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Abstract: Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell
differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking),
making them key participants, especially in a great array of coronavirus infection processes. In
this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry,
endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also
suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies
provide deep insights and references to understand the pathogenesis of coronavirus as well as to
propose the potential of small GTPases as targets for adjuvant development.
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1. Introduction

Coronaviruses (CoVs), belonging to the Coronaviridea family, Nidovirales order, are
a group of large-scale and enveloped viruses with positive-sense, single-stranded RNA
genomes [1]. The RNA genomes of CoVs range in size from ~27 to 32 kb and encode
14 open reading frames (ORFs). Based on the serology and phylogenetic clustering, CoVs
can be classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus,
and Deltacoronavirus [2] shown in Figure 1. The symptoms and pathological damages
caused by CoVs are different. Some CoVs, like human coronavirus NL63 (HCoV-NL63),
human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), and
human coronavirus HKU1 (HCoV-HKU1), can cause human self-limiting common cold-
like illnesses. But severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle
East respiratory syndrome coronavirus (MERS-CoV) can induce life-threatening diseases
and have pandemic potential [3,4]. The current coronavirus disease 2019 (COVID-19)
pandemic caused by SARS-CoV-2 has infected over 539.9 million people and led to the
deaths of more than 6.32 million individuals as of late June 2022, thus causing a significant
threat to worldwide public health [5]. Additionally, some other CoVs, such as porcine
epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), can cause
severe diseases in swine and result in severe economic losses [1].

CoVs require multiple signaling molecules in the host cell to complete their life cycle
processes. Among them, small GTPases, especially their Rho, Rab, and Arf subfamilies,
are widely exploited by CoVs. The Rho subfamily has the function of controlling actin
turnover as well as coordinating cell shape and motility, and is mainly co-opted during the
CoV entry [6,7]. The Rab subfamily, which is involved in endocytic vesicle trafficking and
vesicle fusion, has been enlisted during the intracellular traffic, replication, and egress of
CoVs [7–9]. The Arf subfamily, which is involved in a broad spectrum of physiological roles,
such as the organization of the cytoskeleton, the sorting of vesicle cargo, the recruitment of
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vesicle coat proteins, and the vesicle budding in the secretory system, is mainly involved
in the late stages of CoV infection, such as viral replication and egress [10,11]. Therefore,
small GTPases play a role in the host cell for CoV infection. Besides, these small GTPases
and their regulators are important for adjuvant developments. Many molecules, such as the
regulators of small GTPases, have been discovered with potential adjuvant properties by
targeting the activity of small GTPases. These molecules can stimulate the adaptive immu-
nity and production of antibodies with powerful and long-lasting characteristics [12–14],
which are required for CoV vaccine adjuvant development. Thus, considering the diverse
roles of small GTPases in CoV infection, small GTPases are potential targets for CoV vaccine
adjuvant discovery.
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In this review, the small GTPase roles in the life cycle of CoVs are summarized, and
the current understanding of the interaction of small GTPases with CoVs is also presented.
Meanwhile, the molecules targeting small GTPases with adjuvant activity are listed, and
the potential of small GTPases as targets for adjuvant development is discussed. This
review is beneficial for understanding the pathogenesis of CoVs as well as paves the way
toward the small GTPases as targets for adjuvant development.

2. Overview of the Regulation and Function of Small GTPases

Small GTPases, belonging to the Ras superfamily, are monomeric guanine nucleotide-
binding proteins of low molecular weight (21 to 30 kDa) [15]. These small GTPases partici-
pate in signaling cascades that control a wide range of cell responses, such as proliferation,
differentiation, and motility [16,17].

The small GTPases are molecular switches that undergo a cycle switch between an
active GTP-bound form and an inactive GDP-bound state. Three sets of proteins can
regulate these GTP-GDP switches. Guanine nucleotide exchange factors (GEFs) catalyze
the activating exchange of GDP for GTP, GTPase activating proteins (GAPs) stimulate
the intrinsic GTPase activity to inactivate the switch, and guanine nucleotide-dissociation
inhibitors (GDIs) block spontaneous activation [16] (Figure 2). By hydrolyzing GTP, these
GTPases act as molecular switches that interact with effector proteins and control the
activity and function of a variety of specific targets, including enzymes, scaffolds, and
accessory proteins, which are involved in a diverse array of cellular events [16].
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Figure 2. The activation/inactivation cycle and function of small GTPases. GAP binding induces
the GTP hydrolysis and inactivation of small GTPases. GDIs sequester small GTPases and mediate
intermembrane transport by forming soluble complexes. GEF-mediated nucleotide exchange activates
GDP-bound small GTPases. In their GTP-bound form, they interact with effector proteins to trigger
downstream signaling events. The most representative functions of small GTPases are listed in the box.

According to the sequence homology and the physiological functions, small GTPases,
with more than 150 members, are divided into five major subfamilies: Ras, Ran, Rho,
Rab, and Arf [18]. Members of these subfamilies share common structural features, which
are four guanine nucleotide-binding domains and one effector-binding domain, but have
different functions (Figure 2). The Ras subfamily includes 36 different members and is
responsible for the activation of intracellular signaling networks involved in enhancing
cellular proliferation, adhesion, migration, as well as cell survival [19]. The Ran subfamily
consists of only one protein, Ran, which controls molecular export and import from the
nucleus to the cytoplasm. The Rho subfamily, comprised of 22 members, is involved in
reorganizing the actin cytoskeleton and in coordinating cell shape and movement [20]. The
best-characterized members of the Rho GTPases are Rac1, RhoA, and Cdc42 in mammalian
cells. Rac1 activation regulates the formation of lamellipodia or membrane ruffles. RhoA
primarily promotes the formation of actin stress fibers and the assembly of focal adhesion,
whereas Cdc42 induces the formation of protruded filopodia. The Rab subfamily consists of
approximately 70 members whose main functions are to control trafficking, docking, bud-
ding, and fusion of specific vesicles [21]. Each Rab protein associates with an organelle and
specifies a trafficking step along endocytic, exocytic, and recycling pathways [22,23]. The
Arf subfamily, with 30 members, controls cellular processes such as bidirectional membrane
trafficking (secretion and endocytosis), lipid metabolism, motility, division, apoptosis, and
gene transcription [24]. The Arf GTPases are localized in the plasma membrane, endosomes,
lipid droplets, mitochondria, and lysosomes and are well recognized for their roles in the
recruitment of coat proteins/complexes and initiation of vesicle formation in membrane
trafficking, particularly at the Golgi [20,24].

Given the importance of small GTPases in a variety of cellular processes, numerous
viruses have evolved diverse interactions with small GTPases and manipulated them for
their benefit [25–28]. CoVs, like many other viruses, employ a similar strategy. In the
following, we will focus on the function of small GTPases that have been reported during
diverse lifecycles of CoVs.

3. Overview of the Role of Small GTPases in Host Cell for CoV Infection

Currently, numerous studies on the CoV life cycle have been reported to explain
CoV outbreaks [29]. Briefly, CoV initiates infection by binding to cell receptor(s) before
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entering the host cell and releasing the genome into the cytoplasm. Shortly after that,
the viral membrane can either fuse directly with the host cell, or viruses are internalized
via endocytosis [8]. Subsequently, CoV releases genomic RNA into the cytosol to initiate
transcription and translation, capsid maturation, and envelopment, and ultimately virus
egress from the host cell [29]. During CoV infection, the small GTPases, especially Rho,
Rab, and Arf GTPases, are involved in the diverse processes of the CoV life cycle (Figure 3).
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3.1. Roles of Rho GTPases in CoV Infection

As the powerful signaling molecules in cells, Rho GTPases are found in all eukaryotic
organisms and regulate cell polarity and motility through their effects on the cytoskeleton,
membrane trafficking, and cell adhesion [30]. Increasing evidence shows that many viruses
evolve diverse interactions with Rho GTPase signaling and manipulate them for their own
benefit. Especially in the case of CoV infection, Rho GTPases participate in the processes of
pre-entry and endocytosis.
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3.1.1. Pre-Entry

The actin filaments, the most abundant polymers in a large number of cells, can
construct finger-like protrusions, such as filopodia, which are important for virus land [31].
During pre-entry, CoVs induce the rearrangement of the actin cytoskeleton by activating
Rho GTPases, which allows them to surf along the cell surface, ultimately facilitating
their entry (Figure 4). A study using porcine hemagglutinating encephalomyelitis virus
(PHEV) labeled with the lipophilic fluorescent dye DiD discovered that at the first 10 min
post-infection, the virus reached the actin-rich protrusion, and subsequently (at ~30 min
post-infection), the virus surfed along the filopodia via actin rearrangement for entry by
activating Rac1 and Cdc 42 signaling [6,7]. Similar results were also found during PEDV
and TGEV entries. After the viruses bound to IPEC-J2 cells, they were found to move on
the cells along filopodia formed by microfilaments, which then gathered around the viruses
for viral internalization [32].
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Figure 4. An overview of the roles of Rho GTPases in CoV infection. During pre-entry, CoVs (PEDV,
TGEV, and PHEV) attach to the plasma membrane, and subsequently, land on the cell surface along
the filopodia to locate specific receptor(s), which are Rac1 and Cdc42 dependent. The interaction
between the specific virus-receptors can activate signaling cascades, guiding the virus internalization
through one or more of the following pathways: clathrin-mediated endocytosis for MERS-CoV,
PDCoV, HCoV-NL63, PHEV, MHV, SARS-CoV, SARS-CoV-2, TGEV, and PEDV infection with Cdc42
and Rac1 dependent; caveolae-mediated endocytosis for HCoV-229E, HCoV-OC43, PDCoV, and
PEDV infection with RhoA and Rac1 dependent; macropinocytosis for PEDV, PDCoV, SARS-CoV,
and SARS-CoV-2 infection with Rac1 and Cdc42 dependent; and CLIC/GEEC for SARS-CoV-2 in-
fection with Cdc42 dependent. Abbreviations—MTOC: microtubule organizing center; CLIC/GEEC:
clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched endosomal
compartments; PHEV: hemagglutinating encephalomyelitis virus; PEDV: porcine epidemic diarrhea
virus; TGEV: transmissible gastroenteritis virus; MERS-CoV: Middle East respiratory syndrome coron-
avirus; SARS-CoV: severe acute respiratory syndrome coronavirus; PDCoV: porcine deltacoronavirus;
MHV: mouse hepatitis coronavirus; HCoV-NL63: human coronavirus NL63; HCoV-229E: human
coronavirus 229E; HCoV-OC43: human coronavirus OC43.
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3.1.2. Endocytosis

After migrating along the cell surface to a specific receptor(s), the virus-receptor
interactions activate signaling cascades that can guide the virus into cells through the
clathrin-dependent and/or clathrin-independent endocytosis pathways. The clathrin-
independent endocytosis pathways cover a diversity of internalization routes, such as
caveolin-dependent endocytosis (CDE), micropinocytosis, and the clathrin-independent
carrier/glycosylphosphatidylinositol-anchored protein-enriched endosomal compartments
(CLIC/GEEC) pathway. The above types are all hijacked by CoVs and frequently involve
Rho GTPase signaling (Figure 4).

Clathrin-mediated endocytosis (CME), which transports a large number of different
cargoes from the plasma membrane into the cell, plays a key role in maintaining cell mem-
brane homeostasis and regulating intracellular signaling [33]. As a key regulator of actin
dynamics, Rho GTPases affect not only the formation of clathrin-coated vesicles but also the
subsequent movement of vesicles [25,34]. A study using siRNA techniques elucidated that
mouse hepatitis coronavirus (MHV) entered cells via actin cytoskeleton-dependent CME
and was regulated by Rac1 and Cdc42 signaling [35–37] (Figure 4). Other CoVs, including
MERS-CoV [38], PDCoV [39], HCoV-NL63 [40], SARS-CoV [41] and SARS-CoV-2 [42],
have been reported to enter cells also via CME (Figure 4). The interaction between the
HCoV-NL63 and the ACE2 molecule could trigger the recruitment of clathrin, followed
by clathrin-mediated, dynamin-dependent endocytosis, which relies on actin remodeling
regulated by Rho GTPases [40,43]. Furthermore, PHEV invaded N2a cells via CME, which
may be dependent on actin assembly as well, as actin kinetics and cofilin activity affected by
the integrin α5β1-FAK-Rac1/Cdc42-PAK-LIMK-cofilin pathway contribute to PHEV inva-
sion [6,7] (Figure 4). The same endocytosis pathway has been described during the entry of
TGEV and PEDV [8,44] (Figure 4). During their internalization, the epidermal growth factor
receptor (EGFR) was activated. The interaction of the TGEV spike protein with the EGFR
activated the downstream phosphoinositide-3 kinase (PI3K), which then caused the cofilin
phosphorylation and F-actin polymerization via Rac1/Cdc42 GTPases [45]. This study is
consistent with the reports that when EGFR in the lipid rafts is stimulated, the endocytosis
of membrane microdomains can occur through signaling cascades in clathrin-dependent
and/or clathrin-independent mechanisms [46,47].

Caveolae-mediated endocytosis (CavME) is one of the clathrin-independent endocytic
pathways involving caveolae, which are 50- to 100-nm bulb-shaped invaginations [48,49].
This pathway has unique signaling machinery and is involved in the internalization of
some CoVs (Figure 4), such as HCoV-229E [36], HCoV-OC43 [50], porcine deltacoronavirus
(PDCoV) [51], and PEDV [8]. During virus internalization via CavME, Rho GTPases may
play a role in the budding of caveolae. Upon stimulation, RhoA and Rac1 can be recruited
to caveolae, and RhoA has been shown to interact directly with caveolae [52,53]. Moreover,
the Rho GTPase-regulated actin stress fibers can affect the linear distribution of many types
of caveolae in the plasma membrane [54]. Furthermore, Rho GTPases have been proposed
to regulate caveolae formation [55]. Interestingly, CavME, in turn, can also regulate the
activity and localization of Rho GTPases [56], as well as induce the depolymerization and
mobilization of Rho GTPase-dependent actin rearrangement [57].

Macropinocytosis is a transient, actin-dependent cellular process that leads to the
internalization of fluid and membrane into large vacuoles and is widely used by viruses,
including CoVs [58,59] (Figure 4). In this pathway, the interaction between the virus
and the cell membrane triggers the intracellular signals that are necessary to induce the
membrane blebbing and ruffles as well as the formation of macropinosomes [59]. The
intracellular signals include multiple small GTPases, such as Rac1 and Cdc42, which are
responsible for triggering the membrane ruffles of macropinocytosis by activating the
effectors of actin polymerization and stability, as well as the effectors of myosin-dependent
contraction [60–63]. It was reported that PDCoV and PEDV entered cells both through the
macropinocytosis pathway [39,58]. Moreover, during internalization, the tight junction
protein occluding, as the entry factor of PEDV, was also internalized with PEDV through the



Viruses 2022, 14, 2044 7 of 18

macropinocytosis pathway, revealing a new mechanism of PEDV infection [58]. In addition,
macropinocytic uptake has also been suggested for SARS-CoV, as SARS-CoV can induce
membrane ruffles and share some signaling molecules with macropinosome formation,
such as PI3K, vimentin, Abl, and Ras, during entry [64]. More recently, the function of
macropinocytosis in SARS-CoV-2 entry has also been investigated. It was described that
the macropinocytosis inhibitor EIPA substantially decreased the concentration of viral RNA
in the supernatant of SARS-CoV-2-infected Vero E6 cells [65].

The other endocytic route that CoVs enter is the CLIC/GEEC pathway, which is
regulated by small GTPases like Cdc42 [66] (Figure 4). A report showed that the receptor-
binding domain (RBD) of SARS-CoV-2 spike protein was internalized in human gastric-
adenocarcinoma (AGS) cells via the pH-dependent CLIC/GEEC endocytic pathway, which
may propose a new strategy to target SARS-CoV-2 entry [67].

3.2. Roles of Rab GTPases in CoV Infection

Rab GTPases, the largest family of small GTPases, are key regulators of intracellular
itineraries, particularly in endocytic vesicle trafficking and vesicle fusion [22]. This mech-
anism has been subtly enlisted by viruses [23]. After being endocytosed, viral particles
are sequestered in endocytic organelles and transported to designated locations until the
appropriate conditions are met for viral-genome release, during which the associated Rab
proteins are recruited.

3.2.1. Intracellular Trafficking

After internalization, many viruses are delivered to suitable endosomes and follow
the intracellular pathway of the endosomal/lysosomal system. A study using infectious
bronchitis virus (IBV) labeled with octadecyl rhodamine (R18) revealed that the virus
moved along with the classical endosome/lysosome track, in which the activated Rab5
and Rab7 were required [68]. Similar results were also observed in PEDV-infected Vero and
IPEC-J2 cells. PEDV colocalized with EEA1 (Rab5), Rab7, and LAMP1 after 30 min, 40 min,
and 50 min of endocytosis, respectively. These results revealed that PEDV was transported
by specific endosomes and through the early endosome-late endosome-lysosomal pathway
after endocytosis [8,69]. In addition, the functional impact of RNAi (RNA interference)
mediated gene silencing revealed that the endocytosis-associated proteins EEA1, Rab5,
Rab7A, and Rab7B were important for MHV infection [70]. Similarly, the requirement
of Rab5 and Rab7, but not Rab11, to transport PDCoV particles after endocytosis was
also found by using RNAi and overexpression of the dominant negative mutant of Rab
proteins [39]. Furthermore, in a recent study, SARS-CoV-2 was reported to undergo rapid,
clathrin-mediated endocytosis in infected cells, and its spike protein could colocalize with
Rab5 after 25 min of internalization [42]. Therefore, these studies have revealed that Rab
GTPases are required for the intracellular trafficking of CoVs following endocytosis.

As mentioned above, Rab GTPases are powerful tools for discriminating between
pathways leading to different intracellular locations. Strikingly, although most CoVs
undergo intracellular trafficking via the Rab GTPase-dependent endosome-lysosome in-
tracellular trafficking pathway, the membrane fusion sites of CoVs are quite different [70].
The fusion site for MHV and feline infectious peritonitis virus (FIPV) is in the lysosome
(Rab7/LAMP1-positive compartments), whereas MERS-CoV and PHEV occur in the early
endosome [7], and PEDV primarily occurs in the late endosome (Rab7-positive compart-
ment) [8] (Figure 5). Given the growing number of proteases that have been shown to
cleave the CoV spike proteins [71], CoVs evolve to fuse in different organelles, probably
related to the proteolytic enzymes available in CoV target tissues and cells in vivo.
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Figure 5. An overview of the roles of Rab GTPases in CoV infection. After internalization, CoVs are
delivered to suitable endosomes and follow the intracellular pathway of the endosomal/lysosomal
system with diverse Rab GTPases involved. Subsequently, CoVs fuse at the designated locations,
such as MERS-CoV and PHEV fusion, which both occur in the early endosome; PEDV fusion mainly
occurs in the late endosome; MHV and FIPV fusions occur in the lysosome. In addition, Rab GTPases
also play an important role in CoV replication and egress. For example, the replication of PHEV
and PDCoV genomes needs the help of Rab5 and Rab7, and IBV, as a well-established model virus
used to investigate the pathway of CoV, egress from host cells needs to employ Rab1 and Rab11.
Abbreviations—MERS-CoV: Middle East respiratory syndrome coronavirus; PHEV: hemagglutinating
encephalomyelitis virus; PEDV: porcine epidemic diarrhea virus; MHV: mouse hepatitis coronavirus;
PDCoV: porcine deltacoronavirus; FIPV: feline infectious peritonitis virus.

3.2.2. Replication

As the acidic environment of endosomes can facilitate the infiltration of the incoming
viruses into the host cytoplasm, thus, Rab GTPases, especially Rab5 and Rab7, are used
for the productive infection of CoVs (Figure 5). In PHEV-infected mouse neuroblastoma
(Neuro-2α) cells, Rab GTPases are not only involved in the trafficking of internalized
PHEV but also play a crucial role in viral proliferation. By using the DiD-labeled PHEV,
the colocalization between PHEV and Rab5 or Rab7 was found. Furthermore, a GTPase
activation assay in this study suggested that the high-GTPase-activity isoform Rab5 could
facilitate PHEV RNA replication and proliferation, while the dominant negative isoform
Rab5 significantly inhibited the productive infection of PHEV [7]. Likewise, a study
reported that silencing Rab5 and Rab7 could notably reduce viral RNA copy numbers
and N protein expression levels of PDCoV via RT-qPCR and Western blot analysis [39].
Moreover, it was also reported that PDCoV and its entry cofactor aminopeptidase N (pAPN)
colocalized with the endocytotic markers Rab5, Rab7, and LAMP1, suggesting that pAPN
mediates PDCoV entry by an endocytotic pathway. More importantly, it was emphasized
that regardless of receptor usage, only PDCoV entry via an endocytosis route ultimately
leads to efficient replication [72]. These studies highlight the significance of Rab GTPases
in CoV replication.
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3.2.3. Egress

After the viral genome is transported to specific sites in the cytoplasm for replication
and assembly, an increasing number of viruses turn out to exploit the endocytic recycling
apparatus defined by Rab11 to egress from their host cells [9,26–28,73–75]. CoVs, like
many other enveloped viruses that bud either intracellularly or at the cell surface, have
recently been reported to employ Rab11 to gain exit from their host cell [9] (Figure 5). IBV,
as a well-established model virus, is used to investigate the pathway of CoV egress from
epithelial Vero cells. The result showed that IBV bypassing the Golgi stacks was based on a
direct connection between the intermediate compartment (IC) and the endocytic recycling
defined by Rab1 and Rab11, respectively. In this study, the endocytic recycling system
provided the carriers for the final delivery of the virus for exocytosis. Interestingly, using
IBV as a model virus to investigate the egress pathway of CoV showed that the M protein of
IBV in the IC elements was colocalized with Rab11, while negligible overlap with LAMP-1
was observed, indicating that IBV (γ-CoV) egress does not occur via late endosomes or
lysosomes, which is different from β-CoVs (SARS-CoV-2 and MHV) using Rab7 GTPases
dependent-lysosomes for egress (the detail will be described in the roles of Arf GTPase
in CoV infection) [10]. Strikingly, even CoVs from the same genus, such as SARS-CoV
and SARS-CoV-2, which both belong to β-CoVs, also have different exit strategies due to
differences in their protein sequences [76]. Thus, it is not surprising that CoVs of different
genera egress in various ways.

3.3. Roles of Arf GTPases in CoV Infection

The ADP-ribosylation factor (ARF) small GTPases, including Arl (Arf-like) GTPases,
are best known for their roles in membrane trafficking and vesicle sorting [77]. Similar to
other GTPases, Arf GTPases act as molecular switches by shuttling between their active
GTP-bound and inactive GDP-bound conformations, which are regulated by GTPase-
activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Besides
Rab GTPases, Arf GTPases are also involved in the late stages of CoV infection as viral
replication and egress (Figure 6).
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Figure 6. The roles of Arf GTPases in CoV infection. After genome release, MHV will experience
RNA replication in the cytoplasm with the help of Sar1 and ARF1 GTPases. After viral replication
and assembly, β-coronaviruses such as SARS-CoV-2 and MHV packed by lysosomes may undergo an
anterograde movement along microtubules for egress, which is regulated by Arl8b and Rab7 GTPases.
Abbreviations—MHV: mouse hepatitis coronavirus; SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2.
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In MHV infection, the two Arf GTPases, Sar1 and ARF1, are both involved in MHV
replication. There are two major steps in the anterograde protein secretion route that are
linked to MHV replication complex (RC) formation and/or RNA replication [11]. First, the
transport of proteins out of the endoplasmic reticulum (ER) requires ER exit site formation
controlled by Sar1. Blocking this early step by expressing a dominant mutant of Sar1
blocks MHV replication profoundly [78]. Next, ER exit sites develop into or form de novo,
vesicular-tubular clusters (also called ERGIC), for which ARF1 is required. This step, which
is also involved in MHV RC formation, can be blocked by expressing a dominant-negative
mutant of ARF1 or by down-regulating ARF1 using siRNA [11].

Another Arf GTPase, Arl8b, is a small Arf-like Ras family GTPase that localizes to
the late endosomes/lysosomes and regulates their movement to the plasma membrane
and, ultimately, their exocytosis. It was reported that Arl8b was not involved in MHV
replication, but was for MHV egress [10]. A recent study using imaging techniques and
virus-specific reporters revealed that β-coronaviruses, including SARS-CoV-2 and MHV,
used lysosomal trafficking for egress, which was regulated by Arl8b and Rab7 GTPases,
rather than the more common biosynthetic secretory pathways used by other enveloped
viruses [79,80]. In this research, the progeny viruses were released from cells via lysosomal
exocytosis. It is known that the subcellular localization of lysosomes is determined by the
balance between Rab7 and Arl8b [81], but it is unclear how viruses enter lysosomes and
which viral proteins or related host proteins are involved in the process of virus egress. It
was demonstrated that ORF3a of SARS-CoV-2, but not SARS-CoV, could promote lysosomal
targeting of the BORC-Arl8b complex and exocytosis-related SNARE protein to promote
lysosomal exocytosis. Moreover, it was also found that the reason for the differential
function of SARS-CoV-2 and SARS-CoV ORF3a in lysosomal exocytosis was due to the
residues 171 and 193 of ORF3a [76], and this difference is critical for us to understand the
mechanism by which endows SARS-CoV-2 with much higher infectivity and pathogenicity
than SARS-CoV. Furthermore, as Arl8 GTPase can bind kinesin1 through its effector SKIP
(SifA and kinesin-interacting protein) to promote lysosomes towards the cell periphery
by moving along the microtubule with the plus end-directed transport [82], CoVs might
undergo the Arl8b GTPase-mediated anterograde movement along the microtubule toward
the cell membrane, and this possibility still needs further experiments to confirm.

The above highlights multiple functions of small GTPases during CoV entry, intra-
cellular trafficking, replication, and exit from the host cell, as summarized in Table 1. The
interactions of small GTPases and CoVs not only reveal how these signaling molecules en-
gage in the viral replication cycle but also demonstrate knowledge of the processes in which
they are naturally involved. However, there are a lot of GTPases belonging to these three
subfamilies, and even many small GTPases involved in the same cellular functions, such as
Rab5, Rab7, Rab14, and Rab36, all involved in the intracellular transport of cargoes [22,83].
Therefore, the crosstalk between these various proteins and related signaling axes will
further complicate this field of study. In addition, while the well-studied members of the
Rho, Rab, and Arf GTPases are very important viral targeted small GTPases, other currently
un(der)studied small GTPases could also be important for viral infection. Furthermore, the
timing, duration, and subcellular localization of specific small GTPases are also important
for their functions [25]. Thus, the specific impact of the different small GTPases in virus
infection merits further attention in the future. For many viruses, including CoVs, the
involvement of small GTPase signaling during infection is still largely based on inhibitor
studies or some static research methods. Therefore, direct and dynamic research methods
will be more welcomed and encouraged to precisely and in-depth reveal the infection
mechanism of CoVs as well as other viruses.



Viruses 2022, 14, 2044 11 of 18

Table 1. Summary of the roles of small GTPases in CoV infection.

Phase Virus (Genera) * Small GTPase (Family) Reference

Pre-entry

PHEV (β) Rac1 and Cdc42 (Rho GTPase) [6,7]

PEDV (α) Rac1 and Cdc42 (Rho GTPase) [6,7,32]

TGEV (α) Rac1 and Cdc42 (Rho GTPase) [6,7,32]

Endocytosis
(CME)

MHV (β) Rac1 and Cdc42 (Rho GTPase) [35–37]

PDCoV (δ) Rac1 and Cdc42 (Rho GTPase) [39]

MERS-CoV (β) Rac1 and Cdc42 (Rho GTPase) [25,34,38]

HCoV-ML63 (α) Rac1 and Cdc42 (Rho GTPase) [40,43]

SARS-CoV (β) Rac1 and Cdc42 (Rho GTPase) [25,34,41]

SARS-CoV-2 (β) Rac1 and Cdc42 (Rho GTPase) [25,34,42]

PHEV (β) Rac1 and Cdc42 (Rho GTPase) [6,7]

PEDV (α) Rac1 and Cdc42 (Rho GTPase) [8,25,34]

TGEV (α) Rac1 and Cdc42 (Rho GTPase) [44,45]

Endocytosis
(CavME)

HCoV-229E (α) RhoA and Rac1 (Rho GTPase) [36,52,55]

HCoV-OC43 (β) RhoA and Rac1 (Rho GTPase) [50,52,55]

PDCoV (δ) RhoA and Rac1 (Rho GTPase) [51,52,55]

PEDV (α) RhoA and Rac1 (Rho GTPase) [8,52,55]

Endocytosis
(Macropinocytosis)

PDCoV (δ) Rac1 and Cdc42 (Rho GTPase) [39]

PEDV (α) Rac1 and Cdc42 (Rho GTPase) [39,58]

SARS-CoV (β) Rac1 and Cdc42 (Rho GTPase) [39,64]

SARS-CoV-2 (β) Rac1 and Cdc42 (Rho GTPase) [39,65]

Endocytosis
(CLIC/GEEC) SARS-CoV-2 (β) Cdc42 (Rho GTPase) [66,67]

Intracellular Trafficking

IBV (γ) Rab5 and Rab7 (Rab GTPase) [68]

PEDV (α) Rab5 and Rab7 (Rab GTPase) [8,69]

MHV (β) Rab5, Rab7A and Rab7B (Rab GTPase) [70]

PDCoV (δ) Rab5 and Rab7 (Rab GTPase) [39]

SARS-CoV-2 (β) Rab5 (Rab GTPase) [42]

FIPV (α) Rab7 (Rab GTPase) [7,70]

MERS-CoV (β) Rab5 and Rab7 (Rab GTPase) [7,70]

PHEV (β) Rab5 and Rab7 (Rab GTPase) [7]

Replication

PHEV (β) Rab5 and Rab7 (Rab GTPase) [7]

PDCoV (δ) Rab5 and Rab7 (Rab GTPase) [72]

MHV (β) Sar1 and ARF1 (Arf GTPase) [11,78]

Egress

IBV (γ) Rab1 and Rab11 (Rab GTPase) [9]

SARS-CoV (β) Rab7 (Rab GTPase) [10]

SARS-CoV-2 (β) Rab7 (Rab GTPase)/Arl8b (Arf GTPase) [10,79,80]

MHV (β) Rab7 (Rab GTPase)/Arl8b (Arf GTPase) [10,79,80]

* TGEV: porcine transmissible gastroenteritis virus; PEDV: porcine epidemic diarrhea virus; HCoV-NL63:
human coronavirus NL63; HCoV-229E: human coronavirus 229E; HCoV-OC43: human coronavirus OC43;
SARS-CoV: severe acute respiratory syndrome coronavirus; MERS-CoV: Middle East respiratory syndrome coron-
avirus; PHEV: hemagglutinating encephalomyelitis virus; MHV: mouse hepatitis coronavirus; PDCoV: porcine
deltacoronavirus; FIPV: feline infectious peritonitis virus; IBV: infectious bronchitis virus.
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4. The Potential of Small GTPases as Adjuvant Targets in the Sites Related to
CoV Infection

As a result of the emerging coronavirus pandemic, there is an urgent need to develop
effective and safe vaccines that can be rapidly deployed globally [84,85]. Adjuvants are
key components of both subunit and some inactivated vaccines because they induce
specific immune responses that are stronger and longer-lasting [86,87]. However, there are
only a few adjuvants that have received Food and Drug Administration (FDA) approval
and are reported in CoV vaccines, such as aluminum salts, MF-59, and AS03 [88–90].
Aluminum salts, whose adjuvant properties were discovered about 90 years ago, are the
most widely used because of their wide-spectrum ability to strengthen immune responses
and their excellent track record of safety [91–93]. However, a low level of Th1 CD4+ T
cell and cytotoxic CD8+ T cell immunological responses, which are characteristic of alum-
adjuvanted vaccinations, was observed when alum was employed as an adjuvant in CoV
vaccines [90]. MF59 and AS03, in contrast to alum, can elicit more balanced immunity in
CoV vaccines, potentially by increasing antigen absorption, attracting immune cells, and
encouraging the migration of activated antigen-presenting cells. However, AS03 as an
adjuvant has been reported to have some safety concerns, as it is associated with narcolepsy
in some countries [94]. Additionally, due to various antigen types, MF59 can result in
distinct cell-mediated immunity when used as an adjuvant in CoV vaccines. For example,
when formulated with the MERS-CoV S protein, MF59 enhanced both effective CD4+

and CD8+ T cell responses; whereas when combined with inactivated SARS-CoV, MF59
only induced CD4+ T cell but not CD8+ T cell responses [95,96]. Furthermore, it was also
reported that the serum derived from mice immunized with MERS S at various doses in
the presence of MF59 did not significantly differ in the neutralizing activity due to the dose-
sparing effect of MF59 when it was formulated with MERS S protein [96]. Thus, it is still
urgent to develop adjuvants with unique safety and efficacy profiles for the CoV vaccine.

Small GTPase, a potent signaling molecule in cells, is not only involved in many CoV
infection processes but also may be a potential target of adjuvant for the CoV vaccine.
Although few CoV adjuvants targeting small GTPases have been discovered, compounds
with adjuvant capabilities targeting small GTPases are being explored in several aspects
related to SARS-CoV-2 infection.

The Rho GTPase activators, cytotoxic necrosis factor 1 (CNF1), and dermal necrosis
toxin (DNT) have been reported to have adjuvant properties in the mucosa, the primary
site of SARS-CoV-2 infection in the upper respiratory tract. CNF1 is a 114 kDa protein that
belongs to a family of bacterial toxins. Once inside the cytosol, CNF1 catalyzes a reversible
activation of the Rho GTPases of Rac and Cdc42 by inducing a counterintuitive mechanism
that activates the Rho protein by deamidation [97,98]. A study reported that the endothelial
cells exposed to high doses of CNF1 could result in a large array of immunomodulators,
like IL-8, MCP-1, and MIP-3α, and this was dependent on the function of CNF1 in Rac or
Cdc42 activation [99]. Moreover, in the model of intranasal vaccination against tetanus
toxin, CNF1 was identified as an effective immunoadjuvant, as it could elicit a specific and
durable anti-tetanus toxin response in immunized mice [14]. In addition, a study in mice
co-fed with the toxin and the soluble protein antigen ovalbumin (OVA) reported that CNF1
could elicit adjuvanticity anti-OVA responses in mucosal [12]. A similar result was also
found in DNT. It was reported that the catalytic domain of DNT, which deamidates and
transglutaminases Rho proteins, could stimulate the adaptive immunity and production of
antibodies to orally co-administered ovalbumin [12]. These studies suggest that the Rho
GTPases are major mediators of the immune responses, and manipulation of Rho GTPase
activity can propose a new adjuvant strategy to modulate the mucosal immune responses.

In addition, a recent study has shown that SARS-CoV-2 specific adaptive immune
responses are associated with milder disease, and CD4+ and CD8+ T cell synergistic re-
sponses play a synergistic role in protective immunity against COVID-19 [100]. Dendritic
cells (DCs), a master for inducting and regulating immune responses involving both CD4+

and CD8+ T cells, are widely distributed in the respiratory tract and act as important
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sentinels [101]. Leptin is an adipocyte-derived hormone/cytokine that has an important
role in the immune responses of DCs. Studies showed that leptin could promote cofilin
activation and cytoskeleton rearrangement by activating Rac1 and triggering Vav phospho-
rylation, thus improving the migration performance of immature DCs, which functionally
upregulated L-12p70 production on CD40 stimulation in immature DCs and increased their
capacity to activate autologous CD8+ T cells [13]. Therefore, leptin can represent an optimal
candidate adjuvant for SARS-CoV-2 vaccination.

Furthermore, lipophilic statins (e.g., simvastatin) and lipophilic bisphosphonates
are also potent vaccine adjuvants and have been demonstrated in mice and cynomolgus
monkeys. These adjuvants target the small GTPases by inhibiting the geranylgeranylation
of small GTPases (e.g., Rab5), resulting in arrested endosomal maturation, prolonged
antigen retention, enhanced antigen presentation, and T cell activation [88]. Moreover,
statins are low-cost, extensively tested, and well-tolerated drugs that are also supported as
adjunctive therapy in the clinical management of COVID-19 patients [102]. Furthermore,
two nonsteroidal anti-inflammatory drugs, R-naproxen and R-ketorolac, have been reported
as potential adjuvants in cancer therapy, with similar hyperinflammatory conditions to
COVID-19 [103,104]. They can block the activation of Rac and Cdc42 GTPases in response
to growth factor stimulus, as well as downstream cellular responses that depend on these
activated GTPases, like cell proliferation, migration, and adhesion [104]. Given the function
of Rho GTPases in CoV infection, R-naproxen and R-ketorolac have great potential as
adjuvants for CoVs. But it still needs further verification.

Significantly, similar to aluminum salts, MF-59, and AS03, the above compounds
targeting small GTPases also have good adjuvant capabilities (Table 2), and in some aspects,
even better than these three adjuvants, such as CNF1 is more potent than alum in inducing
mucosal IgA antibody responses [12,94]. Therefore, with the diverse roles of small GTPases
in CoV infection, targeting small GTPases for the development of CoV vaccine adjuvants
will be a new and promising research area.

Table 2. Adjuvant molecules targeted small GTPases.

Molecule (Adjuvant) Targeted Small GTPase Cell/Animal Type Studied Reference

CNF1 * Rac1 and Cdc42 HEp-2 cell; Females BALB/c Mice [12]

DNT * Rac1 and Cdc42 Females BALB/c Mice [12]

Leptin Rac1 Dendritic cells (DCs) [13]

Lipophilic statins and
bisphosphonates Rab5 B16-OVA, TC-1 and B16-F10;

Mice and Cynomolgus Monkeys [88]

R-naproxen and
R-ketorolac Rac and Cdc42 Cell-based and preclinical animal studies have been

completed (cell and animal types not reported) [104]

* CNF1: cytotoxic necrosis factor 1; DNT: dermal necrosis toxin.

The adjuvant is a critical component of vaccine development, but its paucity of mecha-
nism research on the targets limits its further application [88]. As small GTPases with a
large number of them involved in the same cellular functions [22], their role depends on the
timing, duration, and subcellular location of the signal [25]. Therefore, the role of specific
small GTPases at the subcellular localization and signaling pathway level in the CoV life
cycle is a key point. It will be helpful to find the small GTPase target. In addition, to achieve
the small GTPases as adjuvant targets, two additional problems need to be solved. One is
to select the compounds or cellular factors that can mediate the function of the target small
GTPases. Another is to screen for compounds or cellular factors with adjuvant activity
and long-term safety, such as Rho GTPase activators, CNF1, and DNT having adjuvant
properties [12].
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5. Conclusions

As obligate cellular parasites with limited genomic capacities, CoVs have evolved to
effectively utilize intracellular factors to facilitate their life cycle, including entry, intracellu-
lar trafficking, replication, and egress. Here, we summarize and highlight the roles of small
GTPases in the life cycle of CoVs. Additionally, we discuss the molecules that target small
GTP and have potent adjuvant activity, and we suggest small GTPase as an adjuvant target
for CoV vaccine development. This review is beneficial to understand the function of small
GTPases in CoV infection and may help to find new adjuvants for CoV vaccines.
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