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The sequestration of carbon dioxide using carbonic anhydrase (CA) is one

of the most effective methods for mitigating global warming. The burning

of fossil fuels releases large quantities of flue gas; because of its high tem-

perature and of the alkaline conditions required for CaCO3 precipitation in

the mineralization process, thermo-alkali-stable CAs are needed. In this

context, Manyumwa et al. conducted a biochemical characterization of

three CAs derived from thermophilic bacteria. They then employed a ratio-

nal design approach to enhance the specific activity and stability of the

enzyme from the hydrothermal vent species Persephonella sp. KM09-Lau-8.

Comment on: https://doi.org/10.1111/febs.17346

Introduction

Over the past 250 years, anthropogenic activities have

caused a significant increase in greenhouse gases

(GHG), including a � 35% rise in CO2 concentration

in the atmosphere. Of this increase, two-thirds is con-

tributed by burning of fossil fuels. CO2 levels in the

atmosphere have now surpassed the 400 ppm thresh-

old, and they may remain above this level for genera-

tions. The increase in GHG emissions has led to a rise

in Earth’s surface temperature by about 1.5–2.0 °C
compared with preindustrial times, contributing to nat-

ural calamities and negatively impacting the environ-

ment. Carbon sequestration is a process aimed at

extracting significant amounts of GHG from the atmo-

sphere and safely storing them elsewhere: By prevent-

ing CO2 from entering the atmosphere, carbon

sequestration holds enormous potential for mitigating

climate change. This process naturally occurs in

Earth’s ecosystems, such as grassland and forest

plants, soils, and oceans, which act as natural CO2

sinks. However, scientists can also activate and

enhance this process through current technologies to

artificially capture CO2 emissions. Additionally, CO2

reuse is a cutting-edge technology for the simultaneous

reduction in atmospheric emissions and the production

of raw materials by converting CO2 into other chemi-

cal compounds.

Carbon dioxide sequestration can be achieved

through physical, chemical, and biological methods

[1–3]. Physical methods involve adsorption onto porous

materials or absorption into the liquid phase, though
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their removal efficiency tends to be relatively low; chem-

ical methods rely on a chemical reaction between the

absorbent and CO2 to generate high value chemicals

(anyway the absorbents—typically strong alkaline com-

pounds—can cause secondary environmental pollution);

biological treatments utilize photoautotrophic organ-

isms to convert CO2 into energy or aim to accelerate the

CO2 adsorption rate into water. In the latter case,

the enzyme carbonic anhydrase (CA, EC4.2.1.1), a

zinc-containing enzyme found in many organisms, is

commonly used. CAs catalyze CO2 hydration reactions

to form bicarbonate and protons (Eqn 1).

CO2 gð Þ þH2O lð Þ ! H2CO3 aqð Þ ! Hþ
aqð Þ þHCO�

3 aqð Þ (1)

This reaction is composed of two half-reactions

(Fig. 1A) [4]. The first step involves the nucleophilic

attack of a zinc-bound hydroxide to a CO2 molecule,

followed by the formation of bicarbonate coordinated

to the metal ion; this bicarbonate is then quickly dis-

placed by a water molecule, subsequently generating

the acidic form of the enzyme, which is not catalyti-

cally active. The second step of the reaction is com-

prised of the regeneration of the zinc-bound hydroxide

through the transfer of a proton from the zinc-bound

water molecule to the external buffer.

CAs possess a very high catalytic activity (kcat), in

the 105–106 s�1 range, and are thus used for enhancing

CO2 hydration and precipitation to calcium carbonate

(CaCO3). CA-based reactors for capturing CO2 have

been developed [5]: these processes require immobilized

thermo-alkali-stable CAs since in postcombustion cap-

ture, the gas mixture is released at very high

temperatures. For example, a process utilizes a highly

thermostable engineered β–CA from Desulfovibrio vul-

garis [6]: the rate of CO2 absorption increased by

about 25-fold in the catalyzed reaction as compared to

the noncatalyzed one. Over the years, CAs from other

sources have been used, such as the α-class enzymes

from Caminibacter mediatlanticus and Sulfurihydrogen-

ibium yellowstonense YO3AOP1 [7,8].

Rational engineering of an enhanced
carbonic anhydrase: production of an
evolved enzyme for carbon dioxide
sequestration

Protein engineering strategies to enhance enzyme perfor-

mance for biotechnological applications typically aim to

improve either catalytic activity or stability. To increase

catalytic efficiency, these approaches often target residues

involved in the rate-limiting step of the catalytic cycle.

For α-CA, the rate-limiting step involves the transfer of a

proton from the zinc-bound water molecule to the exter-

nal solvent, which regenerates the zinc-bound hydroxide

(Fig. 1A). This proton transfer relies on a residue acting

as a base (i.e., with a pKa close to neutrality) to facilitate

transfers of the proton from the catalytic water molecule

to the bulk solvent through a well-ordered H-bonded

water network [9]. Accordingly, substituting a catalytic

lysine residue (pKa= 8.6) with a histidine in human CA

III increased the kcat nearly 20-fold [10]. In most α-CAs, a
histidine residue (e.g., His64) with a pKa in the 6.25–7.60
range is typically present [11]. In bacterial α-CAs, how-

ever, two basic residues (a histidine and a lysine) may par-

ticipate in proton transfer; in CA from Persephonella

Fig. 1. Catalytic mechanism and structure of PhyCA. (A) CO2 hydration reaction: (i) nucleophilic attack by the zinc-bound hydroxyl ion to

CO2; the produced HCO�
3 is displaced by a water molecule; (ii) proton transfer via a H-bond network. Adapted from [4], which is copyrighted

under a CC-BY-4.0 license. (B) Active site structure of the active site of PhyCA. The 3D model was built using ALPHAFOLD3. The zinc (gray)

and water (red) are represented as spheres. Residues coordinating zinc are in teal, residues involved in the proton shuttling H-bond network

are in brown, and residues investigated in the work from Manyumwa et al. [13] are in green (His85 is represented into two potential

conformations). Direction of proton transfer is represented by a cyan arrow with W representing potential water molecules.
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hydrogeniphila (PhyCA), these residues are His85 and

Lys88 (Fig. 1B).

A common assertion in protein engineering is that the

combined impact of point mutations on enzyme activity

and stability is often unpredictable. Enhanced activity fre-

quently comes at the expense of reduced stability, as seen

during the in vitro evolution of PET hydrolases [12].

However, substitutions at position Lys88 of PhyCA,

introduced by Manyumwa et al. [13], produced variants

with improved reaction rates and, in some cases,

increased stability. For instance, the K88Q variant dem-

onstrated a 10 °C increase in thermotolerance compared

with wild-type PhyCA. This enhancement appears char-

acteristic of this class of bacterial enzymes. Recently, the

same researchers engineered α-CA variants from Nitratir-

uptor tergarcus that exhibited simultaneous improvements

in both activity and stability [14]. Notably, the most effec-

tive variants involved substitutions at the enzyme’s sur-

face or dimerization interface. A combination of these

substitutions produced a double variant (N88K/R210L)

that retained 47% of its activity after 24 h of incubation

at 90 °C [14].

In the study from Manyumwa et al. [13], the authors

emphasized a distinctive feature of CAs: multiple resi-

dues at the active site can act as proton shuttles, albeit

with differing efficiencies [15]. Interestingly, replacing

the Lys88 proton shuttle side chain with alanine pro-

duced an enzyme with slightly increased catalytic activ-

ity. This finding aligns with studies on human α-CA,

where the removal of the conserved His64 residue at

the active site yielded a variant retaining approxi-

mately 50% of the original activity [16].

Optimizing enzymes for biotechnological applica-

tions requires balancing improvements in both activity

and stability, rather than prioritizing one property

exclusively. This approach has been applied in design-

ing thermostable bacterial α-CAs by introducing novel

disulfide bonds. For example, the double variant

(N63C/P145C) exhibited reduced activity at 25 °C
compared with the wild-type enzyme but demonstrated

thermo-activation at elevated temperatures, retaining

56% of its activity after 24 h at 70 °C [17]. Applying

this principle, Manyumwa et al. identified the PhyCA

K88Y variant as the most promising candidate. While

not the most active or stable variant overall, K88Y

retained nearly 50% of its initial activity after 1 h at

90 °C, making it well-suited for CO₂ sequestration

under high-temperature conditions.

Conclusion

Until now, humans have not successfully removed atmo-

spheric pollutants on a global, continental or regional

scale. The only viable option has been to shut down the

source and allow nature to restore balance. Carbon diox-

ide removal, however, presents a particularly challenging

task, leaving us to mainly rely on the environment to sta-

bilize atmospheric CO2 levels over time. CAs appear to

be promising tools in addressing this issue, and biotech-

nological approaches are emerging as the most effective

strategy. Advances in biotechnology are expected to

enhance CO2 capture and sequestration processes. Bioin-

formatics tools can aid in discovering novel CA-encoding

genes and predicting beneficial substitutions. Addition-

ally, enzyme engineering and immobilization techniques

can improve CA activity and stability under operational

conditions [6]. System biology approaches, along with the

development of continuous operating reactors, will help

tackle current challenges, ultimately paving the way for

cost-effective CO2 sequestration technologies.
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