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ABSTRACT: As practical interest in the flexible or wearable
thermoelectric generators (TEGs) has increased, the demand for
the high-performance TEGs based on ecofriendly, mechanically
resilient, and economically viable TEGs as alternatives to the brittle
inorganic materials is growing. Organic or hybrid thermoelectric
(TE) materials have been employed in flexible TEGs; however, their
fabrication is normally carried out using wet processing such as spin-
coating or screen printing. These techniques require materials
dissolved or dispersed in solvents; thus, they limit the substrate
choice. Herein, we have rationally designed solvent-free, all carbon-
based TEGs dry-drawn on a regular office paper using few-layered
graphene (FLG). This technique showed very good TE parameters,
yielding a power factor of 97 μW m−1 K−2 at low temperatures. The
p-type only device exhibited an output power of up to ∼19.48 nW.
As a proof of concept, all carbon-based p-n TEGs were created on paper with the addition of HB pencil traces. The HB pencil
exhibited low Seebeck coefficients (−7 μV K−1), and the traces were highly resistive compared to FLG traces, which resulted in
significantly lower output power compared to the p-type only TEG. The demonstration of all carbon-based TEGs drawn on paper
highlights the potential for future low-cost, flexible, and almost instantaneously created TEGs for low-power applications.

1. INTRODUCTION

Over 70% of the global primary energy is reported to dissipate
as heat below 100 °C, which ultimately can lead to the
environmental and resource management issues.1 The use of
this wasted heat by harvesting electrical energy could be
advantageous. Thermoelectric generators (TEGs) can trans-
form a proportion of this wasted heat energy directly into
electrical energy using the Seebeck effect.2,3 The performance
of a thermoelectric (TE) material is typically evaluated by the
dimensionless figure of merit (ZT = S2σTκ−1), where S
represents the Seebeck coefficient (V K−1), σ denotes the
electrical conductivity (S m−1), T is the absolute temperature
(K), and κ denotes the thermal conductivity (W m−1 K−1).4,5

The term S2σ is known as the power factor (W m−1 K−2) and
correlates with the maximum power output thermoelectric
materials can generate.6,7

The field of thermoelectrics is making steady progress;
however, the current state-of-the-art commercial thermo-
electric materials largely consist of inorganic materials with
poor mechanical stability; are naturally scarce, toxic, cost
intensive; and have high masses, such as PbTe, Bi2Te3, and
Sb2Te3.

8,9 Current manufacturing techniques use spark plasma
sintering (SPS) or hot pressuring, which requires high

temperatures and pressures, resulting in long manufacturing
times. The development of highly efficient alternatives to
brittle inorganic thermoelectric materials is necessary to
develop flexible TEGs, which could be more easily deployed
than current rigid TEGs. Conducting polymers,10−13 nano-
carbons14,15 and their composite materials16,17 are widely
researched owing to their low cost, lightweight, low thermal
conductivity, mechanical flexibility, and easy processability.18,19

Nanocarbon filler-based composites have shown impressive
synergy of the constituent materials in terms of enhanced
thermoelectric performance.20,21 While, several recent reports
show remarkable thermoelectric properties, they lack the
fabrication of TEG modules and performance owing to their
incompatibility with the required large-area fabrication
techniques.22 These studies, therefore, did not proceed beyond
the characterization of the thermoelectric properties.15,16,23 In
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addition, organic-based thermoelectric materials or their
composites generally demonstrate relatively low thermoelectric
performance compared to their inorganic counterparts. This is
due to their relatively low Seebeck coefficients and often low
electrical conductivities.24,25 In the context of the flexible
thermoelectric materials, the performance has been signifi-
cantly improved owing to the high electrical conductivity of
o r g a n i c p o l y m e r s s u c h a s p o l y ( 3 , 4 -
ethylenedioxythiophene):poly(styrenesulfonate) (PE-
DOT:PSS). The sensitivity of conducting organic polymers
due to the humidity in ambient conditions and the lack of
stable n-type materials, however, leads to a limitation for
practical applications of conducting polymers.25,26 New cost-
effective and lightweight materials that are paintable or
printable, therefore, could be more useful and commercially
viable even with relatively low thermoelectric performance. It is
worth to note that two dimensional (2D) materials have been
increasingly used in thermoelectric applications; a recent
review on 2D thermoelectric materials was reported.27

To circumvent these issues, this work presents a unique,
facile, extremely simple, and solvent-free low-cost method to
develop thermoelectric devices. The resultant TEGs not only
are flexible but also show promising low-temperature thermo-
electric power output for a temperature gradient up to 70 K.
However, if another substrate is used that can withstand more
elevated temperatures, then the fabricated devices could be
extended to higher-temperature applications. The devices
originates from drawing on cheap and abundant ordinary
office paper, which acts as an insulating substrate, while a slice
of a compressed pellet bar of few-layered graphene (FLG) has
been used as a p-type “pencil” to draw p-type only device and
also the p-type leg of a p-n device. HB pencil traces were used
to draw n-type legs. Graphene is the most widely studied
instance of 2D materials for its applications in mechanical,
electrical, and photonic industries owing to its unique
properties;28 however, it has limited thermoelectric potential
due to its semi-metallic nature that ultimately results in low
Seebeck coefficients.29 Graphene also possess high κ that leads
to the modest thermoelectric conversion efficiency.30 Despite
graphene-based polymer composites demonstrating promise in
the low-temperature thermoelectrics,22,31 only a few studies
have focused on all graphene-based thermoelectrics.32 Thus,
graphene’s potential in thermoelectrics is largely unexplored.
The utilized FLG was sourced from a novel dry physical
grinding technique followed by graphene nanoflakes liberation
using plasma treatment and intercalation with dielectric barrier
discharge (DBD) utilizing both atmospheric and vacuum
process. Most importantly, our synthesized FLG possessed
significantly lower κ33 compared to other values reported for
FLG,34,35 which makes it suitable for thermoelectric
applications. In addition, HB pencil traces comprise nano-
composites of graphite nanoparticles and multilayer sheets of
graphene and clay.36 Pencil drawn films, being electrically
conductive and stable in different environments, have already
been explored in several electronic devices such as super-
capacitors,37 photodiodes,38 field effect transistors,39 and
photo-, tenzo-, and chemiresistive sensors.40−42 Recently,
Brus et al.43 used HB pencil as an n-type material in a
PEDOT:PSS based thermoelectric device. HB pencil traces
potential as an n-type carbon-based material, and therefore, has
been explored in this work to produce all carbon-based
thermoelectric device dry-drawn on paper. This facile and
solvent-free deposition approach and the nontoxic nature and

abundance of employed materials open up possible applica-
tions in systems that operate at a low temperature range of
operation such as its utilization on a human body and
electronic equipment (e.g., mobiles and computers) main-
boards, and possibly at higher temperatures with an alternative
substrate.

2. EXPERIMENTAL SECTION
2.1. Materials. Regular office paper (90 g/m2) and the HB

graphite pencil (Wilko) were used as received. The p-type FLG
was obtained from Perpetuus Carbon Technologies Ltd., UK.
Silver conductive paint was purchased from RS components,
UK.

2.2. Thin Films and Thermoelectric Characterizations.
Paper was employed as the substrate for all the samples
prepared during the current study. The p-type and n-type films
were drawn on paper using a slice (pencil-like) of pressed
pellet bar of FLG and an HB pencil lead traces, respectively, as
shown in Figure 1b. The thicknesses of the paper-drawn n-type

(HP graphite pencil) and p-type (FLG pellet bar) films were
measured by surface profiler and determined to be ∼100 nm,
with relative deviation of ±10%. Field emission scanning
electron microscope (FESEM, Hitachi 4800 S, Japan) and a
Renishaw inVia Qontor confocal Raman spectrometer with an
excitation wavelength of 633 nm were used to examine the
morphology and structural properties of the films, respectively.
An optical phonon frequency (520.6 cm−1) of single-crystal
silicon was used to calibrate the Raman shifts. The reflecting
microscope objective was 50×, n.a. 0.15, and the excitation
spot diameter was 15 μm. The light was detected by a charge-
coupled device and the samples were excited using a
continuous-wave He-Ne laser emitting at 633 nm with a
power of 500 mW. The Seebeck coefficient and the electrical
properties of FLG and HB pencil trace drawn on paper were
measured by fixing the paper onto a glass substrate for rigidity
and using an ULVAC ZEM-3 with a helium atmosphere.

2.3. Device Fabrication. Onto the paper, the parallel legs
measuring 3.0 cm × 0.5 cm each with an inter-legs separation

Figure 1. (a) Molecular structure of the FLG. Schematic of the (b)
pellet making and (c) the device fabrication processes.
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of 0.5 cm were drawn using a pressed pellet bar of FLG to
fabricate a p-type device only, whereas normal HB graphite
pencil was used to draw n-type leg in the p-n device. Silver
conductive paint was brush painted to make contacts.
2.4. Device Characterization. The open circuit voltage

(VOC) and the short-circuit current (Isc) were measured using a
Keithley 2401 digital multimeter. The hot side was heated
using a digital hotplate model Elektrotechnik PR 53 T, while a
custom-made passive cold stage has been designed to use as a
heat sink to help maintain a temperature gradient. Two

thermocouples, one on the cold side and the other on the hot
side, were used to determine ΔT.

3. RESULTS AND DISCUSSION

3.1. Morphological and Structural Characterization
of FLG and Pencil Traces. FESEM microscopy and Raman
backscattering measurements were employed to evaluate the
morphology and structural properties, respectively, of the FLG
and pencil traces drawn on paper. The FLG images shown in
Figure 2b,d exhibit large sized sheets of micrometer
dimensions. The inset image taken from raw material shows

Figure 2. (a) Device architecture of the TEG unit; (b, c) low and (d, e) high magnification FESEM images of the morphology of FLG and pencil
traces on paper, respectively. Inset shows the few-layered structure of the graphene. Raman spectra of (f) FLG and (g) pencil traces on paper.
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the few-layered structure of the graphene. It confirms the 2−3
graphene sheets stacked with each other with the space
between the sheets visible. This suggests a high degree of
exfoliation, which justifies that our prepared graphene is indeed
nanoflakes of FLG. The nano-sized particles from FLG,
however, probably penetrate into the paper to fill voids owing
to the porous nature of paper. It is possible, therefore, that the
films might partially repeat the morphology of the bare paper
surface. The pencil traces on paper, in contrast, exhibit
disordered stacks of graphite flakes with varied sizes (Figure
2c,e).
Raman spectra of FLG nanoflakes are depicted in Figure 2f.

The main graphitic peak corresponding to the G band is at
1583 cm−1, which represents the doubly degenerate phonon
mode of sp2 carbon.44,45 The G band indicates the presence of
graphene.46 Apart from this, a less intense peak at 1347 cm−1 is
ascribed to the D band, which constitutes defects in the sp2

hybridized hexagonal sheet of graphene.46 The 2D band is a

second-order two-phonon process and is represented by a peak
at 2683 cm−1.44 It is noteworthy that the intensity of D band
and the intensity ratio of D and G bands (ID/IG) are directly
proportional to the number of defects and number of layers in
the graphene lattice, respectively.47 Thus it can be interpreted
that a low-intensity D band peak observed in our case
represents very little or almost no defects in graphene lattice.
In addition, the ID/IG ratio of 0.12 is much smaller than the
previously reported data for FLG,45,48 which also confirms the
high quality and fewer number of layers of the FLG. Raman
spectra of pencil traces on paper are depicted in Figure 2g,
which shows peaks similar to those of polycrystalline graphite.
The G band at 1580 cm−1 corresponds to the bond stretching
of sp2 hybridized atoms,49 while the D and D′ bands at 1330
and 1617 cm−1 are ascribed to the disorder-induced mode
from Raman scattering at the graphene edges.37 The D peak
also indicates the defects in the sp2 graphite sheets. Moreover,
as a common feature of polycrystalline graphite and the

Figure 3. Thermoelectric characteristics of FLG and HB pencil drawn films on paper. Seebeck coefficient, electrical conductivity, and power factor
of (a, c) FLG and (b, d) pencil trace, respectively. (e) Power factor values for the current work plus recently reported carbon-based TE materials
and their composites.22,24,26,54−63
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graphite-like materials possessing crystalline defect, an over-
tone of D peak is denoted as a 2D peak has been observed at
∼2681 cm−1.49,50 The D + G band appears at 2923 cm−1. The
presence of a strong D band could be due to two factors. First,
fewer number of stacked graphene allows more edge planes to
expose. Second, the degree of disorder in the deposited
graphite increases owing to the shearing that induces less
aligned AB stacking.37,51

3.2. Evaluation of Thermoelectric Characteristics. The
thermoelectric characteristics of electrically conductivity and
Seebeck coefficient were measured of the paper-drawn FLG
and pencil traces. Due to the thin film nature of the samples,
the thermal conductivity was not measured. The thermal
conductivity of FLG pellets, however, has been seen to be 120
or 10 W m−1 K−1 at room temperature depending on the
orientation of the FLG samples.33 The Seebeck coefficient of
FLG traces on paper exhibited p-type behavior and
progressively decreased with increasing temperature from a
maximum of 17 μV K−1 at 317 K to 9 μV K−1 at 407 K, as

shown in Figure 3a, after which the Seebeck coefficient is seen
to be almost stable despite a further increase in temperature.
The electrical conductivity, however, is found to consistently
increase with the increase in temperature. This follows an
almost linear trend (Figure 3a), reaching a value of 4100 S
cm−1 at 502 K. These electrical conductivity values are higher
than those reported for FLG pellets,33 showing (also defect-
free graphene sheets are the reason for better electrical
conductivity compared to previous reported ones) that the
drawing method can enhance the electrical conductivity of
FLG. This is most likely due to the rubbing action causing
preferential alignment of FLG along the paper’s plane. The
initial inverse and direct correlation of Seebeck coefficient and
electrical conductivity with temperature, respectively, can be
explained due to elevation of physio-absorbed oxygen species
from the FLG particles. This leads to an increase in carrier
concentration, which results in higher electrical conductivity
and lower Seebeck coefficients.52 The resulting power factor of
the FLG traces film on paper is presented in Figure 3c, which

Figure 4. (a) A photograph of TE device drawn on paper using FLG and pencil traces. (b) Schematic of experimental setup to characterize the
TEGs. Measured open circuit voltage (Voc) and short-circuit current (Isc) as a function of temperature gradient (ΔT) for the (c) P-type FLG only
and (d) p-n device comprises of P-type FLG leg and N-type pencil trace leg drawn on paper. (e) Output power of the P-type only and P-N device
drawn on paper assuming that Pmax = (Voc × Isc)/4.

64,65
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shows a similar trend to the Seebeck coefficient, due to the
power factor being dependent on the square of the Seebeck
coefficient. A maximum value of 97 μW m−1 K−2 at 317 K is
seen, after which a sharp decrease is observed between 317 and
407 K, before stabilization. At more elevated temperatures, the
power factor shows minimal variation with temperature. While
these power factors are lower than that is typically seen for
inorganic materials, they could be improved with the addition
of highly conductive polymers such as PEDOT:PSS, where
power factors with graphene of up to 2710 μW m−1 K−2 have
been reported.20 The Seebeck coefficient of pencil traces on
paper is shown in Figure 3b. Initially, the pencil film is shown
to act as a p-type material at lower temperatures between 316
and 331 K. The Seebeck coefficient progressively becomes
negative; however, a majority of the carriers are switched from
holes to electron as the temperature increases. We believe this
could be occurring due to elevation of physio-absorbed oxygen
species from the pencil trace particles, increasing the
concentration of carrier electrons. It is possible, however,
that the change from p- to n-type could be due to the
introduction of oxygen functional groups.53 The resulting
Seebeck coefficient saturates at a value of −7 μV K−1 at 444 K.
Recently, pencil trace on paper has been shown to be an n-
type, where a Seebeck coefficient of −17.9 μV K−1 was
measured using a home-made setup by linear fitting of
experimentally measured ΔV at different ΔT values.43 The
measured Seebeck coefficient here, however, was made using a
commercial ULVAC ZEM-3, which showed significantly lower
values and initially p-type behavior. The lack of calibration for
wire or other instrumental Seebeck coefficients in their study43

could explain the difference in the values observed. Nonethe-
less, the results indicate that the pencil traces can exhibit weak
n-type behavior when the temperature is elevated slightly
above room temperature. It is possible, therefore, that pencil
traces could be used as an n-type leg material in conjunction
with the p-type FLG to form all carbon-based p-n thermo-
electric devices. The electrical conductivity of the pencil traces
linearly increased with increasing temperature, reaching to a
maximum value of 20 S cm−1 at 500 K. This translates a
maximum power factor of 0.17 μW m−1 K−2 at 316 K, which
sharply decreased until 350 K, followed by a weak linear
increase in the values. The FLG traces on paper showed a
favorable power factor of 97 μW m−1 K−2, when compared to
recently reported only carbon TE materials produced in more
complex synthesis techniques, and even compares favorably to
some polymer composites. This is illustrated in Figure
3e.22,24,26,54−63

3.3. Paper-Drawn Thermoelectric Device Character-
ization. A photograph of the fabricated device and a schematic
illustration of the testing setup are shown in Figure 4a and b,
respectively. Figure 4c illustrates the VOC and the Isc of only p-
type FLG based single TEG unit up to a ΔT of 67 K. Both the
VOC and the Isc and the resulting calculated power output
showed a linear increase with ΔT. At a ΔT of 67 K the TEG
showed a voltage of 3.71 mV and a current of 21 μA, yielding a
maximum output power of 19.48 nW (Figure 4e) assuming
that Pmax = (Voc × Isc)/4.

64,65 A p-n device was fabricated by
employing pencil traces as the n-type leg. The p-n based TEG
unit (containing two legs) showed lower performance with a
maximum output power of 0.51 nW, with an Isc of 0.5 μA and a
VOC of 4.1 mV at ΔT of 67 K (Figure 4d). While the voltage of
the p-n device is slightly higher than that of the p-type only
devices, due to the n-type nature of the pencil traces, the

current is significantly lower. This is due to the low
conductivity of the pencil traces compared to the FLG traces
and due to the extra contact resistances formed from the extra
junctions created to form the n-type legs. The resulting
performance of the p-n device is, therefore, significantly lower
than the p-type only device. Improving the low electrical
conductivity of the HB pencil traces or fabricating compatible
n-type FLG would significantly improve the performance of
the p-n devices. Sheng et al.61 reported SWCNTs with similar
power factors to our FLG samples and successfully made well-
matched p- and n-type samples, which resulted in a p-n device
with a power output of up to 1.16 μW. The performance of the
devices would also be significantly improved with the
development of a fabrication processes that would enable
thicker TE legs (current legs are ∼100 nm) to be realized.
Were these improvements to be realized, then FLG trace TEGs
could be used for self-powered sensor applications, such as
temperature monitoring. Nevertheless, a power output 19.48
nW in the case of the p-type FLG based TEG and 0.51 nW for
the p-n device is comparable to other only carbon TEGs
reported in the literature. Nguyen et al.66 reported an output
power of 1.36 nW (24 p-n junctions) at ΔT of 50 K for the
nitrogen-doped graphene derivatives and Rafiq et al.67

demonstrated an output power of 1.75 nW (5 p-n junctions)
at ΔT of 60 K for the graphite TEGs on paper.

4. CONCLUSIONS
In summary, we have demonstrated facile, cost-effective, large-
area-compatible fabrication route for all only carbon-based
films constituting FLG and HB pencil traces. Both the p-type
and p-n-type devices were realized using the same fabrication
process onto regular office paper. We demonstrate that FLG
traces on paper showed promising thermoelectric parameters
and device performance owing to the reasonably high
thermoelectric parameters with the electrical conductivity
and Seebeck coefficient of 41 S cm−1 and +17 μV K−1,
respectively, yielding a maximum power factor of 97 μW m−1

K−1 at 317 K. The pencil traces, however, showed poor
thermoelectric parameters and device performance due to the
weak n-type characteristics and higher resistance of the HB
pencil compared to the FLG traces. The unexplored thermo-
electric properties of FLG and pencil traces on a regular office
paper as a substrate, however, constitute a potential approach
for the development of flexible, extremely simple, ecologically
and economically viable, solvent-free thermoelectric devices
that can be used for low-temperature waste heat sources.
Moreover, the current results demonstrated proof-of-concept
TEGs drawn on paper.
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