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A B S T R A C T   

The SARS-CoV-2 virus causes Coronavirus disease, an infectious disease. The majority of people who are infected 
with this virus will have mild to moderate respiratory symptoms. Multiple studies have proved that there is a 
substantial pathophysiological link between COVID-19 disease and patients having comorbidities such as cystic 
fibrosis and chronic kidney disease. In this study, we attempted to identify differentially expressed genes as well 
as genes that intersected among them in order to comprehend their compatibility. Gene expression profiling 
indicated that 849 genes were mutually exclusive and functional analysis was done within the context of gene 
ontology and key pathways involvement. Three genes (PRPF31, FOXN2, and RIOK3) were commonly upregu-
lated in the analysed datasets of three disease categories. These genes could be potential biomarkers for patients 
with COVID-19 and cystic fibrosis, and COVID-19 and chronic kidney disease. Further extensive analyses have 
been performed to describe how these genes are regulated by various transcription factors and microRNAs. Then, 
our analyses revealed six hub genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL). As they were involved 
in the interaction between COVID-19 and the patient with CF and CKD, they could help researchers identify 
potential therapeutic molecules. Some drugs have been predicted based on the upregulated genes, which may 
have a significant impact on reducing the burden of these diseases in the future.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an 
enveloped, positive-sense single-stranded RNA virus that causes severe 
respiratory syndrome in humans [1], reported for the first time in 
Wuhan, China. As of July 22, 2022, there had been 565,207,160 
confirmed cases of COVID-19 reported to the World Health Organization 
(WHO), with 6,373,739 deaths, and a total of 12,219,375,500 vacci-
nation doses had been delivered as of July 18, 2022 (https://covid19.wh 
o.int/). SARS-CoV-2 targets the angiotensin-converting enzyme 2 
(ACE2), which is a cell surface receptor present in the heart, kidney, 
blood vessels, and lungs [2]. All coronaviruses have spike proteins 
containing N-terminal and C-terminal domains, and two major subunits 
(S1 and S2), which are responsible for the viral entry [3]. 

Cystic fibrosis (CF) is a lung disease characterized by mucus blockage 
and chronic airway inflammation. Mutations in the CF transmembrane 

conductance regulator (CFTR) gene, which codes a protein that controls 
sodium and water resorption as well as chloride and bicarbonate 
transport through mucosal surfaces, are responsible for this disease. 
Poor mucociliary clearance and viscous secretions have been docu-
mented as a result of several CFTR mutations. Therefore, a systemic 
disease develops that affects the lower airways and digestive system. 
Chronic pulmonary infections induce respiratory symptoms that subse-
quently lead to impaired lung function and respiratory failure, which is 
the major cause of mortality in people with CF [4]. In addition to thick 
mucus, CFTR failure in bronchial epithelia causes an enhanced inflam-
matory response and a reduced immune response, rendering it vulner-
able to acute infections and long-term bacterial colonization of the lungs 
[5]. 

Chronic kidney disease (CKD) is a chronic disorder marked by 
structural and functional abnormalities in the kidney as a result of some 
factors. The global burden of CKD is burgeoning. Chronic renal disease is 
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expected to become the fifth highest cause of death worldwide by 2040, 
with one of the most significant anticipated rises of any major cause of 
death [6]. The causes of CKD are complex and heterogeneous. Envi-
ronmental as well as genomic factors can play a role in the development 
of the disease. Infections are associated with CKD, which is very com-
mon in many lower middle income countries due to inadequate access to 
clean water, poor sanitary settings, and excessive proportions of disease 
transmitting vectors [7].There are several clinical biomarkers that can 
be used to identify chronic kidney disease, including serum creatinine 
levels, cystatin C levels, estimated glomerular filtration rates, and uri-
nary albumin-creatinine ratios or urinary protein-creatinine ratios [8]. 

It has been proven that respiratory viruses are linked to long-term 
respiratory infections in people with CF and they can lead to pulmo-
nary exacerbation, deteriorating lung function, and increased mortality 
in this population [9,10]. Several theories have been proposed to 
explain the considerable clinical impact of the SARS-CoV-2 virus in CF 
patients. 

When entering a host cell, SARS-CoV-2 employs the ACE-2 receptor. 
Usually, infection causes a massive drop in ACE-2 expression on cell 
surfaces. However, the degree of this down-regulation appears to be 
lower in CF patients than in non-CF individuals [11]. Down-regulation 
of ACE-2 is linked to an increase in the inflammatory response to the 
virus, suggesting that this event might contribute to the severity of 
COVID-19 in CF patients [11]. The impact of COVID-19 is linked to the 
CF patient’s baseline lung function. As a result, it is probable that pa-
tients with severe lung disease are more likely to experience an exac-
erbation and, as a consequence, they are more likely to develop severe 
COVID-19 manifestations [12]. According to one report, clinical fea-
tures associated with a severe type of CF have been linked to an 
increased likelihood of COVID-19 hospitalization [13]. People with CF 
are considered extremely vulnerable due to the significant likelihood of 
serious viral respiratory infections [14]. 

Other organ abnormalities, such as kidney dysfunction leading to 
acute renal injury, have been recorded in patients with SARS-CoV-2 
infection in addition to lung involvement [15], raising concern about 
the clinical outcomes and prognosis of individuals with comorbidities, 
including chronic renal disease (CKD). According to a meta-analysis of 
73 studies examining the link between multi-organ dysfunction and 
COVID-19 development, patients with CKD were more likely to develop 
severe SARS-CoV-2 infection [16]. People with CKD and COVID-19 may 
die at a higher rate than those with CKD but no COVID-19 [17]. The 
ACE-2 receptor, which functions as an entry portal into the cells, is also 
expressed in the proximal tubular cells of the nephron, and viral 
nucleocapsid protein has been detected in PCT and urine, which could 
explain the apparent ’Nephrotropism’ in COVID-19 [18–20]. 

Based on the previous observations, COVID-19, CF, and CKD may 
share some pathological similarities. We have identified DEGs for three 
datasets, indicating an interpretation of gene transcript abundance 
changes within a transcriptome [21]. To better understand this 
compatibility, we looked into gene ontology (GO) and some cell infor-
mative pathways are shared by these three diseases. To demonstrate 
their strong relationship, we have attempted to build protein-protein 
interactions (PPIs) networks and identified hub genes. Moreover, 
TF-miRNA and gene-chemical interactions have been observed to show 
the gene regulatory network (GRN). Finally, some suitable drug mole-
cules were suggested by targeting the upregulated significant genes in 
the whole dataset. The entire investigation was carried out using tran-
scriptome datasets. 

2. Materials and method 

2.1. Data set retrieval and identification of DEGs 

The NCBI GEO database was selected to analyze three datasets, 
GSE147507, GSE38267, and GSE66494, for patients with SARS-CoV-2, 
CF, and CKD, respectively. (https://www.ncbi.nlm.nih.gov/). We used 

the limma package of R to find out the genes that were expressed 
differentially between 23 SARS-CoV-2 infected patients and 22 healthy 
controls (among the total 110 samples). This package is widely 
renowned for assessing differentially expressed genes (DEGs) [22]. In 
addition, GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) statistical 
tool was employed for the identification of DEGs of both CF and CKD. 
This package uses GEO query and limma R packages from the Bio-
conductor (an open-source software project based on the R program) 
[23] to determine DEGs by comparing infected patients and healthy 
controls. Then, from the GSE38267 dataset, 23 CF patients and 28 
healthy controls were analysed to find out genes that were expressed 
differentially. A microarray profile of 53 CKD patients and 8 controls 
were reported in the GSE66494 dataset. The cut-off was set at 0.05 for 
the adjusted P-value to identify the relevant genes. The outline of the 
workflow is illustrated in Fig. 1. 

2.2. GO and pathway analysis 

GO and pathway-based analyses are required to comprehend the 
biological implications of DEGs. Functional knowledge is arranged and 
recorded in GO in a way that can be computationally analysed, which is 
crucial for advanced biomedical research. GO is a computational and 
statistical method for investigating a group of genes and their biological, 
molecular, and cellular features, as well as their cell informative path-
ways [24,25]. Enrichment analysis can be performed on a group of genes 
identified in genome-wide studies to investigate if they are enriched 
with genes from a specific pathway or functional category [26]. Shiny-
GOv0.741 online tool was employed for the enrichment and GO anal-
ysis, which is based on 315 organisms’ annotation databases, including 
184 at Ensembl (vertebrates, release 96) [27]. We depicted the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), WikiPathways, and 
Reactome. KEGG is a computer-based demonstration of the biological 
system, which is classified into chemical genomics, and system infor-
mation [28,29]. Wiki Pathways [30] is a collective approach for creating 
and maintaining information about biological pathways, whereas the 
Reactome database offers curated annotations on a wide range of mo-
lecular and cellular biology areas [31]. The adjusted P-value <0.05 was 
set as a standard value for quantifying the most significant listed GO and 
pathways for common DEGs. 

2.3. Analysis of the PPIs network 

The inspection and characterization of the PPIs network with its 
behaviours are the primary goals in cellular as well as systems biology 
for understanding and learning about cellular machinery activities 
[32–34]. PPIs have been employed in a variety of biological studies, 
including pathway discovery [35], functional module partitioning [36], 
and annotation of novel protein functions [36,37]. To represent func-
tional and physical interaction, we built a PPIs network of proteins based 
on upregulated DEGs among the three disease categories using the 
Network Analyst (https://www.networkanalyst.ca/) online tools and 
string interactome database [38]. The assessment of protein-protein 
interactions provides significant information about the activities of 
proteins, which is considered a vital step in drug discovery and systems 
biology. After network generation, we visualized the PPIs network with 
the Cytoscape software version v3.8.2 (https://cytoscape.org/). It is 
free-source software in which multiple datasets are aggregated to 
enhance the performance of various interactions like PPIs, genetic in-
teractions, and protein-DNA interactions [39]. 

2.4. Establishment of a network of hub genes and submodules 

Hub nodes are widely considered as tightly connected nodes through 
the edges of PPI’s sophisticated networking structure. Hub genes and 
organizing network nodes were detected by applying the Cytoscape 
plugin cytoHubba (http://apps.cytoscape.org/apps/cytohubba) [40]. 
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Modules are the sites where the hub nodes are tightly integrated into the 
PPIs network. ClusterViz (http://apps.cytoscape.org/apps/clusterviz) is 
another Cytoscape plugin that was used to analyze modules in the 
existing network. 

2.5. Recognition of the TF–miRNA co-regulatory network 

The RegNetwork repository database of the Network Analyst plat-
form (https://www.networkanalyst.ca/) has been selected for the 
identification of the TF-miRNA networks [41]. These TF-miRNAs 
influenced DEGs in the transcriptional and post- transcriptional stages. 
The Cytoscape software was used to visualize this network. 

2.6. Therapeutic drugs prediction 

Suitable drug selection is essential for limiting the severity of SARS- 
CoV-2 infection in patients with comorbidities such as CF and CKD. The 
Enrichr platform’s Drug Signatures Database (DSigDB) was employed to 
predict some prophylaxis. This database contains 22,527 gene sets, 
19,531 genes, and 17,389 distinct chemicals [42]. Drugs with an 
adjusted P value <0.05 were thought to be promising therapies for the 
ailment. 

3. Results 

3.1. Data collection and DEGs determination from three datasets 

The studied datasets were selected from NCBI GEO. The various 
experiments’ data are stored in this database that allows researchers to 
obtain the gene expression profiles [43]. Regarding the COVID-19 
(GSE147507) dataset, we have found 1039 DEGs as compared to 

controls (adjusted P value <0.05). GSE38267 dataset revealed 17227 
differentially expressed genes. Finally, 19554 genes were found to be 
differentially expressed from GSE66494 dataset. We removed dupli-
cated genes and the values lacked specific gene symbols from whole 
datasets. The identified DEGs between patients and healthy controls 
were based on log2 fold change, in which absolute value >1.0 and an 
adjusted P-value <0.05 were considered as a cutoff to determine sig-
nificant DEGs from the studied database. We found 849 similar DEGs 
among three disease groups after subjecting them to a Venn diagram. 
The volcano plots showed the pattern of upregulated and downregulated 
genes among the studied subjects, and the intersection of the three 
datasets was represented in the Venn diagram (Fig. 2). 

3.2. GO and pathway analysis 

We constructed a summary of the graphical representation of GO 
terms (Fig. 3) and its hierarchical tree (Fig. 4). In addition to GO, three 
pathways (Fig. 5) such as KEGG, Wiki pathways, Reactome, and their 
summarised hierarchical trees (Fig. 6) were depicted based on mutual 
DEGs from the three datasets. For all the pathways and hierarchical 
trees, the top 20 highly enriched significant terms have been 
demonstrated. 

3.3. PPIs integration for the commonly upregulated DEGs 

We scrutinized the up-regulated DEGs based on the logFC (logFC >1, 
which was considered the upregulated DEGs) value of the three datasets. 
For COVID-19, CF, and CKD, three genes (PRPF31, FOXN2, and RIOK3) 
have been found to be up-regulated. To view the interaction profile 
among the other genes, these DEGs were submitted to a web based 
platform called Network Analyst. The network was then visualized in 

Fig. 1. Workflow of the current analysis. The study consisted of several major steps. The primary step involves gathering gene expression datasets from NCBI GEO. 
Three datasets GSE147507, GSE38267, and GSE66494 are analysed for the patients of SARS-CoV-2, CF, and CKD, respectively. DEGs were identified using R and 
GEO2R. Similar DEGs were identified from total DEGs of three datasets using Venn diagram, and volcano plot employed to show significant genes. Corresponding 
similar DEGs were used to perform GO and pathway analysis. Then, attempted to construct the protein-protein interaction network (PPI), identify hub genes, module 
analysis, gene regulatory networks, and protein chemical interaction. In the final stage we have suggested some suitable drugs. 
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Cytoscape, which consists of 64 nodes, 65 edges, and 3 seeds that had 
strong interactions (Fig. 7). 

3.4. Detection of hub genes based on topological analysis and module 
identification from the PPIs network 

The degree of protein nodes was calculated by using the CytoHubba 
application in Cytoscape software to determine hub genes [39]. The 
degree of the topological algorithm was utilized to detect the central 
gene. Six genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL1) 

have been reported as the hub genes and their topological characteristics 
have been described (Table 1). These six genes are intricately linked to 
one another. (Fig. 8). It is very important to identify the hub genes 
because they could be potential biomarkers for future therapy in many 
diseases. As it is related to therapy, we tried to identify the module 
network to observe the close connectivity among genes (Fig. 9). Three 
sub-module networks have been uncovered that were primarily inter-
connected and classified them based on modularity (Table 2). EAGLE 
algorithm of Cytoscape was used to obtain this result. 

Fig. 2. Profiling of common DEGs and their expression regulation. The volcano plots (A), (B), and (D) show the DEGs that were up or down regulated in the 
GSE66494, GSE38267, and GSE147507 datasets. The Venn diagram (C) demonstrates the shared DEG of three datasets. 

Fig. 3. Gene ontology of COVID-19 and the diseases of CF and CKD based on common DEGs.No. Of genes indicate the genes involved in each GO function. (A) Shows 
the Biological Process. (B) Displays Cellular Component. (C) Molecular Function. 
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Fig. 4. Hierarchical clustering tree describes the relatedness of each GO function into each other. Bigger dots indicate more significant P-values.  

Fig. 5. Informative pathway identification of common DEGs. No of genes indicates the genes involved in each pathway. Top 20 processes are considered based on the 
most significant P- value. 
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3.5. GRN demonstration based on overlapping up regulated DEGs 

GRN is regarded as a map or blueprint of molecular interaction that 
may be used to generate novel biological hypotheses about molecular 
interaction, such as gene transcription regulation, which can then be 
evaluated in a wet lab using techniques like gene expression assays [44, 
45]. We constructed the miRNA and TF co-regulatory network because a 
large number of genes are regulated by TF in the transcriptional and 
post-transcriptional steps via miRNA [46]. This network comprised of 8 

Fig. 6. A hierarchical clustering tree summarizing the correlation among significant pathways listed in the Enrichment tab. Pathways with many shared genes are 
clustered together. Bigger dots indicate more significant P-values. 

Fig. 7. Protein-protein interaction network analysis of Covid-19, CKD, and CF patients’ mutually up-regulated DEGs (red color). The genes having a strong rela-
tionship to the common genes are highlighted in light green. The network is made up of 64 nodes, 65 edges, and 3 seeds. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Exploration of hub genes and their topological characteristics. Genes that have a 
greater value have a greater relevance in connecting regulatory molecules.  

Hub gene Betweenness and centrality Stress BottleNeck Degree 

FOXN2 275.7 402 4 4 
HNF4A 673.7 1376 16 2 
UBC 1009.3 1822 5 3 
RIOK3 1619.3 3032 15 17 
PRPF31 3489.0 4922 64 44  
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TFs (SRF, NFYA, GABPA, YY1, FAP2C, SP1, TFAP2A, and E2F1) and 45 
miRNAs (Fig. 10). TFs and miRNA networks of the upregulated DEGs in 
the three disease categories were closely interconnected. 

3.6. Protein chemical interactions (CPIs) and drug prediction 

The CPIs play a vital role in the regulation of metabolism and bio-
logical processes. The information in CPIs is critical for understanding 
disease mechanisms and developing therapeutic remedies. Using the 
Network Analyst online tool, we designed a CPIs network by inserting 
PRPF31, FOXN2, and RIOK3 genes (Fig. 11). The drug compounds have 
been recommended from the DSigDB database using the Enrichr web 
platform. The drug chemicals were predicted according to the identified 
three upregulated DEGs. Four drugs, namely Hesperetin, Dorzolamide, 
Neostigmine bromide, and Ampyrone, were targeted for RIOK3 and 
PRPF31 genes, whereas only ZINC CTD 00007011 was for FOXN2 and 
RIOK3 (Table 3). 

4. Discussion 

Recent reports have proven that SARS-CoV-2 infects the human 
lungs, impacting their functioning and eventually affecting people with 
CF and CKD. This research aims to determine DEGs and their in-
teractions among the COVID-19 patients, CF, and CKD, as well as to 

identify the biomarkers. We have worked with COVID-19, CF, and CKD 
transcriptomics datasets to identify DEGs and their key pathways. The 
number of reported DEGs was 17,228 for CF and 19,564 for CKD. Among 
the three datasets, 849 DEGs were determined to be mutual. In GO 
terms, the top 20 functions have been mentioned for the biological, 
cellular, and molecular functions. The ten most enriched biological 
terms were: mitochondrial electron transport, aerobic electron chain, 
mitochondrial ATP synthesis coupled electron transport, respiratory 
electron transport chain, NADH dehydrogenase complex assembly, 
mitochondrial respiratory chain complex I assembly, oxidative phos-
phorylation, mitochondrial respiratory chain complex assembly, and 
cellular respiration. The cellular ontologies are involved in mitochon-
drial respiratory chain complex I, NADH dehydrogenase complex, 
mitochondrial respirasome, oxidoreductase complex, and inner mito-
chondrial membrane protein. Mitochondrial activity is attributed to a 
number of cellular activities, including cellular defense systems; the 
virus is very likely to exploit its dynamics and function. Most of the GO 
terms in this study are involved in mitochondria. Many recent studies 
have demonstrated that host mitochondria may play an important role 
in COVID-19 infection, which is assumed to be one of the key mecha-
nisms for COVID-19 diseases [47–50]. Although mitochondrial ATP is 
essential for cellular homeostasis; it is also required for viral replication 
within the host [51,52]. Many single-stranded RNA viruses have been 
found to affect host mitochondrial dynamics [53–56]. By interacting 
with the host mitochondria, SARS-CoV-2 manipulates immune re-
sponses to avoid innate immunity [54]. SARS-CoV-2 encodes a protein, 
namely open reading frame 3a (ORF3a), which has been discovered to 
bind mitochondrial ubiquitin-specific peptidase 30 (USP30), a mito-
chondrial deubiquitinase engaged in mitophagy regulation and ho-
meostasis [55]. With the help of USP30, SARS-CoV-2 modulates 
mitochondrial activity that leads to host immunosuppression [57]. 
SARS-CoV-2 induces neutrophil extracellular trap (NET), an inflamma-
tory response involving mitochondrial biogenesis, fusion, fission, and 
releasing mitochondrial DNA (mtDNA) into the cytoplasm [58,59]. The 

Fig. 8. Identification of hub genes from the PPI network. Six hub genes 
(PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL) have been shown here in 
different colours. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 9. Analysis of the module interaction network reveals the highly interconnected hub gene and its related genes. The network is ranked by modularity score.  

Table 2 
Module identification according to modularity. Modularity is a measure that 
quantifies the complexity of edge arrangements.  

Rank Nodes Edges Modularity InDeg OutDeg 

1 43 42 21 42 2 
2 16 15 5 15 3 
3 5 4 1.33 4 3  
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innate immune response and inflammation are triggered by this mtDNA, 
a well-known phenomenon that has been observed during SARS-CoV 
mediated infection [60–62]. When mtDNA levels rise, the damage and 
severity of the sickness can progress to multiorgan failure, which is the 
leading cause of mortality [63]. We have also created three hierarchical 
pathways, such as KEGG, Reactome, and Wikipathway. In the KEGG, 
eleven pathways are more significant among the top 20 pathways. 
Furthermore, Reactome showed five significant pathways, whereas Wiki 
had six. KEGG pathway databases store higher order functional infor-
mation for systematic analysis of DEGs function. KEGG pathway data-
bases are increasingly employed in the field of system biology. There are 
two advantages to this type of pathway analysis. One is to simplify the 
experiment by collecting thousands of DEGs from high-throughput 
technologies into a few hundred pathways; another is to improve the 
experiment’s explanatory power by identifying the most impacted 
pathways under the given conditions [64,65]. Our findings revealed 
three upregulated DEGs, namely PRPF31, FOXN2, and RIOK3. The PPIs 
network, gene–miRNA, TF–gene, protein–drug, and protein–chemical 
interactions were constructed based on these DEGs. These networks 
revealed a broad range of proteomic information. The PPIs network had 
64 nodes and 65 edges. This sort of network could be used in many 

studies to predict disease genes by taking into account disease loci [66], 
gene-disease phenotypic connections [67–70], and disease-specific 
alteration of gene expression [71]. It allows the development of drugs 
with more specificity and minimal side effects. RIOK3, an upregulated 
gene in our dataset, is expressed at modest levels in a range of human 
organs, but it is substantially expressed in lymphoid and myeloid cells, 
which play an important role in immune surveillance [72]. One study 
showed that knocking down RIOK3 makes cells more vulnerable to 
MHV-68 and influenza A virus replication, implying that 
RIOK3-dependent pathway is important for antiviral defense against a 
wide range of viruses [73]. Secondly, FOXN2 has been identified as a 
potential option for the therapy of SARS-CoV-2 infection [74]. We aimed 
to determine hub genes that act as signaling relays for other proteins’ 
networks. In this investigation, six genes (PRPF31, FOXN2, RIOK3, UBC, 
HNF4A, and ELAVL) were identified as the hub genes. The reported hub 
genes can help to identify possible candidate medications because they 
play a key role in the interaction between COVID-19 and the patient 
with CF and CKD. A drug target protein has its own three topological 
unique qualities, such as eccentricity, modularity, and coreness [75]. 
Our reported hub genes possess these three traits (Table 1), which could 
be a possible therapeutic target for COVID-19 prevention with 

Fig. 10. Transcription factor (TF) and miRNA interaction network. The network is made up of 56 nodes and 56 edges. The miRNA structure is characterized by a red 
circle, while the TF network is displayed by a blue circle. The network is connected by light green circles that represent central nodes. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 11. Protein-Chemical network analysis. The network is formed by three hub genes (yellow) and the chemical is denoted by pest colour. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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comorbidities (CF and CKD). It suggests that a drug target protein might 
be able to interact with some hub proteins, which pass on their bio-
logical stimulation to other proteins in the same family. These topo-
logical features can help researchers understand how drug target 
proteins work and test new therapeutic approaches. In terms of the 
regulation of these three upregulated genes, we designed a TF–miRNA 
co-regulatory network, which measures the performance of TF-genes 
and miRNAs in the network. The regulation of this network relies on 
45 miRNAs and 8 TF-gene interactions. GABPA is a significant TF that 
plays a crucial role in regulating genes involved in various biological 
processes, such as embryonic development, cell differentiation, cell 
cycle, and mitochondrial biogenesis [76–80]. GABPA (also known as 
nuclear respiratory factor 2), a nuclear E26 transformation-specific 
transcription factor (ETS), that binds and activates mitochondrial 
genes involved in electron transport and oxidative phosphorylation 
[81]. Another TF in the network is SP1, one of the most studied TFs 
regulating a wide range of genes involved in broad biological processes 
[82]. We have identified three modules from the PPIs network (Table 2). 
We also proposed 20 drugs from the Drug Signatures Database (DSigDB) 
using the Enrichr web platform based on the shared upregulated DEGs 
(Table 3). Among the 20 drugs, hesperetin has the highest level of 
enrichment. This drug has been shown to suppress the replication of a 
variety of viruses in vitro, including SARS-CoV [83]. Hesperetin can 
bind to ACE-2 with an estimated ΔG (kcal/mol) − 8.3, with binding sites 
at Tyr613, Ser611, Arg482, and Glu479, implying that hesperetin may 
prevent the infection [84]. Hesperetin inhibits the SARS-CoV-2 virus 
from binding to the host’s ACE-2 enzyme, restricts virus replication after 
its penetration of the host cell, and counteracts the immune system’s 
pro-inflammatory reactions. However, Hasan MT et al. reported that 
Imiquimod (IMQ) could be a potential therapeutic agent to treat 
COVID-19 and CF [85]. In our study, the transcriptome analysis of 
SARS-CoV-2, CF, and CKD was based on small samples. The greater the 
number of samples, the more concordant genes will be uncovered, 
resulting in a significant transcriptome response in the future. 

5. Conclusion 

We reported the interrelated pathways and significant genes for the 
first time by using transcriptome analysis among patients with COVID- 
19, CF, and CKD. A total of 849 genes have been expressed mutually 
in the whole dataset. Three genes (PRPF31, FOXN2, and RIOK3) are 
upregulated that could be a biomarker for the patient with CF, CKD, and 
COVID-19. Six hub genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and 
ELAVL) can help to identify possible candidate medications because 
they have three topological features, including eccentricity, modularity, 
and coreness. Finally, we have suggested some medications that can 
reduce the risk of fatality and hospitalization. There was a brief dis-
cussion of three significant upregulated genes that are expected to 
accelerate the pace of development of therapeutics against COVID-19, 
CF, and CKD. For the confirmation of our projected medications for 
the treatment of these three diseases, wet lab experiments are required 
to evaluate and validate their effectiveness. We believe that the results 
obtained in this study could serve as a guide for future work in the 
laboratory. 
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[13] Colombo C, Cipolli M, Daccò V, et al. Clinical course and risk factors for severe 
COVID-19 among Italian patients with cystic fibrosis: a study within the Italian 
Cystic Fibrosis Society. Infection 2021:1–9. https://doi.org/10.1007/s15010-021- 
01737-z. 

[14] Colombo C, Battezzati PM, Lucidi V, et al. Influenza A/H1N1 in patients with cystic 
fibrosis in Italy: a multicentre cohort study. Thorax 2011;66(3):260–1. https://doi. 
org/10.1136/thx.2010.157032. 

[15] Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID- 
19. Nat Med 2020;26(7):1017–32. https://doi.org/10.1038/s41591-020-0968-3. 

[16] Wu T, Zuo Z, Kang S, et al. Multi-organ dysfunction in patients with COVID-19: a 
systematic review and meta-analysis. Aging Dis 2020;11(4):874–94. https://doi. 
org/10.14336/AD.2020.0520. 

[17] Chung EYM, Palmer SC, Natale P, et al. Incidence and outcomes of COVID-19 in 
people with CKD: a systematic review and meta-analysis. Am J Kidney Dis 2021;78 
(6):804–15. https://doi.org/10.1053/j.ajkd.2021.07.003. 

[18] Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target 
for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. 
Nat Commun 2021;12(1):2506. https://doi.org/10.1038/s41467-021-22781-1. 

[19] Serfozo P, Wysocki J, Gulua G, et al. Ang II (angiotensin II) conversion to 
angiotensin-(1-7) in the circulation is POP (Prolyloligopeptidase)-Dependent and 
ACE2 (Angiotensin-Converting enzyme 2)-independent. Hypertension 2020;75(1): 
173–82. https://doi.org/10.1161/HYPERTENSIONAHA.119.14071. 

[20] Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization 
and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting 
enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006;17(11): 
3067–75. https://doi.org/10.1681/ASN.2006050423. 

[21] Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data 
analysis [published correction appears in Genome Biol. 2016;17(1):181]. Genome 
Biol 2016;17:13. https://doi.org/10.1186/s13059-016-0881-8. 

[22] Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics 
and computational biology solutions using R and Bioconductor (Published 6 
December 2006).doi:10.1111/j.1541-0420.2006.00596_2.x. 

[23] Wichert S, Fokianos K, Strimmer K. Identifying periodically expressed transcripts in 
microarray time series data. Bioinformatics 2004;20(1):5–20. https://doi.org/ 
10.1093/bioinformatics/btg364. 

[24] Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop 
application for gene set enrichment analysis. Bioinformatics 2007;23(23):3251–3. 
https://doi.org/10.1093/bioinformatics/btm369. 

[25] Yang QX, Wang YX, Li FC, et al. Identification of the gene signature reflecting 
schizophrenia’s etiology by constructing artificial intelligence-based method of 
enhanced reproducibility. CNS Neurosci Ther 2019;25(9):1054–63. https://doi. 
org/10.1111/cns.13196gene. 

[26] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nat Genet 2000;25(1):25–9. https://doi. 
org/10.1038/75556. 

[27] Aken BL, Achuthan P, Akanni W, et al. Ensembl 2017. Nucleic Acids Res 2017;45 
(D1):D635–42. https://doi.org/10.1093/nar/gkw1104. 

[28] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27. 

[29] Yang Q, Li B, Tang J, et al. Consistent gene signature of schizophrenia identified by 
a novel feature selection strategy from comprehensive sets of transcriptomic data. 
Briefings Bioinf 2020;21(3):1058–68. https://doi.org/10.1093/bib/bbz049. 

[30] Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, Mélius J, 
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