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Abstract.—Measuring the phylogenetic information content of data has a long history in systematics. Here we explore
a Bayesian approach to information content estimation. The entropy of the posterior distribution compared with the
entropy of the prior distribution provides a natural way to measure information content. If the data have no information
relevant to ranking tree topologies beyond the information supplied by the prior, the posterior and prior will be
identical. Information in data discourages consideration of some hypotheses allowed by the prior, resulting in a posterior
distribution that is more concentrated (has lower entropy) than the prior. We focus on measuring information about tree
topology using marginal posterior distributions of tree topologies. We show that both the accuracy and the computational
efficiency of topological information content estimation improve with use of the conditional clade distribution, which
also allows topological information content to be partitioned by clade. We explore two important applications of our
method: providing a compelling definition of saturation and detecting conflict among data partitions that can negatively
affect analyses of concatenated data. [Bayesian; concatenation; conditional clade distribution; entropy; information;
phylogenetics; saturation.]

Measuring the amount of phylogenetic information
in data is of importance to systematists, and not
surprisingly many methods have been proposed to
measure the information content (or, equivalently, noise)
of systematic data and how it is apportioned across
clades: for example, the consistency index (Kluge
and Farris 1969); bootstrapping (Felsenstein 1985);
permutation tests (Archie 1989; Faith 1991); tests that
account for nucleotide composition attraction (Steel et al.
1993; 1995); relative apparent synapomorphy analysis
(Lyons-Weiler et al. 1996), tree length skew statistics
(Hillis and Huelsenbeck 1992); and, most recently,
entropy-based methods (Shpak and Churchill 2000;
Xia et al. 2003; Shi et al. 2008; Lemey et al. 2009;
Xia 2009; Tippery et al. 2012; Brown 2014). The main
goal of another class of methods (e.g., phylogenetic
informativeness profiling (Townsend 2007; Fischer and
Steel 2009), use of Fisher information in phylogenetic
experimental design (Goldman 1998; Massingham and
Goldman 2000; Geuten et al. 2007; Mauro et al. 2009), and
phylogenetic signal and noise analysis (Townsend et al.
2012)) is primarily concerned with predicting the value
of additional data rather than measuring information in
existing data.

Bayesian phylogenetic methods potentially allow
more complex, biologically relevant models than do
methods based only on the likelihood function because
prior distributions can be used to constrain poorly
identified parameters to reasonable values. This effect of
the prior complicates assessment of information content
because the prior adds information of its own to the
analysis. The Bayesian paradigm is, however, ideal for
quantifying the amount of information present in data
and separating information in data from information

provided by the prior (Lindley 1956; Bernardo and Smith
1994; Cover and Thomas 2006), yet few phylogenetic
studies (e.g., Lemey et al. 2009; Tippery et al. 2012;
Brown 2014) have taken advantage of the natural
information content measures available within the
Bayesian framework. This is partly due to the fact
that until recently the major ingredients (e.g., marginal
posterior tree topology distributions) were difficult to
estimate accurately from Bayesian phylogenetic MCMC
output. A recently published method (Larget 2013)
for estimating distributions of tree topologies given
conditional clade posterior distributions potentially
allows much more accurate estimation of tree topology
distributions than is possible using simple sample
proportions. We show how Lindley’s (1956) entropy-
based Bayesian measure of information content can be
computed directly from Larget’s (2013) conditional clade
distribution, making possible estimation of information
content even when coverage (the proportion of the
posterior distribution captured in a posterior sample of
tree topologies) is less than 1.

One obvious application of information estimation is
the determination of substitutional saturation, which is
commonly assumed to be a source of systematic error
in phylogeny estimation (Zhong et al. 2011; 2013; Parks
et al. 2012; Xi et al. 2013; 2014; Fučíková et al. 2014a; Liu
et al. 2014). Removing putatively fast-evolving sites from
alignments has become common practice, and software
tools have been provided to automate site-stripping
(Goremykin et al. 2010; Cummins and McInerney 2011;
Nguyen et al. 2011). Variation is, however, necessary for
phylogenetic inference, and even the fastest evolving
sites may provide much valuable information (Yang
1998). It is thus important to measure the amount of
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information provided by a subset of sites before deciding
to ignore them.

Information provided by different data subsets is
not necessarily concordant, and it is arguably just
as important to measure information dissonance
(conflicting phylogenetic signal in different subsets of
sites) as it is to measure overall information content.
There are many reasons why information in one data
subset may conflict with information in a different
subset. Incomplete lineage sorting and lateral transfer
may result in different true phylogenies for different
genes, and systematic error resulting from convergence
in nucleotide composition, codon bias, or other factors
may result in different estimated phylogenies even if
the underlying tree topologies are identical. Ideally,
concatenation of gene sequences combines compatible
(but possibly weak) signal from individual genes to
produce a well-resolved estimated phylogeny; however,
it is clear that concatenation can also hide the effects
of true discordance (Mossel and Vigoda 2005; Carstens
and Knowles 2007; Edwards et al. 2007; Kubatko and
Degnan 2007; Heled and Drummond 2010; Roch and
Steel 2015). Analysis of the information content of
individual sequence subsets and dissonance among
these subsets is thus highly advisable prior to analyses
involving concatenation.

Lindley’s Information Measure
The posterior distribution of an unknown quantity �

can be viewed as the prior distribution of � updated
with information from data. If there is no information
in the data relevant to �, the posterior distribution
exactly equals the prior distribution. Normally, prior
distributions are made intentionally vague (high
variance), in which case information present in data
makes some possible values of � less plausible than they
are under the prior distribution, yielding a posterior that
is concentrated compared with the prior.

In the context of phylogenetics, � represents a (rooted
or unrooted) tree topology. For example, � represents
one of 15 possible unrooted tree topologies in the case
of 5 taxa. Assuming that the marginal prior distribution
for tree topology is Discrete Uniform, the estimated
posterior becomes increasingly concentrated over the
true tree as the number of sites included grows from 0 to
10, 100, and 1000 sites, reflecting the increasing amount
of information in the data relevant to tree topology
estimation (Fig. 1).

The difference in entropy between the prior and
posterior distributions was used as a measure of
information content by Lindley (1956) and has been
applied to tree topology distributions by Tippery et al.
(2012) and Brown (2014). In the example above, the prior
has maximum entropy (log15) because each of the 15
distinct tree topologies has equal probability (1/15),
whereas the posterior based on 1000 sites has minimum
entropy (0.0). The decrease in entropy as the sample
size increases from 0 to 1000 provides a natural measure
of the relevant information gained as sites are added.
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FIGURE 1. Posterior distributions estimated using a STANDARD
analysis for simulated data sets with varying numbers of sites. All
sites were simulated on the model tree shown using the K80 model
with transition/transversion rate ratio 2. The 15 bins in each histogram
each correspond to one of the 15 possible unrooted tree topologies for 5
taxa. The number of sites simulated is shown on the left. Information as
defined in Equation (1) is shown on the right, expressed as a percentage
of the maximum possible information.

Note that information content does not grow linearly
with the number of sites: comparing the 100 site cases
with the 1000 site cases, 900% more sites yields only 60%
more information. This decreasing return on investment
is due to the fact that the information in different sites is
partially redundant. It is clear that adding 1000 more
sites (2000 sites total) could not reduce the posterior
entropy any further even if the additional 1000 sites
contained just as much information as the first 1000 sites.

Entropy has been used in other contexts in
phylogenetics to measure information content. Shi et al.
(2008) computed the entropy of posterior distributions
from individual genes using likelihood weights to
approximate posterior probabilities and used this
measure as input to an automatic clustering algorithm
that combined genes for which concatenation lowered
entropy. Lemey et al. (2009) quantified information about
the geographic location of the root of a phylogeny
for several competing phylogeographic models using
an entropy-based measure. Shpak and Churchill (2000)
used entropy to measure the position of simulated
data sets along the path from no variation to complete
substitutional saturation as a function of tree topology
and substitution rate using two-state Markov models.
Xia et al. (2003) and Xia (2009) used a similar approach to
measure the degree to which site patterns resemble those
characteristic of complete substitutional saturation.
Entropy has been used for a variety of other aspects of
phylogenetics besides measuring information content,
including estimation of pairwise distances (Bai et al.
2013), detection of heterotachy (Wang et al. 2011), and
assessment of phylogenetic diversity (Allen et al. 2009).
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MATERIALS AND METHODS

Information from Prior and Posterior Entropy
Systematists are keenly interested in measuring

information relevant to tree topology. For this the
discrete version of Shannon’s (1948) entropy measure is
appropriate:

H = H(p)=−
∑
�∈T

p(�)logp(�)

H∗ = H(p∗)=−
∑
�∈T

p∗(�)logp∗(�)

I = H−H∗. (1)

T is the set of all distinct binary labeled tree topologies,
� represents a realization of the random variable T
representing a tree topology, |T| represents the size of
the set T (i.e., the number of possible binary labeled tree
topologies), p∗ is the marginal posterior distribution,
with p∗(�) the marginal posterior probability of tree
topology �, and p is the marginal prior distribution,
with p(�) the marginal prior probability of the specific
tree topology �. Throughout, log(·) denotes the natural
logarithm (base e). To simplify notation, we omit the
conditional dependence of the posterior on data, instead
using an asterisk (∗) to denote quantities derived from
the posterior and to distinguish them from quantities
derived from the prior (which lack the asterisk). Lindley
information, I, measures the degree to which the
prior is concentrated into a posterior dominated by
a smaller number of tree topologies. Assuming that
the tree topology prior is Discrete Uniform on the
set T of all distinct tree topologies, I ranges from 0.0
(no information about topology) to log|T| (maximum
information; all posterior probability concentrated in
a single tree topology), and, when expressed as a
percentage, it should be understood that 100% implies
I = log|T|.

Relationship to Kullback–Leibler Divergence
If (and only if) the tree topology prior is Discrete

Uniform over all distinct tree topologies (in which case
p(�)=1/|T| is a constant for all �∈T), then Lindley
information is equivalent to the Kullback–Leibler (KL)
divergence measured from prior (p) to posterior (p∗):

KL(p∗,p) =
∑
�∈T

p∗(�)log
(

p∗(�)
p(�)

)

=
{∑

�∈T

p∗(�)logp∗(�)

}
−
∑
�∈T

p∗(�)logp(�)

=
{∑

�∈T

p∗(�)logp∗(�)

}
−logp(�)

�
�

�
��

1∑
�∈T

p∗(�)

=
{∑

�∈T

p∗(�)logp∗(�)

}
−logp(�)

∑
�∈T

p(�)

=
{

−
∑
�∈T

p(�)logp(�)

}
−
{

−
∑
�∈T

p∗(�)logp∗(�)

}

= H−H∗

= I. (2)

This KL interpretation is useful because, as we
show later, the overall information content can be
partitioned into additive clade-specific components that
are themselves clade-specific KL divergences weighted
by the posterior probability of the clade.

The KL interpretation also gives rise to a means of
estimating Lindley information. Letting y denote the
data on which the posterior distribution p∗ is based,

KL(p∗,p) =
∑
�∈T

p∗(�)log
(

p∗(�)
p(�)

)

=
∑
�∈T

p(�|y)log
(

p(�|y)
p(�)

)

=
∑
�∈T

p(�|y)log

(
p(y|�)�

�p(�)
p(y)�

�p(�)

)

=
∑
�∈T

p(�|y)logp(y|�)−logp(y)

�
�

�
���

1∑
�∈T

p(�|y)

= ET|y
[
logp(y|T)

]−logp(y),

where p(y|�) is the likelihood marginalized over all
model parameters on a fixed tree topology �, and p(y) is
the likelihood marginalized over all model parameters
(including tree topology). This approach would clearly
require considerable computation, as the total marginal
likelihood as well as all tree-specific marginal likelihoods
for trees having nonnegligible posterior probabilities
must be estimated. We next consider a more tractable
approach using conditional clade distribution estimated
from a single posterior sample of trees.

Partitioning Information Using Conditional Clade
Probabilities

Following on previous work by Höhna and
Drummond (2011), Larget (2013) showed that much
more accurate estimates of posterior probabilities of tree
topologies are possible using posterior summaries of
their component clades (or splits in the case of unrooted
trees). For example, if only 1000 trees are sampled
during an MCMC analysis, the rarest tree topology in
the sample will necessarily have an estimated marginal
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FIGURE 2. Relationship between the Markov chain Monte Carlo (MCMC) sample, the conditional clade distribution (CCD) derived from
that sample, and the estimated posterior distribution derived from the CCD. Top: frequencies of the five distinct tree topologies in the MCMC
sample. Middle: graph depicting the conditional clade distribution constructed from the MCMC sample (dotted lines indicate combinations
that were not observed in the MCMC sample). Ĥ∗

ABCDEFG, Ĥ∗
ABC, Ĥ∗

DEFG, Ĥ∗
EFG, and Ĥ∗

ABCD show which conditional clade probabilities are used in
each component of the total posterior entropy computed in Equation (3). Bottom: posterior probabilities of tree topologies estimated using the
CCD. Tree topologies shown in gray are implied by the CCD (see dashed lines in the CCD graph) but were not observed in the MCMC sample.
Shaded boxes indicate the portion of this figure further explained in Figure 3.

posterior probability ≥ 0.001, which may represent
a gross overestimate of its true marginal posterior
probability. Using estimates of conditional clade
probabilities (probabilities of child clades given their
parent clade), it is possible to estimate the marginal
posterior probability of a tree topology with much
greater accuracy. Larget’s method also allows one to
estimate the posterior coverage, ϕ, defined to be the
fraction of the total posterior probability represented in
the sampled tree topologies, an important quantity that
was previously unavailable.

Estimating entropy using simple frequencies of
sampled tree topologies overestimates information
content when ϕ<1 because the posterior distribution
appears to be more concentrated than it really is. Ideally,
a measure of entropy used in computing I would take
into account 100% rather than (100×ϕ)% of the posterior
distribution. That is, it needs to include frequencies of
tree topologies not sampled but which nevertheless have
nontrivial posterior probabilities, and this need grows
more important as the information content of the data
decreases. For information-poor data sets, ϕ will be very
low, and the apparent concentration of the posterior is
correspondingly extreme, yielding a greater disparity
between the actual and estimated information content.

Fortunately, it is possible to use the estimated
conditional clade distribution to efficiently compute
the entropy of the marginal posterior tree topology
distribution, thus allowing tree topologies actually
sampled as well as those not sampled to contribute,
avoiding the apparent contraction of the posterior that
accompanies ϕ<1. Assume that the five tree topologies
along the top of Figure 2 were sampled in an MCMC
analysis. The frequency of each of these topologies in
the posterior sample is shown to its right. The set of all
distinct rooted tree topologies (T) for seven taxa contains
|T|=10,395 tree topologies, so the fact that there are only
five tree topologies represented in the posterior sample
implies that the data contain a substantial amount of
information about tree topology. The prior entropy (H)
and the posterior entropy (H∗) and Lindley information
(I) estimated using these frequencies are:

Ĥ∗ = −
[

90
175

log
(

90
175

)
+ 15

175
log
(

15
175

)
+ 36

175
log
(

36
175

)

+ 6
175

log
(

6
175

)
+ 28

175
log
(

28
175

)]
=1.28671
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FIGURE 3. Portion of Figure 2 illustrating the calculation of
the posterior probability of a given tree topology as the product of
three nontrivial conditional clade probabilities, each corresponding to
a distinct internal node of the tree.

H = −
10395∑
i=1

1
10395

log
(

1
10395

)
= log(10395)=9.24908

Î = H−Ĥ∗ =7.96237 (86.1%).

The middle section of Figure 2 summarizes the
conditional clade distribution derived from the sampled
tree topologies. Relevant products of conditional clade
probabilities yield estimates of marginal tree topology
posterior probabilities. For example, the conditional
clade estimate of the probability of the first tree topology
(Fig. 3) is (

84
100

)[(
60
84

)(
72
84

)]
= 4320

8400
,

which is identical to the value 90/175 shown to the
right of this tree in Figure 2. The estimates of marginal
posterior probabilities derived from the conditional
clade distribution for all five sampled tree topologies are
shown to the right of each topology in the bottom panel
of Figure 2. The sum of these five conditional clade-based
marginal tree topology probabilities yields the estimated
coverage, ϕ̂=0.863, which is less than 1.0. The three
additional tree topologies shown in gray in the bottom
panel account for the remaining 13.7% of the posterior
distribution. The conditional clade-based probabilities
of these topologies involve combinations indicated by
dashed lines in Figure 2. These combinations of clades
did not occur in any of the tree topologies sampled,

but presumably would have been sampled had the MCMC
simulation continued.

Lindley information calculated from the probabilities
of all eight tree topologies demonstrates that 84% of the
maximum possible information is present in the data
used for this analysis:

Ĥ∗ = −
[

630
1225

log
(

630
1225

)
+ 45

1225
log
(

45
1225

)
+ 252

1225
log
(

252
1225

)

+ 18
1225

log
(

18
1225

)
+ 112

1225
log
(

112
1225

)
+ 60

1225
log
(

60
1225

)

+ 24
1225

log
(

24
1225

)
+ 84

1225
log
(

84
1225

)]
= 1.47793

H = log(10395)=9.24908

Î = H−Ĥ∗ =7.77115(84.0%).

Note that using the simple sample frequencies of
tree topologies results in an inflated estimate (86.1%)
of information content compared with the estimate
derived from the conditional clade distribution (84.0%).
The same calculation can be carried out without
enumerating all eight tree topologies using a traversal
of the conditional clade probability graph (Algorithm 1,
Appendix 1, and proof in Appendix 2):

Ĥ∗ = Ĥ∗
ABCDEFG + 84

100

[
Ĥ∗

ABC +
(

Ĥ∗
DEFG + 12

84
Ĥ∗

EFG

)]

+ 16
100

[
Ĥ∗

EFG +Ĥ∗
ABCD

]
, (3)

where

Ĥ∗
ABCDEFG = −

[
84
100

log
(

84
100

)
+ 16

100
log
(

16
100

)]
=0.43967

Ĥ∗
ABC = −

[
60
84

log
(

60
84

)
+ 24

84
log
(

24
84

)]
=0.59827

Ĥ∗
DEFG = −

[
72
84

log
(

72
84

)
+ 12

84
log
(

12
84

)]
=0.41012

Ĥ∗
EFG = −

[
3
7

log
(

3
7

)
+ 4

7
log
(

4
7

)]
=0.68291

Ĥ∗
ABCD = −[1.0log(1.0)

]=0.0.

Equation (3) can be rearranged into the following form,
illustrating that the total entropy can be partitioned by
clade:

Ĥ∗ = Ĥ∗
ABCDEFG + 84

100
Ĥ∗

ABC + 84
100

Ĥ∗
DEFG + 28

100
Ĥ∗

EFG + 16
100

Ĥ∗
ABCD

= 1.47793.
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More generally, Lindley information itself can be
expressed as a sum of clade-specific contributions,

I =
∑
C∈S

p∗(C)KLC (4)

KLC =
∑

C(l),C(r)|C∈CC

p∗(C(l),C(r)|C) log

(
p∗(C(l),C(r)|C)
p(C(l),C(r)|C)

)
,

where clade C is a nonempty subset of the set S of
all taxa, p∗(C) is the marginal posterior probability of
parent clade C, p∗(C(l),C(r)|C) is the marginal posterior
probability of left (C(l)) and right (C(r)) child clades
given the parent clade (C) using the conditional
clade distribution derived from the posterior, and
p(C(l),C(r)|C) is the corresponding conditional clade
probability derived from the discrete uniform prior. Just
as the overall Lindley information may be interpreted as
the KL divergence from the (Discrete Uniform) prior to
the posterior, the sum in (4) shows that the contribution
of each clade C in the conditional clade hierarchy to
the overall Lindley information may be interpreted
as the conditional KL divergence, KLC, weighted by
the marginal posterior clade probability of the parent
clade, p∗(C). A proof of this equivalence is provided in
Appendix 2.

Returning to the example in Figure 2, the weights
and KL divergences for each clade in the conditional
clade distribution that form the additive components of
the total Lindley information are calculated below using
Algorithm 2 (Appendix 1):

p(ABCDEFG) = 1.0,

KLABCDEFG = 84
100

log
(

84
100

/
45

10395

)

+ 16
100

log
(

16
100

/
45

10395

)
=5.00275,

p(ABC) = 84
100

,

KLABC = 60
84

log
(

60
84

/
1
3

)

+24
84

log
(

24
84

/
1
3

)
=0.50034,

p(DEFG) = 84
100

,

KLDEFG = 72
84

log
(

72
84

/
1
15

)

+12
84

log
(

12
84

/
3
15

)
=2.14099,

p(ABCD) = 16
100

,

KLABCD = (1)log
(

1
/

1
15

)
=2.70805,

p(EFG) = 28
100

= 16
100

+ 84
100

12
84

,

KLEFG = 3
7

log
(

3
7

/
1
3

)

+4
7

log
(

4
7

/
1
3

)
=0.41570.

The resulting estimated Lindley information,

Î = (1.0)(5.00275)+(0.84)(0.50034)+(0.84)(2.14099)

+(0.16)(2.70805)+(0.28)(0.41570)

= 7.77115,

is identical to that calculated using the marginal
posterior probabilities of tree topologies. The calculation
is efficient because there is no enumeration of tree
topologies, and the contribution of each clade to the
overall information is itself of considerable interest to
researchers.

While the worked example above uses rooted trees,
unrooted trees present no challenges. Rooted at an
arbitrary leaf, unrooted trees may be treated as rooted
trees with one fewer taxon. Because the conditional clade
distribution is unaffected by rooting (Larget 2013), the
choice of which leaf to use as the root does not affect the
overall estimate of I but will change how the additive
components of I are distributed across the tree.

Phylogenetic Dissonance
Consider a partitioned data set in which each site is

assigned to one of K mutually exclusive subsets. Because
entropy is a concave function, Jensen’s inequality assures
us that the average entropy of posterior samples from
different subsets must be less than or equal to the entropy
of an average tree sample obtained by merging tree files
from separate analyses of each subset. To be specific,
the average of the entropy computed from “Tree File
From Data File 1” and the entropy computed from “Tree
File From Data File 2” must be less than or equal to the
entropy computed from “Merged Tree File” in Figure 4.
Letting p∗

k be the posterior distribution for subset k,
and wk be the weight associated with subset k, Jensen’s
inequality says

K∑
k=1

wkH(p∗
k )≤H

(∑K
k=1wkp∗

k

)
=H∗

merged. (5)

We define phylogenetic dissonance, D, to be the difference
between the entropy of the merged posterior tree sample
and the average entropy of the posterior tree sample from
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FIGURE 4. Relationships between data files and the tree files generated from those data files. Concatenated data files are created by combining
different data subsets into one matrix. Merged tree files are created by combining trees from different tree files. Note that a merged tree file is
different than a tree file created by analyzing a concatenated data set. Tree files always contain multiple trees, but single tree icons are used here
to make it easier to see that the Merged Tree File is composed of all trees from both Tree File From Data File 1 and Tree File From Data File 2.

individual subsets,

D=H∗
merged −

K∑
k=1

wkH(p∗
k ), (6)

where H(p∗
k ) is the entropy of the posterior tree sample

from the k-th subset and
∑K

k=1wk =1. Although (5) and
(6) are general, in this manuscript we assume wk =1/K.
Note that a tree file constructed by combining trees
sampled from independent MCMC analyses of different
data subsets is very different than a tree file resulting
from a single MCMC analysis of the concatenated data
(Fig. 4). It is clear from (5) and (6) that 0≤D≤H∗

merged.
This upper bound allows D, like I, to be expressed as a
percentage of its maximum value.

Assuming that the prior distribution p is identical for
each subset, D may be defined equivalently in terms of
Lindley information:

K∑
k=1

wkH(p∗
k ) ≤ H

(∑K
k=1wkp∗

k

)

K∑
k=1

wk
(
H(p)−H(p∗

k )
) ≥ H(p)−H

(∑K
k=1wkp∗

k

)

K∑
k=1

wkIk ≥ Imerged

D=
⎧⎨
⎩

K∑
k=1

wkIk

⎫⎬
⎭−Imerged ≥ 0.

Example Data Sets
Two previously published data sets provide empirical

examples of information content estimation. The data
set ALGAE comprises chloroplast psaB sequences
from 33 taxa of green algae (phylum Chlorophyta,
class Chlorophyceae, order Sphaeropleales) analyzed
by Fučíková et al. (2014b). The original seven-gene
data set may be downloaded from http://treebase.org/
using Study ID 13960. The alignments of just
the psaB gene used in this study are available
in the Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad.1dn50. These data
were chosen because of their deep divergence, which
invites hasty judgements of saturation, especially of third
codon position sites. We analyzed second and third
codon position sites separately and used I to assess
which subset has more phylogenetic information.

The five sequences of rps11 composing the data set
BLOODROOT were extracted from the Supplementary
Information available on Dryad for Figure 3 in
Bergthorsson et al. (2003). The alignments used in
this study are available in the Supplementary Material
available on Dryad. These data were chosen because
they represent a case in which horizontal transfer of

http://treebase.org/
http://dx.doi.org/10.5061/dryad.1dn50
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FIGURE 5. Maximum posterior probability trees for the 5’ and
3’ ends of the rps11 gene (BLOODROOT data set) from three taxa
in the angiosperm family Papaveraceae (the Poppy Family) and two
monocots. In Sanguinaria (a member of the Papaveraceae), the 3’ end
of the gene was horizontally transferred from a monocot, whereas the
5’ end shows vertical inheritance.

half of the gene results in different true tree topologies
for the 5’ (219 nucleotide sites) and 3’ (237 nucleotide
sites) subsets, which allows investigation of information
content estimation in the presence of true conflicting
phylogenetic signal (Fig. 5). We analyzed each half
of the data separately and measured phylogenetic
dissonance, which is expected to be high in this
case.

Phylogenetic Analyses
Simulated DNA data were generated using Seq-Gen

version 1.3.3 (Rambaut and Grassly 1997). Corrected and
uncorrected pairwise distances were computed using
PAUP* version 4.0a146 for Macintosh OS X (Swofford
2003). Corrected distances used maximum likelihood
under the GTR+I+G model with parameters estimated
on a neighbor-joining tree. Bayesian MCMC analyses
(hereafter referred to as the STANDARD analysis) were
carried out using MRBAYES 3.2.4 (Ronquist et al. 2012)
using the GTR+I+G model. Parameters of this model and
the priors used were:

Tree topology T ∼ Discrete Uniform(1,|T|)
Tree length L ∼ Exponential(0.01)

Edge length proportions e ∼ Dirichlet(1,··· ,1)

Nucleotide frequencies π ∼ Dirichlet(1,1,1,1)

Exchangeabilities r ∼ Dirichlet(1,1,1,1,1,1)

Discrete Gamma shape � ∼ Exponential(1)

Proportion invariable sites p ∼ Uniform(0,1)

A compound Dirichlet prior (Rannala et al. 2012)
was used to model tree length and edge length
proportions, and the variance of the exponential tree
length component (10,000) was increased by factor
of 100 over the default variance (100) to avoid
constraining tree length in analyses of fast-evolving
third position sites. After removing the initial 10% as
burn-in, MCMC samples contained 10,000 trees, saving

every 1000 generations. Two independent analyses
were performed, each comprising four Metropolis-
coupled chains using the default heating schedule
(chain powers 1.0, 0.909, 0.833, and 0.769). Information
measures described in this article were computed using
the program Galax version 1.0, which is available at
http://phylogeny.uconn.edu/software.

Explicit instructions and scripts for performing all
analyses described in this article are provided in the
Supplementary Material available on Dryad.

RESULTS AND DISCUSSION

This article presents one approach to measuring
the amount of information relevant to phylogenetic
tree topology using the difference in entropy between
the prior and posterior tree topology distributions. To
reduce the impact of MCMC sample size in cases of
low information, the conditional clade distribution is
used to approximate the posterior entropy, allowing
tree topologies that were not sampled, but nevertheless
contain clades that were sampled, to smooth the
posterior distribution. This smoothing leads to more
accurate estimation of the posterior entropy, conditional
on the accuracy of the approximation of marginal
posterior tree probabilities by the conditional clade
distribution.

Before discussing the behavior of our method in
simulation and possible applications using empirical
examples, it is important to make clear what, exactly,
is being measured. First, Lindley information (I) defined
in (1) measures the information contained in the data
that is not redundant with information provided in the prior.
An extremely informative prior that forces the posterior
to place nearly all probability on one tree topology
will result in a low estimated value of I because the
posterior distribution has essentially the same entropy
as the prior: the information in the data is redundant
because the prior has already determined the posterior.
The method for estimating I in this article assumes
that the prior has zero information, but the issue of
redundancy could nevertheless arise if I was estimated
for both an informative prior (either analytically or using
a tree sample from an analysis without data) and the
associated posterior, and the difference used to measure
information.

Second, it is possible that the information measured
by I represents misinformation. Any model violation
that causes a systematic bias that leads to an incorrect
tree topology receiving more posterior probability than
the correct tree topology will nevertheless increase
the apparent amount of information in the data. We
show below that concatenation of data subsets that
have different underlying true tree topologies can
result in maximum information but an incorrect tree
topology. Phylogenetic dissonance (D) makes use of
Lindley information to detect when different data
subsets disagree, but caution must be exercised when

http://phylogeny.uconn.edu/software
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TABLE 1. Results of four-taxon simulations showing information
content

No. sites Î

1 0
(a) Number of sites 10 4

100 90
1000 100

Rel. rate Î

(b) Substitution rate 0.01 18
0.1 99
1 100
10 64
100 1.5

missing (%) Î

(c) Missing data 0 100
50 98
90 0
100 0

Rate variance Î

(d) Rate heterogeneity 1 100
10 97
100 13
1000 0

Notes: Each Î value presented is expressed as percentage of maximum
and is the mean of 100 replicate four-taxon simulations. Data
generation: JC69 (Jukes–Cantor) model, 1000 sites (except (a)), all edge
lengths 0.1 substitutions/site (except (b)), 0% missing (except (c)), and
rate homogeneity (except (d)). Data analysis: STANDARD. Rel. rate in
(b) is the factor by which all edge lengths were multiplied in the model
tree, missing data in (c) was randomly distributed across taxa and sites
after data were simulated, and rate variance in (d) is the variance of
continuous-gamma distributed relative rates across sites used in the
generating model.

interpreting any measure of information content for
single, unpartitioned data sets.

Simulations
Four-taxon simulations illustrate some general

expectations with respect to the information content
of DNA sequence data (Table 1). The first 100 sites
evaluated (of 1000 sites total) contribute 90% of the
maximum possible information; any additional sites
contribute mostly redundant information, mostly
reinforcing exclusion of tree topologies already ruled
out by the first 100 sites (Table 1a). As the rate of
evolution increases or decreases away from the optimal
rate, the information contributed per site decreases due
to the noise associated with multiple hits, or the lack
of variability, respectively (Table 1b). As the proportion
of missing data increases, information content drops
(Table 1c). Finally, as rate heterogeneity increases,
information content drops (Table 1d) because of the
combination of low substitution rate for most sites and
high rates for the remaining sites, leaving few sites that
evolve at an optimal rate for preserving history.

TABLE 2. Conditional clade (Î) and empirical frequency
(Îfreq) estimates of topological information content (both expressed as
percentage of maximum) when true information content is zero

Taxa Trees ϕ̂ Î Îfreq

4 3 1.000 0.01031 0.01001
5 15 1.000 0.02398 0.02400
6 105 1.000 0.07105 0.1093
7 945 1.000 0.1855 0.6934
8 10395 0.6539 0.4840 6.353
9 135135 0.09134 1.235 22.46
10 2027025 0.01010 3.404 36.60
11 34459425 0.00151 7.304 46.93
12 654729075 0.00040 13.30 54.63

Notes: Results from paired runs in a STANDARD analysis were
averaged. Coverage (ϕ̂) begins to drop for analyses involving more
than seven taxa because the MCMC sample size was fixed at 10,000.

Zero Information
MCMC analyses exploring discrete uniform prior

distributions for various numbers of taxa show how well
topological information content can be estimated when
there is zero information and thus the number of tree
topologies that should be sampled grows much larger
than the MCMC sample size (Table 2). The number of
trees sampled was fixed at 10,000, so coverage begins to
drop when the number of possible tree topologies grows
larger than 10,000. As coverage drops, the empirical
frequency estimate of information content increasingly
overestimates the true information content, which is zero
in every case. While estimates using the conditional clade
method described here also begin to overestimate the
true amount, Î remains much lower than Îfreq even when
the sample accounts for only a tiny fraction (0.0004) of
the posterior distribution. That said, note that even at 12
taxa coverage has dropped so low that a true information
content of zero cannot be accurately measured, even
using the conditional clade approach. Any estimate of
information content should thus be accompanied by the
estimated coverage, which speaks to the reliability of the
information content estimate.

Saturation
A STANDARD analysis of the ALGAE data set

demonstrates that commonly used methods for
assessing saturation can be quite misleading (Table 3).
Analyzing second codon position sites alone, 19,997 of
the 20,000 tree topologies sampled from the posterior
distribution were unique, and the entire sample
captured only an estimated 0.026% of the total posterior
probability (ϕ̂=0.00026). In addition to being used
to measure dissonance among data subsets, D also
serves as a sensitive measure of topological MCMC
convergence if the tree files supplied are from replicate
MCMC analyses that differ only in the pseudorandom
number seed used. D is expected to be zero in this case
as all replicate MCMC analyses are exploring exactly
the same posterior distribution. Despite the extremely
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TABLE 3. Results from analyses of the ALGAE data set

Unique ϕ̂ H Ĥ∗ Î %

(a) First codon positions only (D̂=0.7392%)

Run 1 9627 0.03616 97.29 15.73 83.83
Run 2 9593 0.04004 97.29 15.66 83.91
Average 9610 0.03810 97.29 15.69 83.87
Merged 18705 0.05854 97.29 15.81 83.75

(b) Second codon positions only (D̂=1.374%)

Run 1 9999 0.00012 97.29 23.45 75.89
Run 2 9998 0.00016 97.29 23.39 75.96
Average 9998.5 0.00014 97.29 23.42 75.92
Merged 19997 0.00026 97.29 23.75 75.59

(c) Third codon positions only (D̂=0.8486%)

Run 1 8722 0.1839 97.29 13.21 86.42
Run 2 8639 0.1965 97.29 13.06 86.57
Average 8680.5 0.1902 97.29 13.14 86.50
Merged 16359 0.2462 97.29 13.25 86.38

Notes: Î and D̂ are expressed as % maximum. Note that here D̂ measures
dissonance among replicate MCMC analyses and low values are used
as an indication that both runs have converged with respect to tree
topology

low coverage, D was only 1.374% of its maximum
value, which indicates good agreement between the
posterior distributions estimated from replicate MCMC
simulations. The information content of these second
position sites was Î =75.59% (estimated from the merged
posterior sample). Coverage is very low, suggesting that
this information content estimate may be unreliable,
and this was confirmed using a comparable analysis of
the prior alone, which yielded an information content
of 82.8% and an estimate of D across the two replicates
of 11.59. The greater consistency across replicates of
the second position data (as indicated by the lower
dissonance D) indicates that second position sites have
some information, but this example illustrates the
difficulty of estimating information content accurately
when both information content and coverage are low.

Third position sites of psaB, on the other hand,
exhibited lower D among replicates (0.8486% of
maximum), higher Î (86.38%), and three orders of
magnitude greater coverage (ϕ̂=0.2462). Although
saturation plots make the third codon positions appear
greatly saturated compared to second codon positions
(Fig. 6c), I indicates that the third position sites contain
more information about tree topology than do second
position sites. The greater information of third positions
is evident in the better resolution of the third position
majority rule consensus (Fig. 6a,b).

Concatenation
The phylogenetic analysis of concatenated data

continues to receive criticism because of the tendency
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FIGURE 6. Saturation plots and majority rule consensus trees
from analyses of psaB (ALGAE data set) second (a) and third (b)
codon positions. In this example, fast evolving third position sites have
more phylogenetic information than slow evolving second position
sites despite appearing saturated in the plot (c) of pairwise distances
corrected using the GTR+I+G (general time reversible with invariable
sites and discrete Gamma rate heterogeneity) model (x-axis) against p-
distance (proportion of sites different) (y-axis). Each point represents
a single pair of taxa.

for concatenated analyses to mask incongruence among
individual data subsets (Edwards et al. 2007; Kubatko
and Degnan 2007; Degnan and Rosenberg 2009; Edwards
2009; Heled and Drummond 2010; Leaché and Rannala
2011; Weisrock et al. 2012; Lemmon and Lemmon 2013;
Roch and Steel 2015). We present here an empirical
example in which concatenation of two data subsets
containing conflicting phylogenetic signal is clearly
misleading, strongly supporting a tree topology only
weakly supported by each of the constituent data
subsets. Coverage was 1.0 and phylogenetic dissonance
was 0.01320% or less for replicate Bayesian MCMC
analyses conducted using the BLOODROOT data set
(Table 4), indicating that these runs all converged with
respect to topology. The first analysis, based on 219
nucleotides from the 5’ end of the gene (Table 4a),
yielded three unique tree topologies and an information
content of 74.47%. The second analysis, based on 237
sites from the 3’ end of the gene (Table 4b), yielded
an information content of 66.83% and also produced
three distinct topologies. The third analysis, based on
the entire (concatenated) data set (Table 4c), yielded just
one tree topology and 100% information.

The 100% information content in the concatenated
analysis is not surprising: information content is
expected to increase with the number of sites included
(Table 1a). If the information in the two halves of the rps11
gene was concordant, then phylogenetic dissonance
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TABLE 4. Results from analyses of the BLOODROOT data set

Unique ϕ̂ H Ĥ∗ Î (%)

(a) 5’ end (219 nucleotide sites, D̂=0.01320%)

Run 1 3 1.000 2.70805 0.7023 74.07
Run 2 3 1.000 2.70805 0.6805 74.87
Average 3 1.000 2.70805 0.6914 74.47
Merged 3 1.000 2.70805 0.6915 74.47

(b) 3’ end (237 nucleotide sites, D̂=0.00769%)

Run 1 3 1.000 2.70805 0.9054 66.56
Run 2 3 1.000 2.70805 0.8911 67.10
Average 3 1.000 2.70805 0.8983 66.83
Merged 3 1.000 2.70805 0.8983 66.83

(c) Concatenated (456 nucleotide sites, D̂=0.00000%)

Run 1 1 1.000 2.70805 0.0000 100.00
Run 2 1 1.000 2.70805 0.0000 100.00
Average 1 1.000 2.70805 0.0000 100.00
Merged 1 1.000 2.70805 0.0000 100.00

(d) Run 1 across subsets (D̂=42.56%)

5’ run 1 3 1.000 2.70805 0.7022 74.07
3’ run 1 3 1.000 2.70805 0.9054 66.56
Average 3 1.000 2.70805 0.8039 70.32
Merged 5 1.000 2.70805 1.3994 48.32

(e) Run 2 across subsets (D̂=43.27%)

5’ run 2 3 1.000 2.70805 0.6805 74.87
3’ run 2 3 1.000 2.70805 0.8911 67.10
Average 3 1.000 2.70805 0.7858 70.98
Merged 5 1.000 2.70805 1.3853 48.85

Notes: Î and D̂ are expressed as % maximum. Note that in a-c D̂
measures dissonance among replicate MCMC analyses and low values
are used as an indication that both runs have converged with respect
to tree topology, whereas in d-e D̂ measures dissonance between data
subsets and high values indicate incongruence.

should be low, yet D̂>42% in two independent analyses
comparing the 5’ subset to the 3’ subset (Table 1d,e),
indicating that the information in the 5’ end of the gene
disagrees strongly with the information in the 3’ end of
the gene.

When D is high, the value of Î from the merged
tree sample will be lower than I estimated from the
concatenated data set. Information content should go
down, not up, when a data subset is added that conflicts
with data already included. The more intuitive behavior
of merged Î (compared to concatenated Î) is evident in
the results from the BLOODROOT data set: individual
subsets have (averaging across two replicate analyses)
Î =74.5% (5’) and Î =66.8% (3’), while Î =48.6% for the
merged sample, contrasting sharply with Î =100% for the
concatenated data.

The single tree topology obtained in the concatenated
analysis is the only topology sampled by analyses of

TABLE 5. Marginal posterior probabilities of tree topologies for
the 5’, 3’, and concatenated data sets

Topology 5’ 3’ Merged Concatenated

(D, O, (E, (B, S))) 0.7738 — 0.3869 —
(D, S, (O, (E, B))) — 0.6436 0.3218 —
(D, O, (S, (B, E))) 0.1108 0.1760 0.1434 1.0000
(D, (S,O),(E, B)) — 0.1804 0.0902 —
(D, O, (B, (E, S))) 0.1155 — 0.0578 —

Notes: A dash (—) means that the marginal posterior probability was
estimated to be zero. Taxon abbreviations: D = Disporum, O = Oryza,
S = Sanguinaria, B = Bocconia, and E = Eschscholzia.

both 5’ and 3’ halves of the gene (Table 5). The best
5’ tree topology receives no posterior support in the
3’ analysis, and the best 3’ tree topology receives no
posterior support in the 5’ analysis, so the concatenation
tree topology is the only topology able to be tolerated by
all sites, even though it is considered mediocre by every
site.

Alternative Tree Priors
There are two classes of models with respect to

the marginal probability distribution of labeled rooted
binary tree topologies: 1) equiprobable or proportional
to distinguishable rearrangements (PDA) models; and
2) random-joining or equal rate Markov (ERM) models
(Maddison and Slatkin 1991; Blum and François
2006). The methods described here assume a discrete
uniform prior, which corresponds to the PDA model.
Many Bayesian analyses use priors that jointly specify
divergence times and topology in which the generating
model for topology is an ERM model. For example,
BEAST 2 (Bouckaert et al. 2014), MrBayes 3.2 (Ronquist
et al. 2012), and RevBayes (Höhna et al. 2014) all allow
birth–death (including the pure birth Yule model) and
coalescent tree priors. Gernhard (2006) showed that
the KL divergence from the discrete uniform model
(probability distribution p) over all rooted binary trees
having n taxa to the pure-birth Yule model (probability
distribution pY) is

KL(pY,p) = log[(2n−3)!!]−n
n−1∑
k=2

g(k)
k+1

=H(p)−H(pY)

g(k) = 1−k
k

log
k−1

2
+log

k
2

+log(k+1)− 1
k

log(k!).
(7)

The Lindley information for a posterior distribution p∗
relative to a Yule prior requires subtracting (7) from (2)

I = H(pY)−H(p∗)

= [H(p)−H(p∗)
]−[H(p)−H(pY)

]
= KL(p∗,p)−KL(pY,p).

Coalescent tree priors and birth–death priors differ
from the Yule model in their distribution of sojourn
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times between speciation events; however, the marginal
distribution of tree topologies is identical, allowing (7) to
be used for both. Lindley information can thus be easily
computed for most tree priors in common use.

Challenges
Multimodal posteriors and conditional clade probabilities.—
Whidden and Matsen (2015) showed that when the
marginal posterior distribution of tree topologies is
multimodal, the “mix-and-match” assumption made by
Larget’s conditional clade approximation is violated
and the conditional clade approach will tend to
underestimate the probability of tree topologies at the
peaks and overestimate the probability of trees in
the valleys. Such smoothing tends to overestimate the
entropy of the marginal posterior distribution of tree
topologies and thus underestimate information content.
The degree to which this affects information content
estimation depends on the details of a particular data
set, but clearly multimodal posteriors are expected to
bias information content estimation in a predictable
direction when using the conditional clade distribution
to estimate posterior probabilities. Software tools such
as those provided by Whidden and Matsen (2015)
can be used to assess the number and distinctness of
islands in tree space if multimodality is a concern. An
assumption made here is that the extent of the bias due
to multimodal posteriors is less than the bias caused by
using tree topology frequencies directly (i.e., assuming
100% coverage).

Another potential drawback of using the conditional
clade distribution is that any tree topology containing
a clade not sampled in the posterior will necessarily
receive zero posterior probability using the conditional
clade estimate. Thus, even though some tree topologies
not present in the posterior sample are accounted
for using the conditional clade distribution, there
are potentially many tree topologies that are relevant
but not considered. We note, however, that the
simple frequency approach also ignores any tree
topology containing a clade not sampled in the
posterior.

Performance when information content is low.—The
most challenging test case for any estimator of
topological information content occurs when there is
zero information (Table 2). In Bayesian phylogenetics,
this situation occurs when the marginal posterior
distribution of tree topologies is identical to the marginal
prior distribution of tree topologies, which is assumed
to be discrete uniform across all possible distinct tree
topologies. For even moderately small problems, the
space of tree topologies is sufficiently vast that an MCMC
sample of any reasonable size fails to sample even a
small fraction of possible tree topologies. For example,
an MCMC sample of size 1 billion could, at most, include
less than 1% of the prior when the study includes only
14 taxa!

Using the conditional clade distribution greatly
improves estimation of I (Table 2); however, the case
of low information content remains quite difficult,
as illustrated by the psaB second codon position
example. Information can be low for two very different
reasons, similar to the way images can have low
information content because of over- or underexposure:
1) sequences are saturated (overexposed) and thus noise
from multiple substitutions obliterates any historical
signal; and 2) sequences have very low variability
(underexposed) due to short divergence time or low
substitution rate. Polytomy priors (Lewis et al. 2005) may
be helpful in both of these scenarios by allowing the
posterior distribution to spread out over trees containing
polytomies, including the “star tree” containing just one
internal node. Dividing posterior probability assigned
to polytomous trees among the fully-resolved tree
topologies they subtend allows an MCMC sample of
a given size to extend its reach beyond what could be
achieved by restricting proposals to only fully-resolved
tree topologies.

Future Directions
We have described an entropy-based measure of

phylogenetic (topological) information content and
suggested two possible applications (assessing degree
of saturation and detecting topological conflict among
data subsets), but we envision many more uses of
I and D. For example, phylogenetic dissonance (D)
serves as a sensitive measure of convergence in tree
topology. Posterior samples from independent Bayesian
MCMC analyses using the same model and data should
ideally have zero phylogenetic dissonance because the
information in the average tree sample should be
indistinguishable from the average information from
separate tree samples (see Tables 3a,b,c and 4a,b,c for
examples of D used for this purpose). Bayesian analyses
in which apparent convergence is assessed only by
viewing trace plots of the log-likelihood may miss lack
of convergence in tree topology (Nylander et al. 2008).
Phylogenetic dissonance provides an alternative to the
standard deviation of split frequencies (Ronquist et al.
2012), AWTY (Nylander et al. 2008), and the topological
Gelman–Rubin-like measure proposed by Whidden and
Matsen (2015) for assessing tree topology convergence in
Bayesian analyses.

Information estimation (I) would also be useful in
assessing the impact of missing data, a topic of recent
concern in phylogenomics (Roure et al. 2013), and in
assessing the information thrown away by site-stripping
methods such as OV (Goremykin et al. 2010). The ability
to partition I by clade allows for its use in phylogenetic
profiling (assessing for which time period a particular
data subset provides the most information), and the
ability to partition D could help in identifying which
parts of the phylogeny are responsible for incongruence
among data subsets in multigene analyses. Clearly, all of
these future directions depend on accurate information
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content estimation, and improvements in estimation
accuracy for low-information data sets (using polytomy
priors, for example) is thus our highest priority in the
short term.

SOFTWARE AVAILABILITY

The software Galax can be used to estimate
information content from tree files representing
samples from the Bayesian phylogenetic marginal
posterior distribution of trees. Galax can be obtained
from http://phylogeny.uconn.edu/software/ or
https://github.com/plewis/galax.
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Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.1dn50.
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APPENDIX 1

APPENDIX 2

Definitions

S= the set of all taxa

�=a rooted, binary tree topology on S

T= the set of all distinct rooted,

binary tree topologies on S

C=a subset of S (i.e., a clade)

C(l),C(r) =a bipartition of clade C such that |C(l)|>0,

|C(r)|>0, C(l) ∪C(r) =C, and C(l) ∩C(r) =0

C= the set of all possible triplets C, C(l), C(r)

CC = the set of all possible combinations C(l), C(r)

given parent clade C

Ct = the subset of C associated with subtrees in �

C(l),C(r)|C= the set of all possible C(l), C(r) pairs

having parent clade C

1x = indicator variable: equals 1 if x is true

and 0 otherwise

Partitioning Entropy Among Clades
Here we show that the entropy H of a probability

distribution on tree topologies is approximated by a
weighted sum of clade-specific entropies, HC, where
weights are marginal clade probabilities, p(C):

H =
∑
C∈S

p(C)HC.

Proof . The proof makes use of the following result
from Larget (2013), which shows that the probability of
a tree, p(�), is approximated by a product of conditional
clade probabilities:

p(�)≈
∏

C,C(l),C(r)∈CT

p(C(l),C(r)|C)

http://phylogeny.uconn.edu/software/
https://github.com/plewis/galax
http://dx.doi.org/10.5061/dryad.1dn50
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H =−
∑
�∈T

p(�)logp(�)

≈−
∑
�∈T

p(�)log

⎡
⎣ ∏

C,C(l),C(r)∈Ct

p(C(l),C(r)|C)

⎤
⎦

=−
∑
�∈T

p(�)
∑

C,C(l),C(r)∈Ct

logp(C(l),C(r)|C)

=−
∑
�∈T

p(�)
∑

C,C(l),C(r)∈C

logp(C(l),C(r)|C)1C,C(l),C(r)∈Ct

=−
∑

C,C(l),C(r)∈C

logp(C(l),C(r)|C)
∑
�∈T

p(�)1C,C(l),C(r)∈Ct

=−
∑

C,C(l),C(r)∈C
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∑
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�

Partitioning Information among Clades
Here we show that total information can be

approximated using the conditional clade distribution
as a weighted sum of clade-specific Kullback-Leibler
divergences. Note that (A.1) assumes that the marginal
prior probability of any given tree topology � is a
constant: p(�)=1/|T|.

Proof .
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=
⎛
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⎛
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⎞
⎠

=
⎛
⎝−logp(�)

�
�

���
1∑

�∈T
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⎞
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⎛
⎝−

∑
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p∗(�)logp∗(�)

⎞
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⎞
⎠

=
⎛
⎝∑

�∈T
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−
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