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Abstract

Background

Tipping the balance toward regulatory T cells (Tregs) through adoptive cell therapy has

shown promise to induce transplantation tolerance. Although such strategy has been

explored in many mice organ transplantation studies, less knowledge was available in rat

systems. Furthermore, the behaviors of the transferred cells have not been well studied in

real-time fashion.

Methods

Tregs from naïve LEW rats were purified in two steps with the autoMACS system. Immuno-

suppression potential of these cells was examined with mixed lymphocyte reaction. Follow-

ing stimulation by the alloantigen in vitro, the purified Tregs were infused into the recipients

of vascularized composite allotransplantation (VCA). Secondary allogeneic skin grafting

challenge was performed on the recipients with long-term survived VCA. Live optical imag-

ing was performed to track luciferase-expressing Tregs following infusion to the VCA recipi-

ents. Expression of relevant molecules was studied by flow cytometry or quantitative RT-

PCR.

Results

Rat Tregs were enriched following two-step cell sorting and showed immunosuppressive

capacity. Upon infusion into the VCA recipients that have been treated with antilymphocyte

serum and short-term Cyclosporin A, the antigen-stimulated Tregs significantly prolonged

VCA survival and induced donor-specific tolerance. Tracking of the infused bioluminescent

Tregs showed their specific homing to lymph nodes, and then to the VCAs. Following sec-

ondary skin grafting, Tregs specifically gathered at the donor-derived skin that was not
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rejected by the recipient. The in vivo migratory pattern coincided with the altered expression

of cell surface molecules of CD62L, CD103, CD134, and CD278, following donor-antigen

stimulation. Elevated expression of CCR4 and CCL22 in allograft may also participate in

recruiting Tregs for maintenance of VCA survival and promoting donor-specific tolerance.

Conclusion

Sorted Tregs induced donor-specific tolerance to VCA in rats. Live cell tracking demon-

strated that activated CD4+CD25+FoxP3+ Tregs targeted primarily to the lymph nodes

and VCA. The Tregs migrated to the secondary grafted donor skin and contributed to the

maintenance of donor-specific tolerance. These behaviors were associated with phenotypic

changes induced by donor antigen stimulation. Increased expression of CCR4 and CCL22

in VCA skin may also be relevant.

Introduction

Vascularized composite allotransplantation (VCA) refers to the reconstruction of a recipient’s

anatomical unit containing multiple tissue types, such as hand/forearm or face, by a corre-

sponding part procured from a deceased donor [1, 2]. Since 1998, over one hundred patients

have benefited from various kinds of VCA with impressive functional and aesthetic outcomes

in most cases. However, wider application of VCA has been hindered by the requirement for

lifelong non-specific immunosuppressants and the accompanying toxicities [3, 4]. Pursuing a

donor-specific tolerance that allows complete withdrawal of immunosuppressants without

harming allograft survival has therefore been the ultimate pursuit of transplant immunology

[5, 6].

Donor-specific tolerance to VCAs has been accomplished by various approaches, such as

bone marrow or adipocyte-derived stem cell therapy [7–9]. Although the mechanisms are yet

to be fully characterized, current knowledge from organ transplantation and VCA has demon-

strated the importance of CD4+CD25+FoxP3+ regulatory T cells (Tregs) for the induction and

maintenance of tolerance to allotransplants. Elevated level of Tregs was observed in peripheral

blood and VCAs in the recipients who had developed tolerance [7, 9]. Tregs were also detected

in long-term tolerized islet, skin, renal, and cardiac allografts, and have been suggested to par-

ticipate in maintaining tolerance (review in [10]). The presence of Tregs in the allograft has

been associated with stable allograft function [11] whilst the depletion of Tregs inhibited

donor-specific hyporesponsiveness [12].

Considerable efforts have been targeted towards developing Tregs as a cellular therapeutic

agent. Adoptive transfer of Tregs to transplantation recipients may increase the ratio of Tregs

to effector T cells, and provide a regulatory environment to promote tolerance. This strategy

has been proven successful in prolonging allograft survival in animal models of organ trans-

plantation as well as VCA [13–15]. Clinical trials on Treg-based therapy have demonstrated

safety and potential to induce tolerance [16–18], although detailed mechanistic knowledge

remains to be revealed.

In the current study, we demonstrated that adoptive transfer of antigen-stimulated

CD4+CD25+ Tregs can prolong survival as well as induce donor-specific tolerance of rat VCA.

Real-time tracking of infused luciferase-expressing Tregs showed these cells migrated to

lymph nodes followed by VCA after infusion, and stayed in draining lymph nodes and VCA

Bioimaging of alloantigen-stimulated regulatory T cells in rat vascularized composite allotransplantation
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for the long-term. Furthermore, secondary skin grafting induced the migration of Tregs

toward allograft skin, suggesting active recruitment of Tregs by the alloantigen is critical for

maintenance of donor-specific tolerance. These behaviors were associated with phenotypic

changes induced by donor antigen stimulation. CCR4 and CCL22 may participate in mainte-

nance of Treg population in allografts and tolerance.

Materials and methods

Animals

Male 8–12 weeks old donor Brown-Norway (BN, RT1n) and recipient Lewis rats (LEW, RT1l),

representing a full MHC mismatch, were purchased from the National Laboratory Animal

Center, Taiwan. Luciferase transgenic LEW rats were provided by Professor Eiji Kobayashi at

Keio University in Japan and bred in Chang Gung Memorial Hospital, Taiwan. All animals

were housed in the animal facility of Chang Gung Memorial Hospital, under pyrogen-free

conditions, with temperature and lighting cycles controlled, and water and commercial rat

chow freely available. When applicable, the animals were anaesthetized with isoflurane, and

euthanasia with carbon dioxide. All experiments were conducted in accordance with the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and

following the Institutional Animal Care and Use Committee (IACUC) protocols authorized

by Chang Gung Memorial Hospital, Taiwan, with the authorized protocol numbers of

2009121113, 2012121809, 2015032501, and 2016092601.

Rat model of vascularized composite allotransplantation

A previously described heterotopic hindlimb osteomyocutaneous VCA model was used [7].

Briefly, VCA harvest in the isoflurane-anaesthetized donor rat began with a longitudinal

medial hindlimb incision from ankle to groin; this was extended to delineate the skin paddle

(4 cm x 3 cm). Proximal to the ankle the tendons were cut, tibial vessels cauterized and the

tibia osteotomized. The superficial epigastric vessels were ligated, thigh muscles sectioned and

femur osteotomized. The flap was isolated on the femoral vessels below the inguinal ligament.

The flap, including medullary cavities, was flushed with 10 ml heparinized saline, wrapped in

saline gauze and placed on iced saline. The donor rat was euthanized with CO2. In recipient

rats, 3 cm inguinal and gluteal skin incisions were performed to prepare the recipient femoral

vessels and delineate the recipient defect, respectively. The VCA was then inset and its circula-

tion restored by 10/0 nylon microanastomoses. The inguinal incision was closed and the ani-

mal recovered. VCAs were then evaluated daily with an established semi-quantitative rejection

grading system that ranges in severity from grade 0 to 4 as follows: grade 0, no rejection; grade

1, pink or slightly erythematous; grade 2, frank erythema; grade 3, erythema or purplish discol-

oration with blister formation or partial hair loss; and grade 4, dark purplish discoloration

with blister formation and major hair loss. Rejection was defined when 80% of the VCA

reached grade 4. Histological changes and lymphocyte infiltration were evaluated by micros-

copy after hematoxylin and eosin (H&E) staining.

VCA study groups

A total of 29 heterotopic hindlimb osteomyocutaneous flaps were transplanted in 8–12 week-

old male rats and divided into 4 groups. The recipient LEW rats received syngeneic transplants

(group 1) or allogeneic transplants (groups 2–4) from BN rats on day 0. Groups 1 and 2 did

not receive additional treatment. Groups 3 and 4 were treated with 0.5 ml ALS intraperitone-

ally on day -1 and +2, and daily subcutaneous CsA (16 mg/kg) from day 0 to 7. On POD 10,
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PLOS ONE | https://doi.org/10.1371/journal.pone.0203624 September 7, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0203624


group 4 recipients were infused intravenously with LEW Tregs, which had been co-cultured

with irradiated BN splenocytes for 72 hours.

Skin grafting

When the VCA survived for 120 days, secondary skin grafting was performed as described in

detail previously [7]. Briefly, dorsal cutaneous defects were created in recipients with long-

term surviving VCA for insetting BN, and SD-origin full-thickness tail skin grafts (2 cm x 1

cm). These were fixed with tie-overs for 7 days and successful grafts evaluated daily for rejec-

tion for another 60 days. Rejection was evidenced by erythema, edema, scaling of the skin, hair

loss, epidermolysis, and desquamation; destruction of more than 80% of the graft defined

rejection.

Isolation of CD4+CD25+ Treg cells

The spleen from a naïve LEW rat was harvested through a 1 cm left subcostal incision. It was

then gently mashed in serum-free RPMI 1640 and filtered through a nylon mesh. Following

lysis of erythrocytes with ACK buffer, cells were re-suspended in HBSS and counted. Sorting

was performed using autoMACS Pro system (Miltenyi Biotec, Bergisch Gladbach, Germany)

according to the manufacturer’s instructions. Briefly, splenocytes were re-suspended in MACS

solution to a concentration of 108 cells/ml and stained with antibodies for CD90.1, CD8a,

CD11b/c, CD45RA and NKR-P1A (all were purchased from BD Pharmingen, San Jose, CA,

USA) for 15 minutes at 4 ˚C, washed and followed by incubation with anti-IgG microbeads for

15 min at 4 ˚C. The CD4+ lymphocytes were collected through negative selection with the

autoMACS Pro running program Possel. The CD4+-enriched fraction was then incubated

with phycoerythrin (PE)-conjugated anti-CD25 (BD Bioscience, San Diego, CA, USA). The

cells were then mixed well with MultiSort stop reagent and incubated with 20ul Anti-PE

MicroBeads per 107 cells for 15min at 4 ˚C. Following washing, CD4+CD25+ cells were col-

lected with the autoMACS Pro by positive selection using program Possel. Isolated

CD4+CD25+ Tregs were incubated with BN antigen-presenting cells at 1:1 ratio for 3 days at

37 ˚C in the presence of rat IL-2 (Peprotech, Rehovot, Israel). The cells were collected, washed

and re-suspended in PBS before infusion. Due to the variation derived from sorting efficiency

and cell culture, the total cell numbers for infusion were hard to be fixed, and were between

7x105-2x106.

Flow cytometric analysis of sorted Treg cells

Expression of CD62L, CD103, CD134 and CD278 of sorted cells were analyzed by flow cytom-

etry. Briefly, CD4+CD25+-enriched cells right after sorting or after donor antigen stimulation

for 3 days were incubated with FITC-conjugated anti-CD62L (AbD Serotec, Kidlington, UK),

APC-conjugated anti-CD103 (BioLegend, San Diego, CA, USA), FITC-conjugated anti-

CD134 (AbD Serotec), or PE-Cy7-conjugated anti-CD278 (Biolegend) in addition to anti-

CD4 (APC or PE-Cy7 conjugated) (BD Pharmigen). Followed by treatment with permeabiliza-

tion kit (eBioscience) at 4 ˚C for 18 hr and staining with PerCP-conjugated anti-FoxP3

(eBioscience), the cells were analyzed by FACSCanto II flow cytometer (BD Biosciences). For

analysis, live cells excluding debris and dead cells were gated first followed by gating on the

FoxP3-expressing cell. Expression level of CD62L, CD103, CD134 and CD278 was analyzed

on FoxP3-expressing cells specifically.
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Mixed lymphocyte reaction (MLR)

Rat spleens were harvested in sterile conditions. After erythrocyte lysis, splenocytes were iso-

lated and re-suspended in complete RPMI-1640 media. In one-way MLR, LEW splenocytes

(1x105 cells/well) were co-cultured with either 2 μg/ml Concanavalin A (Con A, Sigma-

Aldrich, St. Louis, MO USA) or allogeneic BN stimulator splenocytes that had been irradiated

(2000 cGy; Gammacell1 1000 Elite Nordion International, Ottawa, ON, Canada). Tregs were

added in 1:1, 1:0.5, 1:0.2, 1:0.1 ratios to responder cells according to experimental design as

described. Cells were cultured in quadruplicate in 96-well U-shaped plates for 4 days then

pulsed with 1 μCi/well 3H-thymidine (3H-TdR, Perkin Elmer, Waltham, MA, USA) for 16 h

and harvested over glass fiber filters. Thymidine uptake was quantified on a microplate scintil-

lation and luminescence counter (Packard NXT, Meriden, CT, USA). Thymidine incorpo-

ration into spontaneously proliferating responders (in media alone) was the control and set as

1. Ratios of thymidine incorporation under all other conditions with respect to the control

were acquired, providing stimulation indices (SI).

In vivo dynamic cell tracking with IVIS Spectrum

CD4+CD25+ Tregs were isolated from luciferase transgenic LEW rats as described earlier. Fol-

lowing infusion to VCA recipients, luciferase-expressing Tregs were tracked in vivo with IVIS

Spectrum (Xenogen, Alemeda, CA, USA) at pre-designated intervals till sacrifice.

RNA preparation and quantitative RT-PCR

Skin tissue was preserved in RNAlater (Thermo Fisher, Waltham, MA, USA) and minced

under liquid nitrogen followed by dounce homogenization in TRIZOL1 Reagent (Invitrogen,

Carlsbad, CA, USA) according to manufacturer’s instructions. Concentration of the collected

DNA is measured by OD260. Only the RNA with a OD260/ OD280 ratio higher than 1.8 pro-

ceeded to be studied further. Each RT-PCR is derived from 10 ng of total RNA isolated. For

reverse transcription, 10 ng of total RNA was incubated with dNTP mix, primer and Super-

script II Reverse Transcriptase (Invitrogen) under 16˚C for 30 min, followed by 42˚C for 30

min and 85˚C for 5 min in a total volume of 15 ul. The PCR reaction was done in a total reac-

tion volume of 20 μl, containing 100 ng cDNA, 10 pmol each of the forward and reverse prim-

ers, 10 μl SYBR Green PCR master mix (Applied Biosystems, Foster City, CA, USA). The

mixture was preheated at 95 ˚C for 10 minutes and then cycled for 40 times at 95 ˚C for 1 min-

ute for denaturation and 60 ˚C for 1 minute for annealing and elongation in a ABI StepOne

system (Applied Biosystems). The progress of the fluorescence generation by chelation of

SYBR Green to the double-strand PCR product was continuously monitored. The threshold

cycle (Ct) for each reaction was acquired for quantitation with GAPDH serving as the internal

control.

Statistics

Data were expressed as mean ± SD unless otherwise indicated. Results of MLR were analyzed

by one-way ANOVA followed by Tukey-HSD for post hoc pairwise comparison. Results of

flow cytometry were analyzed by Student’s t test. Median VCA survivals with standard errors

were acquired by the product limit method of Kaplan-Meier and presented by survival curves.

A probability value less than 0.05 was regarded as statistically significant. All statistical analyses

were conducted with SPSS software.
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Results and discussion

Immunosuppressive Tregs can be isolated with MACS system

We isolated Rat Tregs from the spleens of LEW rats in two steps with magnetic-activated cell

sorting (MACS) technology. The first step was negative selection to deplete CD90.1+, CD8+,

CD11b/c+, CD45RA+ and NKR-P1A+ cells and enrich CD4-expressing cells. Following posi-

tive selection of CD4+ cells with CD25 expression, the purity of CD4+CD25+ cells increased

from 4.68% to 79.2% on average. The percentage of FoxP3-expressing cells increased from

5.05% to 69.2% (Fig 1). We also tried to isolate CD4-expressing cells through positive selection

at the first step. However, the yield of CD4+CD25+ cells was very low (data not shown). It

could be possibly due to the interference of CD25 antibody binding by the CD4 antibody-bead

complex bound to the cells at the first sorting step.

The immunosuppressive functions of these CD4+CD25+-enriched cells were evaluated by

mixed lymphocyte reaction (MLR), in which LEW splenocytes served as responders and irra-

diated BN splenocytes as allogeneic stimulators. Compared to spontaneous proliferation

where LEW splenocytes were cultured in media alone, a significant increase in LEW spleno-

cyte proliferation was observed when they were co-cultured with stimulators or mitogenic

Con A. Adding sorted CD4+CD25+ cells suppressed proliferation of the responder in a dose-

related manner against BN antigen stimulation. When added at an equivalent cell ratio (ie.

LEW: Treg ratio of 1:1), BN antigen-induced proliferation of responder cells was almost

completely suppressed to the level of spontaneous proliferation. Less suppression in responder

proliferation was detected when fewer Tregs were added (Fig 2).

Adoptive transfer of donor antigen-stimulated Tregs prolonged survival of

vascularized composite allotransplants

Tregs were known to exert a suppressive function through secretion of inhibitory cytokines,

cytolysis and metabolic interruption of effector cells, as well as modulation of dendritic cells

[19]. The adoptive transfer of Tregs has been shown to prolong allograft survival in several

different systems. Furthermore, Tregs with donor-specificity were shown to have better

Fig 1. Sorting with autoMACS Pro enhanced the purity of CD4+CD25+FoxP3+ Tregs. A. Representative flow

cytometric diagrams from splenocytes before (left column) and after (right column) sorting. The percentages of cells

expressing FoxP3 (upper panel) and CD4+CD25+ in lymphocytes are shown. B. Group data on the purity of

CD4+CD25+ and FoxP3+ cells in lymphocytes before and after sorting.

https://doi.org/10.1371/journal.pone.0203624.g001
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suppressive function against donor antigen-elicited alloresponse both in vitro and in vivo [20].

Therefore, we stimulated the isolated Tregs with donor antigens, followed by adoptive transfer

to the VCA recipients, and then evaluated the VCA survival.

All syngeneic transplants survived the whole observation period of 150 days without signs

of rejection (n = 6), whereas group 2 (rejection control, n = 5) animals rejected VCAs between

days 7 and 10. Groups 3 (n = 7) and 4 (n = 11) showed significant prolongation of VCA sur-

vival compared to group 2. Sole treatment with immunosuppressants (ALS and CsA) moder-

ately prolonged graft survival to around POD 30. Infused Tregs significantly increased the

ratio of VCA recipients that had long-term VCA survival (to POD 150) to 45%, with group

median survival time of 87 days (Fig 3).

In vivo cell tracking demonstrated that adoptive transferred Tregs

migrated to and homed towards lymph nodes and allograft and persisted at

these sites long term

The behaviors of the infused cells in vivo were tracked by bioluminescence imaging with Tregs

isolated from LEW rats with luciferase transgene expression [21] in the presence of luciferin.

This approach also allowed us to specifically monitor the behaviors of the infused cells. As

shown in Fig 4, infused Tregs migrated to the inguinal lymph node at as early as 4 days after

infusion (PID 4, equals to POD 14), and the axillary lymph nodes at PID 6 in the allograft

recipients. The signal remained for long term, although that of the axillary lymph nodes less-

ened after long-term tracking. Furthermore, intense bioluminescence was observed at the

VCA from PID 17 and this level was stable and persisted for as long as the allograft survived

(Fig 4, upper panel). The bioluminescence signals were confirmed to be coming from lymph

nodes and allograft following dissection (Fig 4, lower panel). On the other hand, no clear

migration pattern was observed in the recipient of syngeneic graft infused with the same num-

ber of luciferase-expressing Tregs. The luciferase signal faded away after two weeks (Fig 4,

Fig 2. Sorted Tregs suppressed BN splenocyte-induced proliferation of LEW splenocytes in one-way MLR. Each

reaction contained 1x105 LEW splenocytes. Mitogen Con A, BN splenocytes or sorted LEW Tregs were added in

reaction as indicated. Cellular proliferations were expressed as mean stimulation indices (SIs) with respect to

spontaneous proliferation of four experimental repeats with standard deviation. The asterisk denotes statistical

significance acquired with ANOVA followed by post hoc Tukey’s test with the probability less than 0.05.

https://doi.org/10.1371/journal.pone.0203624.g002
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middle panel). It suggests that the allogeneic environment was critical for maintaining the

infused Treg population, similar to the finding reported in a mice graft versus host disease

model [22].

Recipients with long-term survived VCAs were challenged with secondary skin grafting

derived from the original donor strain BN or a third-party strain SD. The SD skin was

rejected and a scar following secondary healing was observed. In comparison, the BN skin

survived well, suggesting the donor-specific tolerance was established. Interestingly, the

luciferase-expressing Tregs infused early after VCA were found to migrate and concentrate

specifically to the BN skin, whilst there was no bioluminescence detected in the third-

party graft (Fig 5). Consistent with the finding, immunohistochemical study of FoxP3 also

showed that Tregs were concentrated in the tolerant VCA and were absent in the rejected

skin (Fig 4C).

However, Zhang et al previously demonstrated in a mouse islet allotransplantation model

that infused Tregs first migrated to the allograft, become activated, and subsequently migrated

to draining lymph nodes [23]. Later studies identified that T-bet and lymphotoxin beta recep-

tors participate in afferent lymphatic migration in this system [24, 25]. The authors suggested

such migration pattern was critical for optimal suppression of alloimmune response [23]. Nev-

ertheless, this study was performed in a cross-sectional fashion with microscopic observation

on samples collected at designated time points and then the sequence of events was recon-

structed. In contrast, real-time in vivo imaging was performed in our study, and the behavior

of Tregs was observed longitudinally in live animals. Our observation showed a different

migration pattern with the Tregs homing first to the lymph nodes before migrating to the allo-

graft. One factor that may explain the observed discrepancy is the timing of the Treg infusion.

Zhang et al transferred Tregs at the time of transplantation, whereas we conditioned the recipi-

ents with ALS and short-term cyclosporine for one week till three days prior to Treg infusion.

At the time when Tregs enter the recipient system, donor antigens may have already been pro-

cessed to prime recipient T cells at the lymph nodes. Thus the infused Tregs preferentially

migrated to the lymph nodes to prevent T cell priming and expansion of Teffs which

Fig 3. Infusion of BN antigen-stimulated Tregs significantly prolonged VCA survival. A. Kaplan-Meier survival

curves for control and experimental groups. B. Outlook of VCA after long-term survival at POD 154.

https://doi.org/10.1371/journal.pone.0203624.g003
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specifically reacted to donor antigens. Our finding is consistent with the observation by

Nguyen et al with in vivo cell tracking that infused Tregs migrated to LNs and proliferated

prior to moving to peripheral tissues. Their imaging study also demonstrated that proliferation

of conventional CD4+ and CD8+ T cells was suppressed in the presence of Tregs [22].

Fig 4. Bioluminescent imaging of luciferase-expressing Tregs following infusion. The upper and middle panels

show the traces of infused Tregs in recipients of allograft (upper) and syngeneic graft (middle). The bottom panel

demonstrates the ex vivo validation following dissection of the allogeneic recipient at PID 294. Photo frames of the

tissues and the dissection sites were color-matched. A. ventral view. B. transplanted graft. In the recipient of allogeneic

graft, infused Tregs migrated to and stayed at the lymph node(s) from PID 4, whereas they appeared at the allograft

from PID 6 (shown with red arrow) and intensified by PID 20. The signal was maintained throughout the whole

observation period. In comparison, no clear trace of infused Tregs was observed in syngeneic recipients after two

weeks. PID: post Treg-infusion day. PID 1 = POD 11. (C). Rejected and tolerant VCAs were stained with FoxP3

antibody followed by counterstaining with hematoxylin. FoxP3-expressing cells were characterized by brown staining,

whereas blue staining were derived from cell nuclei. Scale bar represents 100μm.

https://doi.org/10.1371/journal.pone.0203624.g004
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Donor antigen stimulation induced phenotypic changes on isolated Tregs

Since the donor antigen stimulated Tregs significantly prolonged VCA survival and induced

donor-specific tolerance, how donor antigen stimulation affected the cell surface expression

of CD62L, CD103, CD134, and CD278 on sorted Tregs were studied in vitro by flow cytome-

try. As shown in Fig 6, expression of the surface molecules CD62L, CD103, and CD134 on

FoxP3+-expressing Tregs were significantly increased. By contrast, slightly lower levels of

CD278 were observed on alloantigen-stimulated Tregs with statistical significance.

Tregs have been demonstrated to be versatile and consistently respond to the immune

environment with subtle modifications in phenotype and function in the periphery [26]. In

Fig 5. Bioluminescent imaging of luciferase-expressing Tregs following secondary skin grafting. Blank (without

luciferin) and bioluminescence images (with luciferin) of the skin grafts derived from the donor strain (BN) or the

third-party strain (SD) were taken at 60 days after skin grafting.

https://doi.org/10.1371/journal.pone.0203624.g005

Fig 6. In vitro stimulation with donor (BN) antigens induced phenotypic changes of sorted Tregs. BN antigen

stimulation induced significantly higher expression of CD62L, CD103, and CD134 on sorted Tregs. By contrast, lower

expression of CD278 was observed. The asterisk denotes statistical significance acquired with Student’s t test with the

probability less than 0.05.

https://doi.org/10.1371/journal.pone.0203624.g006
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line with this, we found that donor antigen stimulation increased the surface expressions of

CD62L and CD103. CD62L, also known as L-selectin, has been well studied as a homing sig-

nal for lymph nodes [27]. Furthermore, CD62L+ T cells were more responsive to alloantigen

stimulation compared to the CD62L- counterparts [28]. Our data of enhanced expression of

the LN-homing CD62L on Tregs by donor antigen stimulation, further supported the prefer-

ential LN-targeting behavior of the infused Tregs that we observed (Fig 4). CD103, encoding

the αE chain of αEβ7 integrin, was shown to participate in the retention of Tregs at infection

sites [29], as well as regulation of the suppressive function of Tregs [30]. In a murine GVHD

model, CD103+ Tregs were shown to induce apoptosis of Teff and B cells at the target site

[31].

CD134 (OX40), and CD278 (ICOS) are both co-stimulatory molecules for T cells [32, 33].

Consistent with our findings, Miura reported that alloantigen stimulation significantly upregu-

lated expression of CD134 and FoxP3 on CD4 lymphocytes [34]. CD134 was shown to regulate

Treg function since administration of CD134 antibody abrogated suppression mediated by

Tregs in a GvHD model, in addition to its participation in development and homeostasis of

Tregs [35]. Expression of CD278 was shown to define subsets of Tregs with differences in cyto-

kine production [36], as well as viability and suppressive capability [37]. In the current study,

donor antigen stimulation induced a small but significant decrease in CD278 expression on

Tregs, suggesting a less homogeneous Treg population was generated with antigen stimulation.

Our data suggest the alloantigen-specific Tregs may induce donor-specific tolerance through

regulation of surface molecule expression. These Tregs participate in maintaining VCA sur-

vival through specific migration to lymph nodes then to the allografts, potentially inducing

apoptosis of Teff, interfering with T cell infiltration, or preventing the generation of alloreac-

tive memory CD8+ T cells locally [38, 39].

Specific chemokines helped to recruit Tregs to the allografts

Recruitment of Tregs may be regulated by the interaction between chemokine and chemo-

kine receptors as well [40]. Since the infused Tregs migrated to and then stayed at the toler-

ant VCA for extended period of time, gene expression of various chemokine receptors that

may participate in lymphocyte recruitment in VCA was evaluated. We performed quantita-

tive RT-PCR and compared the expression levels of CCR1, 2, 4, 5, 6, 7, 10, and CXCR3, 4, 5

on naïve (BN skins collected before surgery), tolerant and rejection VCA skins (Fig 7A). All

Fig 7. Higher expression levels of CCR4 and CCL22 in tolerant VCA skin than the rejected ones. A. group data

showed relative expression levels of CCR1, 2, 4, 5, 6, 7, 10, and CXCR3, 4, 5 on naïve, tolerant, and rejection VCA

skins. Only CCR4 expressed significantly higher level in tolerant versus rejected VCA skin. B. group data showed the

CCR4 ligand CCL22 expressed significantly higher level in tolerant versus rejected VCA skin. Transcripts were

RT-PCR amplified with gene-specific primers incorporating SyBr Green. The Ct (threshold cycle) was acquired and

normalized to that of GAPDH. The average level of the naïve group was set as 1. The average with standard deviation

of each group is shown. Asterisk denotes statistical significance between tolerant and rejection groups.

https://doi.org/10.1371/journal.pone.0203624.g007
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chemokine receptors were upregulated in both tolerant and rejection skins. Post-hoc pair-

wise comparisons between tolerant and rejected VCA skins showed that CCR4 expressed

significantly higher level in tolerant skins, whereas CCR1, 2, and 7 showed opposite expres-

sion pattern. The potential CCR4 ligands, CCL17 and CCL22, were then examined, and

the data showed that CCL22 was upregulated significantly in tolerant VCA skins although

CCL17 was not differentially expressed between the tolerant versus rejection skins (Fig 7B).

It is thus reasonable to hypothesize that CCR4-CCL22 axis participates in recruiting/main-

taining Tregs at the VCA skins to suppress alloimmune response locally. Our data along

with that reported by Lee et al showing the requirement of CCR4 and CCL22 expression for

recruitment of Tregs to the allogeneic cardiac transplant [41], support the significance of

CCR4-CCL22 and Tregs in maintenance of allograft survival at both solid organ and com-

posite tissue allotransplantation.

Since all other chemokine receptors were upregulated in tolerant skin compared to the

naïve ones, their roles in recruiting Tregs for tolerance induction are not clear. Further analysis

of the evolution of chemokine receptor panel on Tregs following donor antigen stimulation, or

during retention at lymph nodes, may help to further delineate the fine molecular cues regulat-

ing Treg migratory behaviors.

Conclusion

Our study demonstrates that rat CD4+CD25+ Tregs could be enriched with a two-step MACS

protocol. Following stimulation by donor antigen, the sorted Tregs went through phenotypic

changes in vitro and promoted allograft survival in vivo. Bioluminesence tracking of the

infused Tregs in the wild type VCA recipient showed that these cells displayed a specific hom-

ing to lymph nodes and to the VCA. The signal sustained for long term in the recipient that

developed donor-specific tolerance. The infused Tregs specifically migrated to donor rather

than the third-party skin following a secondary antigen challenge by skin grafting, suggestive

of an active and protective role of Tregs in long-term maintenance of VCA survival.

Acknowledgments

The authors would like to thank the Center for Advanced Molecular Imaging and Translation,

Chang Gung Memorial Hospital, Linkou, for the IVIS Spectrum.

Author Contributions

Conceptualization: Hui-Yun Cheng, Sheri K. L. Tay.

Data curation: Chih-Jen Wen, Chih-Fan Lin, Aline Yen-Ling Wang, Ling-Yi Shih, Shiao-

Chin Liu.

Formal analysis: Hui-Yun Cheng, Chih-Fan Lin, Shiao-Chin Liu.

Funding acquisition: Fu-Chan Wei.

Investigation: Hui-Yun Cheng, Sheri K. L. Tay, Chih-Jen Wen.

Methodology: Chih-Jen Wen, Eiji Kobayashi.

Project administration: Hui-Yun Cheng.

Software: Eiji Kobayashi.

Supervision: Hui-Yun Cheng, Cheng-Hung Lin, Fu-Chan Wei.

Visualization: Chih-Jen Wen.

Bioimaging of alloantigen-stimulated regulatory T cells in rat vascularized composite allotransplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203624 September 7, 2018 12 / 15

https://doi.org/10.1371/journal.pone.0203624


Writing – original draft: Hui-Yun Cheng, Sheri K. L. Tay.

Writing – review & editing: Hui-Yun Cheng, Sheri K. L. Tay, Eiji Kobayashi, Cheng-Hung

Lin, Fu-Chan Wei.

References
1. Murphy BD, Zuker RM, Borschel GH. Vascularized composite allotransplantation: an update on medical

and surgical progress and remaining challenges. J Plast Reconstr Aesthet Surg. 2013; 66(11): 1449–

1455. https://doi.org/10.1016/j.bjps.2013.06.037 PMID: 23867239

2. Siemionow M, Gharb BB, Rampazzo A. Successes and lessons learned after more than a decade of

upper extremity and face transplantation. Curr Opin Organ Transplant. 2013; 18(6): 633–639. https://

doi.org/10.1097/MOT.0000000000000021 PMID: 24126806

3. Schneeberger S, Landin L, Jableki J, Butler P, Hoehnke C, Brandacher G, et al. Achievements and

challenges in composite tissue allotransplantation. Transpl Int. 2011; 24(8): 760–769. https://doi.org/10.

1111/j.1432-2277.2011.01261.x PMID: 21554424

4. Siemionow M. Impact of reconstructive transplantation on the future of plastic and reconstructive sur-

gery. Clin Plast Surg. 2012; 39(4): 425–434. https://doi.org/10.1016/j.cps.2012.07.011 PMID:

23036293

5. Page EK, Dar WA, Knechtle SJ. Tolerogenic therapies in transplantation. Front Immunol. 2012; 3: 198.

https://doi.org/10.3389/fimmu.2012.00198 PMID: 22826708

6. Leonard DA, Kurtz JM, Cetrulo CL, Jr. Achieving immune tolerance in hand and face transplantation: a

realistic prospect? Immunotherapy. 2014; 6(5): 499–502. https://doi.org/10.2217/imt.14.29 PMID:

24896618

7. Cheng HY, Ghetu N, Huang WC, Wang YL, Wallace CG, Wen CJ, et al. Syngeneic adipose-derived

stem cells with short-term immunosuppression induce vascularized composite allotransplantation toler-

ance in rats. Cytotherapy. 2014; 16(3): 369–380. https://doi.org/10.1016/j.jcyt.2013.06.020 PMID:

24119648

8. Kuo YR, Chen CC, Goto S, Lee IT, Huang CW, Tsai CC, et al. Modulation of immune response and T-

cell regulation by donor adipose-derived stem cells in a rodent hind-limb allotransplant model. Plast

Reconstr Surg. 2011; 128(6): 661e–672e. https://doi.org/10.1097/PRS.0b013e318230c60b PMID:

22094768

9. Kuo YR, Chen CC, Shih HS, Goto S, Huang CW, Wang CT, et al. Prolongation of composite tissue allo-

transplant survival by treatment with bone marrow mesenchymal stem cells is correlated with T-cell reg-

ulation in a swine hind-limb model. Plast Reconstr Surg. 2011; 127(2): 569–579. https://doi.org/10.

1097/PRS.0b013e318200a92c PMID: 21285761

10. Burrell BE, Nakayama Y, Xu J, Brinkman CC, Bromberg JS. Regulatory T cell induction, migration, and

function in transplantation. Journal of Immunology. 2012; 189(10): 4705–4711.

11. Alvarez CM, Opelz G, Garcia LF, Susal C. Expression of regulatory T-cell-related molecule genes and

clinical outcome in kidney transplant recipients. Transplantation. 2009; 87(6): 857–863. https://doi.org/

10.1097/TP.0b013e318199fa57 PMID: 19300189

12. Bestard O, Cruzado JM, Mestre M, Caldes A, Bas J, Carrera M, et al. Achieving donor-specific hypore-

sponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infil-

trates. J Immunol. 2007; 179(7): 4901–4909. PMID: 17878390

13. Lin JY, Tsai FC, Wallace CG, Huang WC, Wei FC, Liao SK. Combined treatment with regulatory T cells

and vascularized bone marrow transplantation creates mixed chimerism and induces donor-specific tol-

erance to vascularized composite allografts without cytoreductive conditioning. J Surg Res. 2012; 178

(2): 974–981. https://doi.org/10.1016/j.jss.2012.06.061 PMID: 22819314

14. Pu LY, Wang XH, Zhang F, Li XC, Yao AH, Yu Y, et al. Adoptive transfusion of ex vivo donor alloanti-

gen-stimulated CD4(+)CD25(+) regulatory T cells ameliorates rejection of DA-to-Lewis rat liver trans-

plantation. Surgery. 2007; 142(1): 67–73.

15. Xia G, He J, Leventhal JR. Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with

host T-cell depletion to promote long-term survival of allografts. Am J Transplant. 2008; 8(2): 298–306.

https://doi.org/10.1111/j.1600-6143.2007.02088.x PMID: 18190656

16. Edozie FC, Nova-Lamperti EA, Povoleri GA, Scotta C, John S, Lombardi G, et al. Regulatory T-Cell

Therapy in the Induction of Transplant Tolerance: The Issue of Subpopulations. Transplantation. 2014;

98(4): 370–379. https://doi.org/10.1097/TP.0000000000000243 PMID: 24933458

Bioimaging of alloantigen-stimulated regulatory T cells in rat vascularized composite allotransplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203624 September 7, 2018 13 / 15

https://doi.org/10.1016/j.bjps.2013.06.037
http://www.ncbi.nlm.nih.gov/pubmed/23867239
https://doi.org/10.1097/MOT.0000000000000021
https://doi.org/10.1097/MOT.0000000000000021
http://www.ncbi.nlm.nih.gov/pubmed/24126806
https://doi.org/10.1111/j.1432-2277.2011.01261.x
https://doi.org/10.1111/j.1432-2277.2011.01261.x
http://www.ncbi.nlm.nih.gov/pubmed/21554424
https://doi.org/10.1016/j.cps.2012.07.011
http://www.ncbi.nlm.nih.gov/pubmed/23036293
https://doi.org/10.3389/fimmu.2012.00198
http://www.ncbi.nlm.nih.gov/pubmed/22826708
https://doi.org/10.2217/imt.14.29
http://www.ncbi.nlm.nih.gov/pubmed/24896618
https://doi.org/10.1016/j.jcyt.2013.06.020
http://www.ncbi.nlm.nih.gov/pubmed/24119648
https://doi.org/10.1097/PRS.0b013e318230c60b
http://www.ncbi.nlm.nih.gov/pubmed/22094768
https://doi.org/10.1097/PRS.0b013e318200a92c
https://doi.org/10.1097/PRS.0b013e318200a92c
http://www.ncbi.nlm.nih.gov/pubmed/21285761
https://doi.org/10.1097/TP.0b013e318199fa57
https://doi.org/10.1097/TP.0b013e318199fa57
http://www.ncbi.nlm.nih.gov/pubmed/19300189
http://www.ncbi.nlm.nih.gov/pubmed/17878390
https://doi.org/10.1016/j.jss.2012.06.061
http://www.ncbi.nlm.nih.gov/pubmed/22819314
https://doi.org/10.1111/j.1600-6143.2007.02088.x
http://www.ncbi.nlm.nih.gov/pubmed/18190656
https://doi.org/10.1097/TP.0000000000000243
http://www.ncbi.nlm.nih.gov/pubmed/24933458
https://doi.org/10.1371/journal.pone.0203624


17. Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, et al. A Pilot Study of Operational Toler-

ance with a Regulatory T Cell-Based Cell Therapy in Living Donor Liver Transplantation. Hepatology.

2016; 64(2):632–43. https://doi.org/10.1002/hep.28459 PMID: 26773713

18. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immu-

notherapy using polyclonal regulatory T cells. Sci Transl Med. 2015; 7(315): 315ra189.

19. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008; 8(7): 523–

532. https://doi.org/10.1038/nri2343 PMID: 18566595

20. Sanchez-Fueyo A, Sandner S, Habicht A, Mariat C, Kenny J, Degauque N, et al. Specificity of CD4

+CD25+ regulatory T cell function in alloimmunity. J Immunol. 2006; 176(1): 329–334. PMID: 16365425

21. Hakamata Y, Murakami T, Kobayashi E. "Firefly rats" as an organ/cellular source for long-term in vivo

bioluminescent imaging. Transplantation. 2006; 81(8): 1179–1184.

22. Nguyen VH, Zeiser R, Dasilva DL, Chang DS, Beilhack A, Contag CH, et al. In vivo dynamics of regula-

tory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease follow-

ing allogeneic transplantation. Blood. 2007; 109(6): 2649–2656. https://doi.org/10.1182/blood-2006-08-

044529 PMID: 17095616

23. Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. Regulatory T cells sequentially

migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity.

2009; 30(3): 458–469. https://doi.org/10.1016/j.immuni.2008.12.022 PMID: 19303390

24. Brinkman CC, Iwami D, Hritzo MK, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta

receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016; 7: 12021. https://doi.org/

10.1038/ncomms12021 PMID: 27323847

25. Xiong Y, Ahmad S, Iwami D, Brinkman CC, Bromberg JS. T-bet Regulates Natural Regulatory T Cell

Afferent Lymphatic Migration and Suppressive Function. J Immunol. 2016; 196(6): 2526–2540. https://

doi.org/10.4049/jimmunol.1502537 PMID: 26880765

26. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat

Rev Immunol. 2011; 11(2): 119–130. https://doi.org/10.1038/nri2916 PMID: 21267013

27. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, et al. Only the CD62L+ sub-

population of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood. 2005; 105(5):

2220–2226. https://doi.org/10.1182/blood-2004-05-2044 PMID: 15546950

28. Foster AE, Marangolo M, Sartor MM, Alexander SI, Hu M, Bradstock KF, et al. Human CD62L- memory

T cells are less responsive to alloantigen stimulation than CD62L+ naive T cells: potential for adoptive

immunotherapy and allodepletion. Blood. 2004; 104(8): 2403–2409. https://doi.org/10.1182/blood-

2003-12-4431 PMID: 15231569

29. Suffia I, Reckling SK, Salay G, Belkaid Y. A role for CD103 in the retention of CD4+CD25+ Treg and

control of Leishmania major infection. J Immunol. 2005; 174(9): 5444–5455. PMID: 15845457

30. Braun A, Dewert N, Brunnert F, Schnabel V, Hardenberg JH, Richter B, et al. Integrin alphaE(CD103) Is

Involved in Regulatory T-Cell Function in Allergic Contact Hypersensitivity. J Invest Dermatol. 2015;

135(12): 2982–2991. https://doi.org/10.1038/jid.2015.287 PMID: 26203637

31. Zhao D, Zhang C, Yi T, Lin CL, Todorov I, Kandeel F, et al. In vivo-activated CD103+CD4+ regulatory T

cells ameliorate ongoing chronic graft-versus-host disease. Blood. 2008; 112(5): 2129–2138. https://

doi.org/10.1182/blood-2008-02-140277 PMID: 18550852

32. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an induc-

ible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999; 397(6716): 263–

266. https://doi.org/10.1038/16717 PMID: 9930702

33. Roos A, Schilder-Tol EJ, Weening JJ, Aten J. Strong expression of CD134 (OX40), a member of the

TNF receptor family, in a T helper 2-type cytokine environment. J Leukoc Biol. 1998; 64(4): 503–510.

PMID: 9766631

34. Miura Y, Thoburn CJ, Bright EC, Arai S, Hess AD. Regulation of OX40 gene expression in graft-versus-

host disease. Transplant Proc. 2005; 37(1): 57–61. https://doi.org/10.1016/j.transproceed.2005.01.014

PMID: 15808546

35. Qu Y, Zhao Y. Regulatory CD4(+)CD25(+) T-cells are controlled by multiple pathways at multiple levels.

Int Rev Immunol. 2007; 26(3–4): 145–160.

36. Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L, et al. Two functional subsets of FOXP3+

regulatory T cells in human thymus and periphery. Immunity. 2008; 28(6): 870–880. https://doi.org/10.

1016/j.immuni.2008.03.018 PMID: 18513999

37. Chen Y, Shen S, Gorentla BK, Gao J, Zhong XP. Murine regulatory T cells contain hyperproliferative

and death-prone subsets with differential ICOS expression. J Immunol. 2012; 188(4): 1698–1707.

https://doi.org/10.4049/jimmunol.1102448 PMID: 22231701

Bioimaging of alloantigen-stimulated regulatory T cells in rat vascularized composite allotransplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203624 September 7, 2018 14 / 15

https://doi.org/10.1002/hep.28459
http://www.ncbi.nlm.nih.gov/pubmed/26773713
https://doi.org/10.1038/nri2343
http://www.ncbi.nlm.nih.gov/pubmed/18566595
http://www.ncbi.nlm.nih.gov/pubmed/16365425
https://doi.org/10.1182/blood-2006-08-044529
https://doi.org/10.1182/blood-2006-08-044529
http://www.ncbi.nlm.nih.gov/pubmed/17095616
https://doi.org/10.1016/j.immuni.2008.12.022
http://www.ncbi.nlm.nih.gov/pubmed/19303390
https://doi.org/10.1038/ncomms12021
https://doi.org/10.1038/ncomms12021
http://www.ncbi.nlm.nih.gov/pubmed/27323847
https://doi.org/10.4049/jimmunol.1502537
https://doi.org/10.4049/jimmunol.1502537
http://www.ncbi.nlm.nih.gov/pubmed/26880765
https://doi.org/10.1038/nri2916
http://www.ncbi.nlm.nih.gov/pubmed/21267013
https://doi.org/10.1182/blood-2004-05-2044
http://www.ncbi.nlm.nih.gov/pubmed/15546950
https://doi.org/10.1182/blood-2003-12-4431
https://doi.org/10.1182/blood-2003-12-4431
http://www.ncbi.nlm.nih.gov/pubmed/15231569
http://www.ncbi.nlm.nih.gov/pubmed/15845457
https://doi.org/10.1038/jid.2015.287
http://www.ncbi.nlm.nih.gov/pubmed/26203637
https://doi.org/10.1182/blood-2008-02-140277
https://doi.org/10.1182/blood-2008-02-140277
http://www.ncbi.nlm.nih.gov/pubmed/18550852
https://doi.org/10.1038/16717
http://www.ncbi.nlm.nih.gov/pubmed/9930702
http://www.ncbi.nlm.nih.gov/pubmed/9766631
https://doi.org/10.1016/j.transproceed.2005.01.014
http://www.ncbi.nlm.nih.gov/pubmed/15808546
https://doi.org/10.1016/j.immuni.2008.03.018
https://doi.org/10.1016/j.immuni.2008.03.018
http://www.ncbi.nlm.nih.gov/pubmed/18513999
https://doi.org/10.4049/jimmunol.1102448
http://www.ncbi.nlm.nih.gov/pubmed/22231701
https://doi.org/10.1371/journal.pone.0203624


38. Carvalho-Gaspar M, Jones ND, Luo S, Martin L, Brook MO, Wood KJ. Location and time-dependent

control of rejection by regulatory T cells culminates in a failure to generate memory T cells. J Immunol.

2008; 180(10): 6640–6648. PMID: 18453583

39. Chauhan SK, Saban DR, Dohlman TH, Dana R. CCL-21 conditioned regulatory T cells induce allotoler-

ance through enhanced homing to lymphoid tissue. J Immunol. 2014; 192(2): 817–823. https://doi.org/

10.4049/jimmunol.1203469 PMID: 24337379

40. Ding Y, Xu J, Bromberg JS. Regulatory T cell migration during an immune response. Trends Immunol.

2012; 33(4): 174–180. https://doi.org/10.1016/j.it.2012.01.002 PMID: 22305714

41. Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW. Recruitment of Foxp3+ T regulatory

cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med. 2005; 201(7):

1037–1044. https://doi.org/10.1084/jem.20041709 PMID: 15809349

Bioimaging of alloantigen-stimulated regulatory T cells in rat vascularized composite allotransplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203624 September 7, 2018 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/18453583
https://doi.org/10.4049/jimmunol.1203469
https://doi.org/10.4049/jimmunol.1203469
http://www.ncbi.nlm.nih.gov/pubmed/24337379
https://doi.org/10.1016/j.it.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22305714
https://doi.org/10.1084/jem.20041709
http://www.ncbi.nlm.nih.gov/pubmed/15809349
https://doi.org/10.1371/journal.pone.0203624

