15 H19 LncRNADisease v3.0 Lnc2Cancer v3.0

Table 9  The top 15 predicted prostate cancer-associated lncRNAs

Rank lncRNA name Evidence

1 H19 Lnc2Cancer v3.0

2 MEG3 Lnc2Cancer v3.0

3 XIST Lnc2Cancer v3.0

4 GAS5 LncRNADisease 
v3.0 Lnc2Cancer 
v3.0

5 MALAT1 Lnc2Cancer v3.0

6 PVT1 Lnc2Cancer v3.0

7 TUG1 Lnc2Cancer v3.0

8 CDKN2B-AS1 Lnc2Cancer v3.0

9 NEAT1 Lnc2Cancer v3.0

10 HOTAIR Lnc2Cancer v3.0

11 AFAP1-AS1 Lnc2Cancer v3.0

12 BCYRN1 Unconfirmed

13 CCAT1 Lnc2Cancer v3.0

14 MIR17HG Lnc2Cancer v3.0

15 UCA1 Lnc2Cancer v3.0



Page 12 of 22Zhang et al. BMC Bioinformatics          (2024) 25:332 

cancer, acts as a prognostic predictor and promotes cancer cell metastasis. It can 
induce cancer cell apoptosis by regulating miR-125a-5p to release caspase2, making it 
a potential treatment target [43].

Detailed predictive scores with lncRNAs for the mentioned diseases are provided 
in Additional File 1: Table 1, Additional File 1: Table 2, and Additional File 1: Table 3. 
Predictive information concerning hepatocellular carcinoma is available in Additional 
File 1: Table 4, while information regarding osteosarcoma is presented in Additional File 
1: Table 5.

Conclusions
The analysis of potential lncRNA-disease associations through computational methods 
aids in identifying disease biomarkers and enhancing preventative measures, thereby 
reducing labor costs and improving efficiency. This paper introduces a novel approach 
for predicting lncRNA-disease associations, named LDAGM. Initially, functional 
similarity and Gaussian spectral kernel similarity of lncRNA, miRNA, and semantic 
similarity and Gaussian spectral kernel similarity of disease are extracted. These six 
homogeneous networks are fused using deep topological feature extraction to achieve 
feature complementation. Subsequently, the fused homogeneous network is integrated 
with similar networks of lncRNA, disease, and miRNA interactions to construct a multi-
view heterogeneous network. This network is then inputted into a graph convolutional 
autoencoder for nonlinear feature extraction. Nonlinear features are combined with 
deep topological features of the multi-view heterogeneous network to construct the 
final feature representation of lncRNA-disease pairs. The pairs are inputted into an 
MLP model for predicting lncRNA-disease associations. To enhance MLP model 
performance, an aggregation layer is added to aggregate and control information flow 
in each hidden layer, enabling optimal feature fitting to each layer. Experimental results 
demonstrate that deep topological feature extraction and the aggregation layer enhance 
overall model performance, with AUC scores of 0.983, 0.953, and AUPR scores of 0.988, 
0.951, outperforming other methods on Dataset1 and Dataset2. Model accuracy in 
predicting lncRNA-disease associations is validated through case studies.

In future work, improvements will be made to both association relationship analysis 
and deep learning model construction. The method currently utilizes only lncRNA, 
disease, and miRNA association relationships, without comprehensive consideration 
of biological information such as protein information, RNA sequence information, and 
drug targeting effects. Additionally, enhancements can be made to the deep learning 
method for integrating and mining lncRNA-disease association relationships by 
introducing attention mechanisms and adversarial training on data.

Methods
Datasets

To validate the effectiveness of LDAGM, we evaluated it on two datasets: 

(1)	� Dataset 1: We utilized the widely cited benchmark dataset introduced by Fu 
et al. [17], comprising 240 lncRNAs, 412 diseases, and 495 miRNAs. This dataset 
includes 2,697 lncRNA-disease association nodes sourced from LncRNADisease 
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[6], Lnc2Cancer [7], and GeneRIF [44]. Additionally, it incorporates 1002 lncRNA-
miRNA association nodes from startBase v2.0 [45] and another 1002 lncRNA-
miRNA association nodes from HMDD v2.0 [46]. Furthermore, it comprises 13562 
miRNA-disease association nodes from HMDD v2.0 [46].

(2)	� Dataset 2: We employed a dataset generated by Zhou et  al.[47], compassing 
665 lncRNAs, 316 diseases, and 295 miRNAs. This dataset comprises 3833 
lncRNA-disease association nodes sourced from Lnc2Cancer v3.0 [37] and 
LncRNADisease v2.0 [36]. Additionally, it includes 2108 lncRNA-miRNA 
association nodes from starBase v2.0 [45] and 8540 miRNA-disease association 
nodes from HMDD v3.0 [48].

Disease semantic similarity

From the Disease Ontology database DO [49], we obtained the semantic information of 
diseases, represented by a directed acyclic graph illustrating the parent–child relationship 
of diseases. This approach is based on the method proposed by Wang et al. [50] to compute 
disease similarity. For a disease di , let Di denote the set containing disease di and all its 
ancestor terms. The contribution Wdi(d) of other disease nodes d to di in this set can be 
expressed by the following equation:

The symbol � represents the semantic contribution attenuation factor, which is set to 
0.5 here. The contribution of disease di to itself has a value of 1, and the contribution of 
disease d to di decreases as the number of disease nodes spaced between them increases. 
As a result, the semantic value of disease di is represented by the following equation:

According to the assumption that if two diseases have more intersecting nodes in the 
same set, then the stronger their correlation is, the semantic similarity of diseases di and 
dj can be expressed as follows:

LncRNA and miRNA functional similarity

Based on the hypothesis of Wang et al. [51] that diseases possessing similar phenotypes are 
more likely to be associated with functionally similar lncRNAs and miRNAs, the semantic 
similarity of diseases calculated above can be combined with the association between 
lncRNAs and miRNAs and diseases to calculate the functional similarity of lncRNAs and 
miRNAs with the following formula:

(1)Wdi =

{

1di = d
max

d′∈children ofd

(

�×Wdi

(

d′
))

di �= d

(2)DS(di) =
∑

d∈Di

Wdi(d)

(3)DSim(di, dj) =

∑

d∈Di∩Dj

(

Wdi(d)+Wdj (d)
)

DS(di)+ DS(dj)
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Where R1 and R2 are the two lncRNA or miRNA nodes for which similarity is to be 
calculated, and n1 and n2 are the number of disease nodes associated with Ri and Rj.

Gaussian interaction profile kernel similarity for LncRNA, MiRNA, and Disease

Similar lncRNAs or miRNAs are more likely to be associated with similar diseases, 
based on the method proposed by Chen et  al [52], the Gaussian spectral nuclear 
similarity LGSim formula for lncRNAs is as follows:

where γl denotes the standardized core bandwidth for lncRNA similarity calculation 
which is generally set to 1, and nl denotes the number of lncRNAs. Similarity for disease 
DGSim is computed as follows:

where γd denotes the standardized core bandwidth for disease similarity calculation, 
and nd denotes the number of disease. Similarity for miRNAs MGSim is computed as 
follows:

where γm denotes the standardized core bandwidth for miRNA similarity calculation, 
and nm denotes the number of disease.

LDAGM
Deep topology feature extraction

To cope with the problem of sparse network structure, we propose a multi-similarity 
network fusion method for deep topological feature extraction based on the already 
computed functional similarity and Gaussian interaction profile kernel similarity of 
lncRNA and miRNA and the semantic similarity and Gaussian interaction profile ker-
nel similarity of disease, to realize the complementation of the network features, and 

(4)
FSim(Ri,Rj) =

[

∑n1
i=1 max

1≤j≤n2
(DSim(d1i, d2j))+

∑n2
j=1 max

1≤i≤n1
(DSim(d2j , d1i))

]

n1 + n2

(5)LGSim =exp(−γl ||LD(i, :)− LD(j, :)||2)

(6)γl =1/

(

1

nl

nl
∑

i=1

||LD(i, :)||2

)

(7)DGSim =exp(−γd ||LD(:, i)− LD(:, j)||2)

(8)γd =1/

(

1

nd

nd
∑

i=1

||LD(:, i)||2

)

(9)MGSim =exp(−γm||MD(i, :)−MD(j, :)||2)

(10)γm =1/

(

1

nm

nm
∑

i=1

||LD(i :, )||2

)
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to combine the fused deep homogeneous networks, namely, the three deep homoge-
neous networks, namely, lncRNA, disease, and miRNA, to obtain the multi-similar 
network. networks and the three interacting similarity networks are combined to 
obtain a multi-view heterogeneous network, as shown in Fig. 5.

Let lncRNA functional similarity adjacency matrix be LFM1 , Gaussian interaction 
profile kernel similarity adjacency matrix be LGM1 , and fused similarity adjacency 
matrix be LMi . miRNA functional similarity adjacency matrix be MFM1 , Gaussian 
interaction profile kernel similarity adjacency matrix be MGM1 , and fused similarity 
adjacency matrix be MMi , and disease semantic similarity adjacency matrix be DSM1 , 
Gaussian interaction profile kernel similarity adjacency matrix be DGM1 , and fused 
similarity adjacency matrix be DMi , then deep topological feature extraction formula 
is as follows.

(11)LM1 =
(LFM1 + LGM1)

max(LFM1 + LGM1)

Fig. 5  Deep topological feature extraction and multi-view heterogeneous network construction. A Deep 
topological feature extraction based on fusion of lncRNA, miRNA functional similarity, Gaussian interaction 
profile kernel similarity and disease semantic similarity, Gaussian interaction profile kernel similarity. B 
Integration of the fused lncRNA, disease, and miRNA homogeneous networks with the similar networks of 
the three interactions to construct a multi-view heterogeneous network
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where max(·) is the maximum operation. After the first layer of topological features is 
extracted, the functional similarity and Gaussian interaction profile kernel similarity 
neighboring matrices of lncRNA, miRNA and the semantic similarity and Gaussian 
interaction profile kernel similarity neighboring matrices of disease are updated with the 
following equations:

Where ⊗ is the matrix dot product operation, repeat the operation of Eq. 11, Eq. 12 and 
Eq. 13 to extract the second layer of topological features, and then continue to update 
the functional similarity, Gaussian interaction profile kernel similarity and semantic 
similarity of disease of lncRNA, miRNA, Gaussian interaction profile kernel similarity 
adjacency matrix, and keep repeating, to extract the deep topological features.

After extracting the deep topological features, they are integrated with similar 
networks of lncRNA, disease, and miRNA interactions in order to construct a multi-
view heterogeneous network. The multi-view heterogeneous network is represented 
by the form of a neighbor-joining matrix with the following structure:

Where, LMi , DMi , MMi are the topological features of lncRNA, disease and miRNA 
at layer i; LD is the lncRNA-disease association matrix; LM is the lncRNA-miRNA 
association matrix; DM is the disease-miRNA association matrix; and DL, ML, and MD 
are the transpositions of LD, LM and DM.

GCN‑AE

After integrating the multi-view heterogeneous networks, each view heterogeneous 
network is sequentially fed into the GCN-AE for nonlinear feature extraction, which 

(12)MM1 =
(MFM1 +MGM1)

max(MFM1 +MGM1)

(13)DM1 =
(DSM1 + DGM1)

max(DSM1 + DGM1)

(14)LFM2 =LM1 ⊗ LFM1

(15)LGM2 =LM1 ⊗ LGM1

(16)MFM2 =MM1 ⊗MFM1

(17)MGM2 =MM1 ⊗MGM1

(18)DSM2 =DM1 ⊗ DSM1

(19)DGM2 =DM1 ⊗ DGM1

(20)Ai =





LMi LD LM
DL DMi DM
ML MD MMi




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ensures that the information at each layer is fully learned and represented. The GCN-
AE is divided into an encoder and a decoder, the encoder gets the low-dimensional 
embedded form of the input data, which can reflect the nonlinear relationships in the 
input data, and the decoder decodes the output of the encoder to restore the data, 
and the process is shown in Fig. 6.

At the encoder layer, the input data is first Laplace normalized to reduce the noise in 
the data with the following equation:

where D is the diagonal matrix consisting of the degrees of each row of Ai . After 
calculating the Laplace normalized matrix of Ai , a convolution operation is performed 
on it and the result of the convolution is linearly transformed to obtain the output of the 
encoder with the following equation:

where W is a learnable weight matrix, b is a learnable bias term, and ReLU(·) is a 
nonlinear activation function. After obtaining the output of the encoder, it is fed into 
the decoder, and the output of the encoder is decoded through the bilinear layer with the 
following equation:

After obtaining the output of the decoder, the loss between the output of the decoder 
and Ai is measured using the mean square error loss function, and the loss is reduced by 
continuous iterative training, and finally, more accurate encoder embedding features can 
be obtained, and the formula for the mean square error loss function is as follows:

MLP

The nonlinear features are integrated with the deep topological features of the multi-
view heterogeneous network to obtain the final feature representation of lncRNA-disease 

(21)L = D− 1
2AiD

− 1
2

(22)Re = ReLU [(Ai × L)W + b]

(23)Rd = [ReLU(ReW + b)]W + b

(24)Loss =
1

n

n
∑

i=1

(

yi − y′i
)2

Input

GCN-Encoder

Embedding

Linear Decoder Output

Fig. 6  Nonlinear feature extraction. The multi-view heterogeneous network is fed into the encoder, which 
undergoes a convolution operation to obtain the embedded form of the input data and undergoes a bilinear 
decoding layer to decode the output of the encoder for reduction
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pairs, which are input into the MLP model for the prediction of lncRNA-disease associa-
tion relationship. In order to improve the performance and stability of the MLP model, 
this paper proposes an aggregation layer in the MLP model, which is used to control the 
flow of information between each hidden layer, so that each hidden layer extracts the 
optimal features. Each hidden layer corresponds to an aggregation layer, and the aggre-
gation layer receives inputs from the previous aggregation layer while receiving inputs 
from the current hidden layer, and the flow is shown in Fig. 7.

Fig. 7  Deep topological and nonlinear feature integration and MLP training. A Deep topological features 
and nonlinear features are integrated to obtain the final feature representation of lncRNA-disease pairs. B 
The integrated feature representations are input into the MLP model, and the final scores are obtained after a 
series of hidden and aggregated layers to fit the feature representations, and after a Sigmoid layer

Aggregate Layer 

Forget gate

Input gate

[InputData;ForgetData]

Update gate

Forget Data

Input Data

Fig. 8  Aggregate Layer. The output of the previous aggregate layer, AGi−1 , and the output of the current 
hidden layer, Hi , are passed through the forgetting gate and the input gate, where the features are filtered 
and the important features are retained. The update gate integrates the results of the forgetting gate and 
input gate outputs to get the output of the current aggregate layer
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The MLP model consists of multiple hidden layers, each of which receives the output 
of the previous hidden layer as input and linearly transforms it to fit the data, and the 
formula for the linear transformation made by each hidden layer is as follows:

where Hi−1 is the output of the previous hidden layer, Hi is the output of the current hid-
den layer, and both W and b are learnable weight matrices.The aggregation layer consists 
of three gates, namely input gate, forget gate, and update gate, and the flow is shown in 
Fig. 8.

The forgetting gate is used to control the inflow of information from the previous 
aggregate layer by keeping the important features and discarding the unimportant ones 
with the following formula:

where AGi−1 is the output of the previous aggregate layer, Sigmoid(·) is a nonlinear 
activation function that maps the values of the input into the interval [0, 1], FWi stands 
for the weight of the forgetting gate, and ⊗ stands for the dot product operation, FDi is 
the output of the forgetting gate.

Input gates are used to control the inflow of information into the current hidden layer, 
retaining important features and discarding unimportant features with the following 
formula:

where Hi is the output of the current hidden layer and IWi is the weight of the input gate, 
IDi is the output of the input gate.

The update gate integrates the data that passes through the forgetting gate and the 
data that passes through the input gate to get the output of the current aggregate layer 
with the following formula:

Where [IDi : FDi] represents the splicing operation of IDi and FDi along the last 
dimension, and UWi is the weight of the update gate, AGi is the output of the current 
aggregate layer. Stacking multiple aggregate layers, after considering the output of each 
hidden layer globally, by updating the gates, allows the model to dynamically learn which 
traits should be retained for each hidden layer.

(25)Hi = WHi−1 + b

(26)FWi =Sigmoid(AGi−1W + b)

(27)FDi =FWi ⊗ AGi−1

(28)IWi =Sigmoid(HiW + b)

(29)IDi =IWi ⊗Hi

(30)UWi =Sigmoid([IDi : FDi]W + b)

(31)AGi =UWi ⊗ IDi + (1− UWi)⊗ FDi
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The output of the last aggregate layer is passed through the Sigmoid activation func-
tion and mapped to the interval [0,1], and the loss measure is performed using the binary 
cross entropy loss function with the following formula:

where y denotes the label and is 1 if this lncRNA-disease is associated and 0 otherwise, 
and p represents the probability that the sample is predicted to be a positive case.
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