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Land abandonment may decrease biodiversity but also provides an opport-
unity for rewilding. It is therefore necessary to identify areas that may
benefit from traditional land management practices and those that may
benefit from a lack of human intervention. In this study, we conducted com-
parative field surveys of butterfly occurrence in abandoned and inhabited
settlements in 18 regions of diverse climatic zones in Japan to test the
hypotheses that species-specific responses to land abandonment correlate
with climatic niches and habitat preferences. Hierarchical models that uni-
fied species occurrence and habitat preferences revealed that negative
responses to land abandonment were associated with species that have
cold climatic niches and use open habitats, suggesting that species nega-
tively impacted by land abandonment will decline more due to future
climate warming. Maps representing species gains and losses due to land
abandonment, which were created from the model estimates, showed similar
geographical patterns, but some areas exhibited high species losses relative
to gains. Our hierarchical modelling approach was useful for scaling up
local-scale effects of land abandonment to a macro-scale assessment,
which is crucial to developing spatial conservation strategies in the era of
depopulation.
1. Introduction
Traditional agricultural landscapes, with high spatial heterogeneity andmoderate
levels of disturbance, harbour a variety of organisms worldwide [1]. However,
recent social changes, such as depopulation and population ageing, have resulted
in an increase in abandoned fields [2,3]. While land abandonment is expected to
decrease biological diversity at the national scale [4,5], it may also provide an
opportunity for rewilding by vegetation succession [6,7]. To establish a long-
term, broad-scale strategy for biodiversity conservation, it is necessary to identify
areas where restoration by human management is effective for enhancing biodi-
versity as well as areas where rewilding is more effective.

Many studies have examined the relationship between land abandonment
and biodiversity, but most have targeted a particular region within a nation
[8,9]. These results cannot necessarily be extrapolated to other regions with
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different climates and land cover types because species
responses to environmental changes may differ in different
climatic zones [10,11]. Moreover, a common approach for test-
ing the effect of land abandonment has been to analyse each
species separately or analyse diversity metrics, but such
approaches cannot predict the responses of species in a com-
munity that are less likely to be detected in a field survey.
Meta-analysis may be a promising tool for evaluating
the effect of land abandonment [12,13], but it has shortcom-
ings of heterogeneity in study design and inconsistent
outcomes [14].

A practical approach to resolve these issues is to collect
biodiversity and land-use data that are relevant to the spatial
scale of land abandonment, with the data collected from mul-
tiple climate zones (ecoregions) using a standardized
sampling strategy. This makes it possible to evaluate how
the climatic niches or habitat preferences of organisms (i.e.
typical habitat types inhabited by particular species) affect
the relationship between land abandonment and species
occurrence. Historically, abandoned settlements (or deserted
villages) have emerged globally due to a variety of causes
such as economic and environmental changes and disasters
[15–18], and they provide unique opportunities to evaluate
the long-term effects of land abandonment and recovery of
ecosystems and to compare the effects among different cli-
mates. Species-specific sensitivity to land abandonment is
determined by ecological traits [19,20] related to habitat pre-
ferences. Thus, information on habitat preferences that can be
easily obtained from the literature would be useful for esti-
mating the effects of land abandonment on species that are
not included in field survey data.

Traditional agricultural landscapes have been altered in
Japan with urbanization and land abandonment, but land
abandonment has become more serious in recent years
because of the country’s declining human population. For
instance, semi-natural grassland areas have decreased by
87% during the past century [21] and agricultural fields
have decreased by 26% [22]. These trends will continue in
the future; 30–50% of currently inhabited settlements in
rural areas are expected to become uninhabited by 2050
[23]. The abandonment of agricultural landscapes with var-
ious characteristics, such as paddy fields, dry crop fields
and grasslands, has caused declines in species diversity of
various taxa [13,24–28]. As a result, many organisms are
expected to become endangered [29], and butterflies are a
typical example. In particular, grassland butterfly species
are decreasing substantially; they account for approximately
70% of all Red List butterfly species in Japan [30]. These
grassland species are elements of the eastern Eurasian tem-
perate steppe biome [31], which is located in a cooler region
than the Mediterranean and European steppes [32]. These
species were common in Japan in the late Pleistocene, when
the climate was much cooler than at present and natural
grasslands were predominant [33,34]. Later, in the warm
Holocene when forests became predominant, open lands
maintained by human activity offered refugia for the Pleisto-
cene relic grassland fauna. Thus, the effect of land
abandonment is expected to be more severe for species that
favour cold climates, since grassland species in eastern
Eurasia are likely to be cold-adapted. Meanwhile, land aban-
donment may increase forest-dwelling species during the
process of vegetation succession. Although relatively few
forest-dwelling butterfly species in Japan are designated as
threatened, there appears to be a trade-off in butterfly conser-
vation strategies with respect to whether we should manage
abandoned land to maintain open habitats by human inter-
vention or let succession proceed. Thus, the effect of land
abandonment should be evaluated for each species across
regions, and spatially explicit planning is needed to optimize
conservation strategies. For nationwide evaluations, butter-
flies are suitable subjects owing to extensive studies of their
geographical distributions, preferred habitats and larval
host plants [35].

The aim of this study was to clarify the effect of land
abandonment on butterfly communities at a national scale,
including different climatic regions, and to determine how
responses to land abandonment differ among species with
different habitat preferences. Here, we chose both inhabited
and abandoned settlements in each region across Japan to
estimate the effect of land abandonment, defined by inhabita-
tion. We focused on three land-use types, namely dry crop
field, paddy field and built-up area (i.e. houses and gardens
around them), because they can be identified from past ter-
rain maps and visual inspection in the field. The following
hypotheses are addressed in this study: (1) species preferring
colder temperatures are more likely to show negative
responses to land abandonment and (2) open habitat species
(inhabiting grassland/agricultural lands) generally show
negative responses to land abandonment, whereas forest-
dwelling species exhibit positive responses. Based on the esti-
mated coefficients of land abandonment for butterflies with
different habitat preferences, we created a nation-wide map
reflecting the risks and benefits of land abandonment for but-
terfly diversity; this map could provide a guideline for
identifying regions that may benefit from continuous
human intervention.
2. Material and methods
(a) Study area
We selected 18 regions that covered most parts of mainland
Japan (figure 1) and differed in terms of mean annual tempera-
ture (MAT) (electronic supplementary material, table S1). The
range of MAT in the selected regions was 4.5–15.7°C, which
covers most of the MAT range in areas inhabited by humans in
mainland Japan (the range of MAT of all the meteorological
stations except Mt Fuji was 6.0–18.8°C) [36]. In each region, we
selected both abandoned and nearby inhabited settlements in
approximately equal number, with a total of 2–5 settlements,
including both types. We selected abandoned settlements from
databases of abandoned settlements in Japan [37–39] according
to the following criteria: (1) the settlement was inhabited in the
past but uninhabited at present; (2) agricultural land was present
before abandonment; and (3) the year of abandonment was
known. As a result, we surveyed 34 abandoned and 30 inhabited
settlements across all regions in Japan. The time elapsed since
abandonment varied among settlements, ranging from 8 to 53
years (electronic supplementary material, table S1). Pearson’s
correlation coefficient between years since abandonment and
MAT was −0.16 (95% CI: −0.39, 0.09), and the difference in
MAT between abandoned and inhabited settlements was not sig-
nificant ( p = 0.44, Student’s t-test). The mean areas (± standard
error) of the abandoned and inhabited settlements were,
respectively, 10.6 ± 3.1 ha and 12.2 ± 4.4 ha, and these areas did
not differ significantly.
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Figure 1. Location of study sites. Each site contained both rural abandoned villages and inhabited villages.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212222

3

(b) Butterfly survey
We visited each settlement during late May to early August in
2015 and in 2016. To account for differences in butterfly phenol-
ogy among regions with different temperatures, the visits started
in the southern region and ended in the northern region in each
year. In 2016, we revisited 16 settlements which we surveyed in
2015 to examine the effect of survey season on butterfly commu-
nities. In each visit, we established 4 to 16 plots (each 100 m2) for
the butterfly survey, depending on the area of the settlements.
The survey plots were located at dry crop fields, paddy fields
and built-up areas, and the land use category at each plot was
also recorded. All the survey plots in inhabited settlements
were under active land use; crop fields and paddy fields were
cultivated, and houses were occupied. By contrast, in the aban-
doned settlements, all human activity was absent and some
houses had even collapsed. The butterfly survey was conducted
on sunny or slightly cloudy days from 8.00 am to 12.30 pm. A 5-
minute census was conducted from roads or rural paths adjacent
to the survey plots, and the presence/absence of all species of
butterflies found at the plot was recorded. As we did not capture
individual butterflies, but instead recorded individuals by sight,
some groups of species were difficult to identify to the species
level during flight. Thus, the following taxonomic groups were
omitted from further analysis: (1) four species of Papilio (P. prote-
nor, P. macilentus, P. memnon and P. helenus); (2) six species of the
tribe Argynnini (Fabriciana adippe, Speyeria aglaja, Nephargynnis
anadyomene, Argynnis paphia, Argyreus hyperbius and Damora
sagana); (3) Hesperiidae; and (4) three genera of the tribe Theclini
(Neozephyrus, Favonius and Chrysozephyrus). We also excluded the
non-native species Pieris rapae [40] and P. brassicae.

The habitat preferences for each butterfly species were
determined based on the habitat categorization established by
the Japan Butterfly Conservation Society [35]. The categorization
consists of the following 11 types: forests, forest edges, open for-
ests, grasslands, crop fields, gardens, built-up areas, rivers,
wetland, alpine and rocky habitats. The habitat preferences of a
species often comprised several habitat types (electronic
supplementary material, table S1).
(c) Statistical analysis
We applied three statistical approaches: (1) evaluating the
correlation between species-specific responses to temperature
and land abandonment; (2) evaluating the relationship between
habitat preferences of species and susceptibility to land abandon-
ment; and (3) developing a predictive model for species-specific
responses to land abandonment based on habitat preferences.
Our dataset had a hierarchical structure in which settlements
were nested within a region, and a settlement contained multiple
land-use types. Survey plots with the same land-use type were
generally spatially aggregated in a settlement. Therefore, we
incorporated region-, settlement- and land-use-type-level
random effects into the analyses to accommodate the spatially
hierarchical sampling design. Then, we treated the presence/
absence of a species in a plot as the unit of analysis. These
models were implemented by a hierarchical Bayesian approach.

(i) Correlation between the species-specific response to
temperature and land abandonment

We applied generalized linear mixed models (GLMMs) [41],
incorporating heterogeneous responses to environmental proper-
ties among species as a random slope to determine whether
species that prefer colder temperatures are more likely to respond
negatively to land abandonment. The presence and absence of
the ith species at the jth survey plot, Yij, was assumed to
follow a Bernoulli distribution, Bernoulli (Yij; pij), where pij is
the probability of occurrence. The parameter pij was assumed
to be expressed by a logistic regression model. We used land
abandonment (ABANj) and mean annual temperature (TEMPj)
as explanatory variables. We also included month surveyed
(MONTHj) and a categorical variable of three land-use types
(LUj: dry field, built-up area and paddy field [baseline category])
as confounding factors. TEMPj was obtained from the Climate
Mesh Data 2000 [42]. MONTHj and LUj were confounding
factors controlling for the possible influence on the other par-
ameters of seasonality and land-use type at each survey plot,
respectively. We also considered region-, settlement- and land-
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use-type-level random effects, namely εreg( j ), εset( j ) and
εlu( j ), following normal priors with mean zero and variance
σr

2, σs
2 and σl

2, respectively, to accommodate the hierarchical
sampling scheme with unbalanced sample size [43]. Overall, pij
was modelled as follows:

logitðpijÞ ¼ b0i þ b1iABANj þ b2iTEMPj þ b3iMONTHj
þb4iIðLUj ¼ dryfieldÞ þ b5iIðLUj ¼ built� up areaÞ þ 1regðjÞ
þ1setðjÞ1luðjÞ,

ð2:1Þ

where β0i is a species-specific fixed intercept, and β1i, β2i, β3i, β4i
and β5i are regression coefficients for the ith species. I() is an indi-
cator function for the dummy variable LUj.

To infer species-specific effects of land abandonment and the
correlation with their preferred temperature, a GLMM with a
random slope was applied to estimate regression coefficients
for each species. In a random slope model, regression coefficients
of species are treated as random effects subject to the same prior
distribution. As a prior distribution of βi = (β1i, β2i), the bivariate
normal distribution MVN(βi; μβ, Σβ) was applied. μβ = (μβ1, μβ2)
and Σβ are the mean vector and covariance matrix, respectively.
The covariance matrix was decomposed to standard deviations
and Pearson’s correlation coefficient as follows:

Sb ¼ s 2
b1 rsb1sb2

rsb1sb2 s 2
b2

" #

Here, ρ is Pearson’s correlation coefficient between β1i and β2i;
a positive value indicates that a species preferring cooler temp-
eratures is more likely to be negatively impacted by land
abandonment. The priors of regression coefficients of confound-
ing factors, namely β3i, β4i and β5i, followed normal distributions
with mean μβ3, μβ4 and μβ5 and variance σβ3, σβ4 and σβ5,
respectively.

We calculated posterior distributions of the model by the
Bayesian method using vague or weakly informative priors for
the hyperparameters of the model. For β0i, μβ1, μβ2, μβ3, μβ4 and
μβ5, a normal prior with mean 0 and variance 100 was used. A
half-Cauchy distribution with a scale parameter set to 5 was
used as a weakly informative prior for the standard deviations:
σr, σs, σβ1, σβ2, σβ3, σβ4 and σβ5 [44,45]. A uniform distribution
with range (−1, 1) was used for the prior of the correlation coef-
ficient, ρ. Samples from the posterior distribution were obtained
using the No-U-Turn Sampler implemented in RStan 2.21.1 [46]
(three chains, 1000 iterations after 1000 burn-in iterations with no
thinning). We obtained 3000 posterior samples. Convergence of
the Markov chain Monte Carlo (MCMC) algorithm was evalu-
ated using R̂ [47], and we adopted R̂ , 1:1 as a threshold of
successful convergence [48]. We also evaluated the goodness of
fit by using the posterior predictive p-value [49] with the follow-
ing summary statistics: (1) proportion of presence observations
over the dataset; (2) proportion of presence observations at aban-
doned settlements; (3) proportion of presence observations at
inhabited settlements; (4) the Gini coefficient of the proportion
of presence observations among the settlements; and (5) the
Gini coefficient of the proportion of presence observations
among species.

For the explanatory variable ABANj, we considered two
candidate variables, ‘abandoned or not’ and ‘years since aban-
donment’, because it is unknown whether the response is
immediate or gradual. We compared the performance of
models using ‘abandoned or not’ and ‘years since abandonment’
on the basis of the widely applicable Bayesian information cri-
terion (WBIC) [50]. WBIC is a generalization of the Bayesian
information criterion which is applicable to both regular and
singular statistical models; it asymptotically approximates the
negative logarithm of the marginal likelihood. The Bayes factor
(the ratio of posterior probabilities of competing models) was
calculated as the exponential of the difference in WBICs. The
abandonment variable with a lower WBIC was used for
further analyses.

(ii) Relationship between habitat preferences of species and
responses to land abandonment

To test whether species with different habitat preferences
respond differently to land abandonment, we applied a hierarch-
ical model incorporating a hierarchy of habitat type and species
[51]. The model is an extension of the species-level model
described in section (1), in which the average effect of land aban-
donment μβ1 was modelled by the linear predictor of habitat
preferences as follows:

mb1i ¼ a0 þ a1Hik, ð2:2Þ
where Hik is a binary variable indicating whether the ith species
uses the kth (k = 1, 2,…, 11) habitat type or not. α0 is the intercept,
and α1 indicates the difference in the average effects of land aban-
donment between habitat types, where positive and negative
values of α1 indicate positive and negative effects for species
using the kth habitat type relative to species using other habitat
types. The same structure was used to determine the effect of
TEMPj; that is, μβ2i = αT0 + αT1Hik. As in the model of §2c(i)
above, slopes for each species vary following a multivariate
normal distribution with mean vector (μβ1i, μβ2i).

We calculated posteriors of α0, α1, αT0 and αT1 separately for
the 11 habitat types. We used vague priors of a normal distri-
bution with mean 0 and variance 1000 for these parameters.
Other prior settings were the same as those for the species-
level model (§2c(i)). Samples from the posterior distribution
were obtained using RStan v. 2.21.1 [46], with the same
MCMC settings and posterior diagnostics as in §2c(i).

(iii) Predictive model of species-specific responses to land
abandonment

A hierarchical modelling approach is a powerful tool for predict-
ing species-specific responses to environmental changes [52], and
allows us to evaluate the broad-scale distribution of a species.
Here, we developed a predictive model of species-specific
responses to land abandonment based on the habitat preferences
of a species and projected the expected loss and gain of butterfly
species. The detailed methods are shown in electronic
supplementary material, appendix S1. The model was a multi-
variate extension of equation (2.2), which includes all the
habitat types as linear predictors with a ridge regularization
[53] on the coefficients of habitat types. To make projection
maps for the effect of land abandonment on butterfly assem-
blages, we defined the loss (CL) and gain (CG) in butterfly
species due to land abandonment, which were calculated from
the output of the predictive model. The CL and CG are the
sum of the predicted negative and positive effect of land aban-
donment on species present in a spatial unit, respectively. We
used nationwide range maps of 70 butterfly species in Japan
(electronic supplementary material, table S3), with resolution of
approximately 1 km, which were projected by Kasada et al. [54]
using distribution models (MaxEnt) applied to butterfly records
from a national survey of butterfly distribution in Japan. We
evaluated these indices for all the species and for the Red List
species [55] separately.
3. Results
A total of 49 butterfly species were recorded during our field
surveys (electronic supplementary material, table S2). The top
10 species with the highest average occurrence (i.e. number of
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presence plots divided by total number of plots) were Pieris
melete, Colias erate, Celastrina argiolus, Ypthima argus, Libythea
celtis, Plebejus argus, Lycaena phlaeas, Eurema mandarina, Papilio
machaon and Apatura metis, in decreasing order, and they rep-
resented 73.4% of the total occurrence records.

The parameters of all models successfully converged
(R̂ , 1:1). In posterior predictive checking, no summary stat-
istics of the observed data showed significant divergence
from the posterior predictive distributions generated from
all estimated models (electronic supplementary material,
table S4). Model selection using the WBIC indicated that
the model including ‘abandoned or not’ (WBIC = 3577.68)
outperformed the model for ‘years since abandonment’
(WBIC = 3611.28), suggesting relatively immediate responses
to land abandonment. The Bayes factor for the former
model against the latter was 3.89 × 1014. Among the 49 butter-
fly species analysed, 13 showed a significant negative
response (i.e. the upper 95% CI of the regression coefficient
of ‘abandoned or not’ was less than zero), while 3 species
showed a positive response (electronic supplementary
material, table S5). Lycaena phlaeas, Papilio machaon and Papilio
xuthus exhibited the largest negative effect of land abandon-
ment. The three species that showed positive responses were
Limenitis camilla, Cyrestis thyodamas and Graphium sarpedon.
Effects of land abandonment and temperature were posi-
tively correlated (figure 2); Pearson’s correlation coefficient
between the effect of land abandonment and annual mean
temperature was 0.4 with a 95% CI of (0.07, 0.7).

There was a significant relationship between habitat types
of species and responses to land abandonment for four habitat
types; species using farmland, grassland and built-up areas
responded negatively. Although those using forest showed a
significant difference from the other habitat types, the 95%
CI of the average response to land abandonment overlapped
with zero (figure 3; electronic supplementary material,
table S6).

Using a hierarchical model with ridge regularization, we
obtained the predictive model for the effect of land abandon-
ment based on the habitat preferences of each species
(electronic supplementary material, table S7). Although the
parameter uncertainty of each regression coefficient obtained
by ridge regression was large due to the correlation between
habitat preferences, the model retained discriminative ability
for species that respond negatively to land abandonment
(electronic supplementary material, figure S1). By applying
this model, posterior means of 37 and 33 species were nega-
tive and positive, respectively, and the upper 95% CIs of
seven species were negative. Using the predicted values
thus obtained, we drew maps of CL (figure 4a) and CG
(figure 4b) of species throughout Japan’s mainland. The geo-
graphical distributions of loss and gain were similar on a
coarse scale and the Pearson’s correlation coefficient was
0.55; specifically, larger values of both CL and CG were
found in inland central Kyushu, inland western Honshu,
inland central Honshu, northern Honshu and Hokkaido,
while smaller values were found in high-elevation areas.
However, CL outweighed CG in 99.6% of grid cells (358 045
of 359 429) and CL tended to be higher in lowlands
(figure 4c–e). Standard deviations of CL and CG and the pro-
portion of CG (electronic supplementary material, figure S2a,
b,d) were almost directly proportional to their posterior
means (Pearson’s correlation coefficient r = 0.86, 0.99 and
0.96, respectively). The standard deviations of the proportion
of CL and CG – CL (electronic supplementary material, figure
S2c,e) had stronger positive correlations with CG (r = 0.87
and 0.95, respectively) than did their posterior means
(r =−0.96 and 0.51), reflecting the large uncertainty of CG.

Of the Red List species, 10 were evaluated as victims of
land abandonment and 4 were evaluated as beneficiaries.
Distribution patterns of CL and CG for Red List species of
Japan are shown in electronic supplementary material,
figure S3a,b. The correlation between CL and CG was
weaker for Red List species than for all species (r = 0.36),
and their spatial patterns were different on a coarse scale.
For instance, CL was small while CG was large in northern
Honshu. Conversely, CL was large but CG was small in east-
ern Hokkaido (electronic supplementary material, figure S3c,
d,e). Similar to the maps for all species, the standard
deviations of the CL and CG and the proportion of CG (elec-
tronic supplementary material, figure S4a,b,d) were almost
directly proportional to their posterior means (r = 0.95, 0.99
and 0.92, respectively), and the standard deviations of the
proportion of CL and CG – CL, rather than their posterior
means, were correlated with CG (electronic supplementary
material, figure S4c,e).
4. Discussion
As expected, the responses of butterflies to land abandon-
ment were associated with the climatic niches and habitat
preferences of species. Through our approach in this study,
which compared community assemblages between inhabited
and abandoned areas using a standard survey protocol, we
were able to estimate the effects of land abandonment over
a broad range of climatic conditions. In combination with
the hierarchical modelling approach, we were able to draw
nationwide potential maps of the loss and gain of species
richness through land abandonment.

The legacies of the past climate and past land use can
affect current functional species compositions within regional
species pools [56,57], and different functional compositions
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among regions can result in different community-level
responses to current environmental changes [58]. Such a
difference would also reflect the historical background of
organisms inhabiting seminatural environments in Japan.
Grassland was more abundant in the Pleistocene because
the climate was colder and drier than at present [34]. After
the last glacial period, open lands created by human activity
have offered refugia for the Pleistocene relics [59], and such
refugia are unlikely to be sustainable if they are abandoned
[60]. Our results also raise a conservational concern that
species negatively impacted by land abandonment will
decline more due to climate warming in the future, because
the species susceptible to land abandonment tend to prefer
low temperatures (figure 2). This means that continuing
land management in rural areas would be an effective
measure of climate change adaptation for biodiversity
conservation in Japan.

Habitat degradation for open-land butterflies due to land
abandonment occurred quickly, whereas forest butterflies
would require a longer period of time to experience a positive
effect. We suggest that land abandonment resulted in a
decrease in the richness of herbaceous plant species [24],
leading to the loss or decline of host plants for open habitat
butterflies (grassland, crop field and residential species).
Indeed, we often observed tall grasses, such as Miscanthus
sinensis, as predominant species in abandoned paddies, dry
fields and built-up areas in uninhabited settlements. The
monodominance of wind-pollinated Miscanthus would
decrease the abundance and diversity of nectar-producing
flowers that are important for adult butterflies. By contrast,
forest species tended to increase in response to land abandon-
ment, although the proportion of such species was low.
Development of old-growth forest in Japan requires approxi-
mately 150 years [61], and some tree species require more
than a hundred years to recover [62]; accordingly, recovery
of forest butterfly species that depend on such trees would
also require very long time as well.
It should be noted that there was a positive correlation
between losses and gains in butterfly richness both for all
species and for Red List species due to land abandonment
at the level of grid cells, indicating a trade-off between the
benefits of active management of abandoned sites and letting
succession proceed. As threatened butterflies in Japan include
more grassland species than forest species, human interven-
tion should be prioritized, in principle, to conserve such
species, but deliberate decision-making is required for areas
where the benefit of land abandonment is high. Our results
indicate that conservation of butterflies by active manage-
ment is desirable in lowland and eastern Hokkaido, where
the loss of species that prefer abandoned landscapes would
be smaller under such management. Highly cost-effective
areas for habitat management based on species ranges
and habitat preferences need to be identified with high resol-
ution, because maintaining secondary natural environments
is generally labour-intensive [63]. The maps of gain and
loss of butterfly diversity presented in this study did not
incorporate spatial heterogeneity in land abandonment and
instead assumed that all locations in Japan were abandoned.
In actuality, the current human population density and the
speed of decline is spatially heterogeneous, which will
create heterogeneous land-use patterns in the future [64,65].
However, our predictions would still be useful for evaluating
biodiversity loss and gain in rural landscapes because
human population decline is expected to be severe in most
of those areas.

Here, we evaluated the risks and benefits of land
abandonment using butterfly occurrence data; however, it is
also important to clarify how the abundance of larval host
plants and adult nectar plants changes over time after aban-
donment. Previous studies have shown that many grassland
species are still found even 10 years after abandonment [66],
indicating the presence of host and nectar plants during that
period. In our study, the effects of land abandonment did
not show a clear increase over time, as the model with a
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dichotomous variable (inhabited versus abandoned settle-
ments) outperformed the model with a continuous variable
(years since abandonment). As Japan has a monsoon climate,
with relatively high temperatures and rainfall in comparison
with Europe, vegetation succession may proceed within a few
years, resulting in a rapid response to land abandonment.
This suggests the need to restore habitats as soon as possible
after abandonment. The potential maps of the effect of land
abandonment will contribute to prioritizing habitat manage-
ment plans in areas where settlement abandonment in the
immediate future and a large decrease in biodiversity after
abandonment are expected.

A major contribution of our study was the ability to apply
the estimated relationship between habitat preferences and
responses to land abandonment to butterfly species that
were not observed in the field survey. Potential drawbacks
of our survey design are sparse occurrence records and low
completeness of species in the dataset due to the small
amount of survey effort per sample. Hierarchical modelling
could overcome the problems of sparse data, such as model
unidentifiability, by introducing a hierarchy of superspecies
that stabilize the species-level estimates [67]. With this hier-
archical structure, we could predict the responses of
butterfly communities even when not all species were well-
detected in the field survey. The utility of such a hierarchical
modelling approach is widely recognized [68], but there are
some caveats, as responses of habitat generalists may be
difficult to predict. To resolve this problem, models incorpor-
ating responses of host plants to land abandonment and
resultant butterfly responses [69] should be explicitly con-
structed, as has been done for climate change prediction
models [70].

Our hierarchical modelling approach also allowed us to
evaluate the correlation between susceptibility to climate
warming and land abandonment, which could provide impor-
tant information for the management of semi-natural habitats
in order to ensure biodiversity under climate change. How-
ever, we should be cautious about extrapolating our results
to other regions of in the world with different biogeographical
factors. For example, some grassland butterflies in Europe
have expanded their range northward in response to the
warming climate [71], while such a range expansion is not
expected in Japan. Such a difference would arise from the
different latitudes of stable grassland biomes. Grassland
butterflies in Japan have high commonality with Eurasian
temperate steppe fauna ranging from eastern Eurasia to
the Mediterranean region, and seminatural grassland in
Japan can be thought as the extrazonal remnant of the temper-
ate stable grassland [31]. Interestingly, the climatic limit of
eastern Eurasian steppe ismuch cooler than theMediterranean
region [32]. Europe and Japan are respectively located in the
northern and southern regions of the outer part of the Eurasian
temperate steppe. Thus, a northward biome shift due to cli-
mate warming can help grassland butterflies in Europe, but
not in Japan. A continental-scale comparative study of the
responses of grassland butterflies to climate warming is a
potential topic for future research to test the hypothesis.

Although we focused on the effect of land abandonment
in this study, the hierarchical modelling approach would also
be applicable to predicting the response of biological commu-
nity to climate change if climatic niche information of species
[72] is available. A database of climatic niche information of
butterflies in Japan has not yet been developed due to the dif-
ficulty in collecting the distribution data of butterflies which
are widespread in Asia, and this should be a topic for further
research.

In conclusion, a hierarchical modelling approach that
incorporates the relationship between the habitat preferences
of species and their responses to land abandonment was
useful for scaling up the results of comparative field studies
to a macro-scale evaluation of species losses and gains due
to land abandonment. Land abandonment had both positive
and negative effects on different functional groups of butter-
flies in Japan, and our approach could be used to identify
areas exhibiting high species losses relative to gains after
land abandonment. We believe this approach is promising
for large-scale and comprehensive biodiversity assessments
regarding the risks and benefits of land abandonment,
which are urgently needed in view of ongoing depopulation
in developed countries.
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