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Abstract
Background and Aim: The oviduct environment is of particular importance because it is the site of fertilization and early 
embryo development. The oviduct, as a component of the reproductive system, responds to ovarian hormone (estradiol [E2] 
and progesterone [P4]) stimuli depending on the estrous cycle phase. This study aimed to elucidate the effect of estrous cycle 
phases (follicular and early and late luteal phases) on gene expression patterns in bovine oviduct epithelial cells (BOECs).

Materials and Methods: Oviducts were obtained from healthy slaughterhouse animals, corresponding to ipsilateral 
ovaries with dominant follicles or corpus luteum during early and late luteal phases. BOECs were recovered from the 
isthmus (IST) and ampulla (AMP), and the expression patterns of genes related to cytokinesis and mitosis mechanisms 
(rho-associated coiled-coil containing protein kinase and cellular communication network factor 2 [CCN2]), growth factors 
(insulin-like growth factor-binding protein 3, epidermal growth factor receptor [EGFR], vascular endothelial growth factor 
A, and EGFR), antioxidant mechanisms (glutathione peroxidase 4 [GPX4]), apoptosis (B-cell lymphoma 2), complement 
component (C3), energy metabolism (aldose reductase gene family 1-member b1 [AKRIB1] and solute carrier family 2), 
hormone receptors (estrogen receptor 1 and luteinizing hormone/choriogonadotropin receptor), and specific glycoproteins 
(oviductal glycoprotein 1) were analyzed.

Results: High P4 levels (late luteal phase) affected the expression of important genes related to antioxidant mechanisms 
(GPX4), energy metabolism (AKRIB1), growth factors (IGBP3 and EGFR), and cell growth regulation (CCN2) in the AMP. 
Low P4 levels (early luteal phase) affected the expression of AKR1B1, IGBP3, and CCN2. In addition, estrogen likely had 
an effect on OVPGP expression in the cattle oviduct.

Conclusion: Differential gene expression patterns of BOECs in the AMP during the luteal phase (antioxidant mechanisms, 
energy metabolism, growth factors, and immunological regulators) and in the IST during the follicular phase (glycoproteins) 
may influence their renewal and population proportions, modulating the oviduct environment as well as gamete and embryo 
physiology.
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 Introduction

The bovine oviduct is the part of the female 
reproductive system where fertilization and early 
embryo development occur, providing an optimum 
environment for final oocyte maturation, sperm 
capacitation, sperm storage, and fertilization as 
well as gamete and embryo transport [1–3]. The 
oviduct environment is primarily regulated by ovi-
ductal epithelial cell (OEC) secretion and plasma 
components [4]. OECs are crucial for gamete trans-
port, maintenance, preparation, and early embryo 
development [5]. OECs can be ciliated or secretory 

(non-ciliated), and they are distributed in the ovi-
duct ampulla (AMP) and isthmus (IST) [6], with the 
infundibulum and AMP containing the largest pro-
portion of ciliated OECs [7].

Physiologically, hormones in the circulation 
reach OECs from the basolateral surface and regulate 
various cell functions [8]. During the estrous cycle, the 
oviduct is affected by ovarian sex hormones, mainly 
estrogens and progesterone, which result in morpho-
logical and biochemical changes for maintaining an 
appropriate environment for gamete and embryonic 
development [9]. The morphological development and 
ratio of ciliated and secretory OECs are completed 
during the estrous cycle. During the luteal phase, goat 
OEC cell height decreases, mainly in the ciliated cells 
(CCs) of the entire oviduct [10]. The number of CCs 
increases during the late luteal phase in the infundib-
ulum and AMP and decreases as it approaches the 
IST [11]. In particular, protein synthesis in the oviduct 
peaks during the follicular phase due to estrogens [12], 

Copyright: Lopera-Vásquez, et al. Open Access. This article is 
distributed under the terms of the Creative Commons Attribution 
4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and 
reproduction in any medium, provided you give appropriate credit 
to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. 
The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data 
made available in this article, unless otherwise stated.

https://orcid.org/0000-0001-6792-1961
https://orcid.org/0000-0001-9115-757X
https://orcid.org/0000-0001-6980-892X


Veterinary World, EISSN: 2231-0916� 1666

Available at www.veterinaryworld.org/Vol.15/July-2022/9.pdf

including the expression of oviductal glycoprotein 1 
(OVGP1) and progesterone receptor [13].

The environment of the bovine oviduct has 
been studied in vitro and in vivo, enabling the char-
acterization of secreted proteins and their roles in the 
oviduct environment [14]. Regulatory mechanisms 
for genomic pathways [15] affect capacitation, fer-
tilization capacity, and early embryo development 
and competence. Schmaltz-Panneau et al. [16] found 
variations in OEC gene transcription in developing 
embryos. Therefore, studying the oviduct environment 
is crucial for understanding the underlying regulatory 
mechanisms that influence embryo development [17].

The use of bovine oviduct epithelial cells 
(BOECs) provides significant advances in the in vitro 
culture (IVC) systems of bovine embryos [18], with 
implications for embryo development and compe-
tence  [19]. These advancements enable the devel-
opment of further technologies, particularly those 
related to early embryo development and IVC, and 
establish the BOEC coculture as an appropriate model 
for studying the pathways for embryo-maternal com-
munication in bovines [20].

Changes in the activity or abundance of several 
molecules during the estrous cycle may be crucial for 
the oviduct environment [21]. These molecules pos-
itively affect sperm motility, capacitation, and gam-
ete interaction [22]. Transcriptomic studies detected a 
relationship between estrous cycle-dependent changes 
in gene expression levels and morphological changes 
in BOECs [23, 24]. The gene transcript upregulated in 
the luteal phase (under progesterone [P4] influence) 
is associated with the regulation of cell proliferation. 
In contrast, those upregulated in the follicular phase 
(under estradiol [E2] influence) are involved in pro-
tein modulation [25].

This study aimed to elucidate the differential 
expression of various BOEC genes during the estrous 
cycle.
Materials and Methods
Ethical approval

No ethical approval was required for this study 
because oviduct samples were recovered from bovine 
females from the slaughterhouse. 
Study period and location

The study was carried out from January to 
August 2021. Molecular experiments were done in the 
Laboratory of Immunology and Molecular Biology – 
LIBM of the University of Tolima.
BOEC isolation and preparation

Following slaughter, the female reproductive 
tract was recovered from healthy animals, and oviducts 
(ipsilateral) were collected based on ovarian morphol-
ogy using the criteria described by Ireland et al. [26]. 
Oviducts were separated from connective tissue, 
ligated, dissected, and washed in phosphate-buff-
ered saline (PBS) before being transported on ice 

to the laboratory in PBS with 2% penicillin-strepto-
mycin solution (Sigma®, Germany). Before remov-
ing the closure in a laminar flow hood, the oviducts 
were briefly soaked in ethanol and rinsed in PBS. The 
oviduct was divided into two equal segments (AMP 
and IST), and each segment was gently squeezed 
in a stripping motion using a sterile glass slide. The 
oviduct content (yellowish paste) was washed twice 
with PBS by centrifugation at 300× g for 10 min [27] 
and then collected in a vial for RNA extraction. The 
ovarian structures identified for oviduct classification 
were as follows: (a) Dominant follicle at the follicu-
lar phase; (b) hemorrhagic corpus luteum at the early 
luteal phase; and (c) total corpus luteum at the mid-lu-
teal phase of the estrous cycle [26].
Experimental design

Gene expression analyses were performed in the 
oviduct AMP and IST during the early luteal phase 
on days 2–6 (hemorrhagic corpus luteum, early), the 
mid-luteal phase on days 6–17 (functional corpus 
luteum, late), and the follicular phase on days 17–21 
(follicular).
RNA extraction and cDNA synthesis

For each gene, a set of primers was designed 
using Geneious Prime v2022.1 (https://www.geneious.
com/prime/), according to Kearse et al. [28] (Table-1). 
Total RNA was extracted using the TRIzol method 
(Thermo Fisher Scientific, USA Life Technologies; 
Cat# 15596018) and cDNA was synthesized using 
the SuperScript® IV First-Strand Synthesis System 
(Thermo Fisher Scientific, USA). The relative expres-
sion of genes of interest was normalized using glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) as a ref-
erence gene and calculated using the 2-∆∆Ct method [29]. 
Quantitative real-time polymerase chain reaction 
(qPCR) was performed using QuantStudio 3 (Thermo 
Fisher Scientific); the Luna Universal qPCR Master 
Mix (New England Biolabs, USA) was used. Melting 
curve analysis was performed to rule out gDNA con-
tamination and non-specific primer annealing.
Statistical analysis

Data were analyzed using descriptive statistics 
and normality tests. Gene expression levels were com-
pared among early, late, and follicular phases of the 
estrous cycle in AMP and IST using a one-way analy-
sis of variance with Tukey’s test as post hoc. Statistical 
analyses were performed using the GraphPad Prism 
software v8.0 for MacOS (Dotmatics; La Jolla, CA, 
USA). Differences with p < 0.05 were considered sta-
tistically significant.
Results

The transcript levels of glutathione peroxidase 
4 (GPX4), aldose reductase gene family 1-member 
b1 (AKRIB1), cellular communication network fac-
tor 2 (CCN2) were significantly higher (p < 0.01), 
same as insulin-like growth factor-binding protein 
3 (IGFBP3), and epidermal growth factor receptor 
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(EGFR) levels which were higher in the AMP (p < 
0.05) in the late luteal phase (late) than in the fol-
licular phase (follicular), similar to transcript levels 
patterns of GPX4 and EGFR that were higher in late 
compared to the early luteal phase (early) (p < 0.05). 
Oviductal glycoprotein 1 (OVGP1) and complement 
C3 (C3) were significantly higher (p < 0.01) in the 
follicular phase than in the late and early phases. The 
early phase showed a higher AKR1B1 (p < 0.05), and 
significantly higher IGFBP3, and CCN2 (p < 0.01) 
expression than the follicular phase, whereas no sig-
nificant differences in Rho-associated coiled-coil 
containing protein kinase (ROCK), B-cell lymphoma 
2 like 2 (BCL2L2), luteinizing hormone/choriogo-
nadotropin receptor (LHCGR), solute carrier family 
2 (SLC2A1), vascular endothelial growth factor A 
(VEGFA), and estrogen receptor 1 (ESR1) expression 
(Figure-1) were observed. In the IST, OVGP1 expres-
sion was higher in the late phase than in the early and 

follicular phases (p < 0.05). However, ROCK, GPX4, 
BCL2L2, AKRIB1, LHCGR, SLC2A1, IGFBP3, 
VEGFA, EGFR, C3, and CCN2 expression did not 
differ significantly between phases (Figure-2).
Discussion

The oviduct is a dynamic organ that is anatomi-
cally divided into three different parts: The infundibu-
lum, the AMP, and the IST, and it has the potential to 
provide a suitable microenvironment for gametes and 
embryo development [30]. The previous studies have 
demonstrated that genes are differentially expressed 
between oviductal regions and that it is related to the 
estrous cycle [23, 30, 31], including variations in ovi-
duct epithelial transcription [32]. Our findings indicate 
that gene expression in BOECs differs between the 
AMP and IST as well as among the follicular, early, and 
late estrous phases. This differential gene expression 
may be related to BOEC functional differentiation in 

Table-1: Sequence of primers used for qPCR.

Gene name Primer sequence (5´- 3´) Amplicon size (bp) GenBank accession no.

ROCK2
F GCCTTGGAAGAAACGGGGTA 191 NM_174452.2
R AGCCTTGGGAATTGGGAAGG

GPX4
F CAAGCCTGTTGCCTGTGTTC 173 NM_001346430.1
R TATTCCCACAAGGCAGCCAG

IGFBP3
F GTCGGAAGAAGACCACAGCA 178 NM_174556.1
R CTGGGTGTCTGTGCTCTGAG

ESR1
F AGGCAGAGAATTTCCCCAGC 175 NM_001001443.1
R GCGAATGAATGGCCATCCAC

VEGFA
F CAAACCTCACCAAAGCCAGC 186 NM_001316955.1
R CGCGAGTCTGTGTTTTTGCA

OVGP1
F GCTGTCCACGTTTTCCAACC 192 NM_001080216.1
R GTGAGCTGGGCCTCATTCTT

C3
F CACTGTTGACCACAAGCTGC 95 NM_001040469.2
R AAGACTTGGAGTCCCGCTTG

EGFR
F ACTCTGATGCTGGGAGGGAT 126 XM_002696890.5
R CCTGTCCATCACCAACTCCC

LHCGR
F GAGAAGATGCACAACGACGC 193 NM_174381.1
R AAGTCAGTGTGGCATCCAGG

SLC2A1
F TGGGAGGCATGATTGGTTCC 157 NM_174602.2
R CGACCCAGGATCAGCATCTC

BCL2L2
F CGTGTGAGGGTGACGTGTAA 155 NM_001076533.1
R CACCCATGCAAACAGTGTGG

AKR1B1
F TAATTTGGCCCGTGTCCCTC 163 NM_001012519.1
R TTGCATGTTCCCCAGATCCC

CCN2
F TCTTCGGAGTGTGCACAGAC 134 NM_174030.2
R GTAATGGCAGGCACAGGTCT

GAPDH
F GGGATGAGGCTCAGAGCAAGAGA 118 NM_173979.3
R AGCTCGTTGTAGAAGGTGTGGTGCC

qPCR=Quantitative real-time polymerase chain reaction
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each oviduct region. Thus, understanding specific reg-
ulatory mechanisms that are affected under the influ-
ence of E2 and P4 may help expand the knowledge 

of oviductal physiology, including signaling pathways 
and their modulation in the oviductal environment, to 
enhance the in vitro embryo culture environment.

Figure-1: Gene expression patterns of different genes related to cytokinesis and mitosis mechanisms (ROCK, rho-
associated coiled-coil containing protein kinase; CCN, Cellular communication network), growth factors (IGFBP3, insulin-
like growth factor-binding protein 3; EGFR, epidermal growth factor receptor; VEGFA, vascular endothelial growth factor 
A), antioxidants mechanisms (GPX4, glutathione peroxidase 4), apoptosis (BCL2, B-cell lymphoma 2), complement 
component (C3), energetic metabolism (AKRIB1, aldose reductase gene family 1-member b1; SLC2A1, solute carrier family 
2, facilitated glucose transporter member 1), hormones receptors (ESR, estrogen receptor; LHCGR, luteinizing hormone/
choriogonadotropin receptor), and specific glycoproteins (OVGP, oviduct-specific glycoprotein) on oviduct ampulla, during 
different estrous cycle phases. Early: Early luteal phase, Late: Mid-luteal phase, Follicular: Follicular phase. Data are shown 
as mean ± SEM. *p < 0.05; **p < 0.01. SEM=Standard error of the mean.
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The oviduct’s function is dependent on its 
OECs, which are classified into CCs and secretory 
cells (SCs). SCs have secretory activity and may be 

larger than CCs. They exude nutrients into the oviduct 
lumen for gamete and embryo development and form 
cellular protrusions that increase in size and number 

Figure-2: Gene expression patterns of different genes related to cytokinesis and mitosis mechanisms (ROCK, rho-
associated coiled-coil containing protein kinase; CCN, Cellular communication network), growth factors (IGFBP3, insulin-
like growth factor-binding protein 3; EGFR, epidermal growth factor receptor; VEGFA, vascular endothelial growth factor 
A), antioxidants mechanisms (GPX4, glutathione peroxidase 4), apoptosis (BCL2, B-cell lymphoma 2), complement 
component (C3), energetic metabolism (AKRIB1, aldose reductase gene family 1-member b1; SLC2A1, solute carrier family 
2, facilitated glucose transporter member 1), hormones receptors (ESR, estrogen receptor; LHCGR, luteinizing hormone/
choriogonadotropin receptor), and specific glycoproteins (OVGP, oviduct-specific glycoprotein) on oviduct isthmus, during 
different estrous cycle phases. Early: Early luteal phase, Late: Mid-luteal phase, Follicular: Follicular phase. Data are shown 
as mean ± SEM. *p < 0.05; **p < 0.01. SEM=Standard error of the mean.
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as the estrous cycle progresses [33–35]. In particular, 
when oocytes are in the AMP after ovulation, SCs 
exhibit morphological changes indicative of increased 
activity [36], implying a link between SC morphology 
and endocrine levels during the estrous cycle [37]. On 
the other hand, CCs have hair-like projections (cilia) 
that generate a ciliary beating and sweep mucus and 
other debris off the epithelium and oviduct lumen. 
Changes in cilia orientation and beat frequency can 
modify oviduct fluid flow, which could affect gamete 
and embryo transport [38].

Ovarian steroids (E2 and P4) regulate ovi-
ductal function, particularly gamete and early 
embryo transport, by modulating SC and CC phys-
iology [39]. E2 increases SC proliferation,  secre-
tory activity, and CC transport velocity, whereas 
P4 decreases SC secretory activity and CC transport 
velocity while initiating a process of self-renewal 
of the BOECs for the subsequent estrous cycle. This 
BOEC renewal, which is required for proper mater-
nal receptivity, is regulated by proliferation, differ-
entiation, and apoptosis [40].

This study analyzed ROCK and CCN2 gene 
transcripts, which are related to OEC renewal. Rho-
associated coiled-coil containing protein kinase 
(ROCK) regulates cell division, cell-matrix adhe-
sions, and the activation of the c-Fos serum response 
element [41]. Our findings indicate that the estrous 
phase and oviduct region have no effect on ROCK 
expression patterns, implying the absence of Rho-
dependent kinase mechanisms during different estrous 
phases. On the other hand, CCN2 mRNA levels were 
upregulated in the AMP (late-early), with no differ-
ential expression in the IST, which may be related to 
P4  secretion. Cyclin B1 (CCN) is a regulatory pro-
tein that is involved in both the oocyte cell cycle and 
embryonic development. It assembles a complex with 
p34 (cyclin-dependent kinase 1) to form mitosis-pro-
moting factor, which is required for the proper control 
of the G2/M transition phase of the cell cycle [42]. 
Genistein, which induces cell cycle arrest, downreg-
ulates CCN and BCL-2/BAX expression in BOEC 
primary cultures, resulting in reduced cellular pro-
liferation and migration [43]. In mice, maternal fac-
tors and ovarian steroids regulate CCN2 (CTGF) and 
transforming growth factor-beta 1 expression in the 
uterus [44]. The differential expression of both genes 
reflects the dynamics of cytokinetic processes during 
the estrous cycle phases in oviduct regions.

Growth factors play a pivotal role in the ovi-
duct microenvironment, modulating cell proliferation, 
wound healing, and cellular differentiation [45]. In 
this study, IGFBP3, EGFR, and VEGFA gene expres-
sion were analyzed. IGFBP3 is an IGF-binding pro-
tein [46]; in BOECs expressing IGFBP3, particularly 
in the IST, it may help create a synchronized IGF-I 
and IGF-II gradient along the oviduct as the embryo 
passes through it [47, 48]. BOEC IGFBP3 secretion 
increases in response to early embryo development in 

a conditioned medium [49]. Our findings suggest that 
this growth factor receptor in the AMP may be respon-
sive to P4, exhibiting increased expression during the 
early and late luteal phases, corresponding to the early 
embryo development till day 4.

These patterns were similar to those of the 
EGFR, where P4 (late-early) had an effect on the 
AMP. EGFR is a transmembrane glycoprotein of the 
protein kinase superfamily [50] that binds to EGF, 
promoting receptor dimerization and tyrosine auto-
phosphorylation, which promotes cell proliferation 
[51]. It may also be involved in the regulation of the 
bovine oviductal microenvironment [52] by modulat-
ing OEC renewal and oviduct lumen characteristics 
by controlling apoptotic gene expression (BAX and 
BCL-2) [53]. The mid-luteal stage exhibits enhanced 
EGF secretion and EGFR mRNA expression in the 
bovine endometrium, which may regulate uterine 
function [54].

Angiogenesis plays an important role in cyclical 
mechanisms during the estrous cycle, such as follic-
ular growth and corpus luteum formation, which are 
dependent on the development of a dense capillary 
net  [55], and transudation from plasma contributes 
to the defining characteristics of the luminal micro-
environment in cattle, such as uterine and oviductal 
fluid [56]. VEGFA is a member of the platelet-derived 
VEGF family that encodes a heparin-binding protein, 
which promotes vascular endothelial cell prolifera-
tion and migration [57]. Our findings indicate that the 
estrous phase and oviduct region have no effect on the 
expression patterns of this gene. However, a previous 
study in heifers demonstrated that low follicle count 
downregulated VEGFA expression in ipsilateral ovi-
ducts compared to the contralateral IST [58]. VEGF 
and its receptors, flk-1 and flt-1a, are secreted in the 
bovine oviduct [59], where they have autocrine and 
paracrine effects on BOECs, influencing physiolog-
ical functions through permeability modifications. 
VEGFs, which are angiogenic in nature, are asso-
ciated with vascular support in the oviduct, being 
directly associated with OEC support and oviductal 
fluid perfusion.

The redox state of the bovine oviduct is pivotal 
for gamete physiology and embryo survival, and anti-
oxidant expression has been reported [60, 61]. GPX4 
catalyzes the reduction of hydrogen peroxide and 
organic and lipid hydroperoxides, thereby protecting 
cells from oxidative stress [62]. GPX4 is also essen-
tial for sperm development; consequently, it is clas-
sified as a “moonlighting” protein based on its abil-
ity to function as both a peroxidase and a structural 
protein in mature spermatozoa [63]. GPX4 transcript 
levels decreased in BOEC cultured embryos [49] but 
increased in the IST ipsilateral to the dominant fol-
licle during the follicular phase and in the post-ovu-
latory period [64]. Our findings suggest that P4 lev-
els (late) have an effect on GPX4 expression in the 
AMP. Previously, a significantly increased transcript 
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abundance of GPX4 in ipsilateral BOECs was observed 
in the early luteal phase [27], which is consistent with 
our findings. On the other hand, apoptosis mecha-
nisms are well known in gametes and early embryos 
and are directly linked to their viability. Therefore, 
the presence of these factors in the oviduct environ-
ment should be investigated. An apoptosis regulator, 
B-cell lymphoma 2 (BCL2) control outer mitochon-
drial membrane permeabilization (MOMP) protein 
that regulates apoptosis mitochondrial pathway [65]. 
In contrast to the findings of GPX4, the estrous phase 
and oviduct region had no effect on BCL2 expression 
patterns in our study. Recently, researchers found that 
increased BCL2 and BAX mRNA expression in BOEC 
c onditioned media and exosomes influence apoptosis 
in embryos [5]. In other mammals, apoptosis levels 
are P4 dependent (caudal oviduct and uterotubal junc-
tion) and can affect spermatozoa bound to OECs as 
well as the fertilization process [66].

The C3a peptide, also known as C3a anaphyl-
atoxin, is a complement component that regulates 
inflammation and has antimicrobial effects [67]. 
Complement proteins have been suggested to medi-
ate functional homeostasis, which has been linked 
to physiological aspects of cattle oviduct and fertil-
ity [56], sperm-oocyte interaction [68], and embryo 
development [69]. In rodents, C3 is secreted by OECs 
and increases trophectoderm development, blastocyst 
size, and hatching rates [70, 71]. Our findings suggest 
that C3 transcription levels in the oviduct AMP may 
be influenced by E2 levels.

Glucose is an essential energy source for mam-
malian pre-implantation embryo development, and 
oviduct glucose and lactate concentrations have been 
linked to oviduct and epithelial differential regulation 
[72]. Glucose and lactate levels are important to gam-
ete and early embryo processes, and multiple genes 
are involved in regulatory mechanisms. The AKRIB1 
is a key enzyme that catalyzes the reduction of several 
aldehydes as well as steroid metabolism [73], includ-
ing P4 (for implantation) [74] and prostaglandin F2α 
synthesis (luteolysis and completing pregnancy). The 
increased AKRIB1 expression in our study indicates a 
possible effect of P4 on the AMP during late and early 
phases, which was not evident on the IST, and can 
influence the oviductal environment, including early 
embryos in transit during the first stages of develop-
ment. In bovines, AKR1B1 upregulation in blastocyst 
biopsies influences the pregnancy absence and endo-
metrial resorption during luteolysis, and it has been 
related to early embryo pro-apoptotic pathways [75]. 
Similarly, solute carrier family 2 (SLC2A1), facilitated 
glucose transporter member 1 (SLC2A1), or GLUT1, 
is a major glucose transporter in the mammalian 
blood–brain barrier, mammary gland, kidney, muscle 
[76], fetus [77], and ovary [78], where it is responsi-
ble for maintaining basal glucose [79]. In the present 
study, SLC2A1 mRNA level did not vary between the 
estrous phase and the oviduct region, contrasting with 

previous studies where SLC2A showed differential 
expression in murine early embryos and laying hen 
oviducts based on glucose metabolism [80, 81].

E2 has an effect on several regions of the 
reproductive tract, including the oviduct, and its 
receptors are essential for sexual development and 
reproductive activity [82]. E2 concentrations during 
the estrous phase suggest that a large amount of E2 
is delivered to the oviduct [83]. Estrogen recep-
tor ( ESR) is a ligand-activated transcription factor 
composed of several domains essential for E2 hor-
mone-binding, DNA-binding, and transcription acti-
vation [84]. In particular, ESR1 is highly expressed 
in the IST during the follicular phase [85]. In mice, 
disrupting the E2 signal in OECs causes defec-
tive embryo transport, implying that the E2 signal 
through ESR1 is necessary for embryo transport 
in the oviduct. In humans, increased pre-ovulatory 
estradiol levels act through epithelial ERα, sup-
pressing protease-mediated aspects of innate immu-
nity in the oviduct, influencing the mucosal immu-
nological barrier to support fertilization and embryo 
development [86]. However, the ESR mRNA levels 
in BOECs in our study were comparable between 
estrous phases in both oviduct regions, suggesting 
that receptor expression in BOECs is stable regard-
less of the estrous cycle phase.

The LHCGR belongs to the G-protein cou-
pled receptor 1 family and its function is regulated 
by G proteins that activate adenylate cyclase [87]. 
Alterations in this gene influence the appearance 
of secondary sexual characteristics in males, such 
as familial male early puberty (testotoxicosis), sec-
ondary hypogonadism, Leydig cell adenoma (early 
puberty), and hypoplasia (male pseudohermaph-
roditism). However, BOEC luteinizing hormone: 
Human chorionic gonadotropin (LH:  hCG) under 
exogenous LH: hCG promotes OGP expression by 
increasing transcript stability [88]. LHCGR expres-
sion levels on BOECs are reported for the first time 
in this study, and it is suggested that the estrous 
phase and oviduct region have no impact on its 
expression patterns.

Oviduct-specific glycoprotein (OVGP) is 
related to the mucin and glycosyl hydrolase 18 gene 
families. OVGP expression and protein secretion 
occur during final follicular development through 
cleavage-stage embryo development, suggesting 
that OVGP expression is E2 dependent. OVGP is 
secreted from SCs and associates with ovulated 
oocytes, blastomeres, and spermatozoan acrosome 
regions. OVGP1 mRNA expression and its relation-
ship with cell in vivo behavior constitute a marker for 
functionality [22], whereas it indicates OEC physio-
logical phenotype under in vitro conditions [89]. In 
our study, OVGP expression was upregulated in the 
oviduct AMP and IST in response to E2 and P4. The 
effect of E2 on OVGP expression is comparable to 
an in vivo study finding, in which BOECs showed 
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increased OVGP1 mRNA expression in response to 
E2 [89], although the effect of P4 on OVGP expres-
sion was not described. However, due to the lack 
of significant variations in ESR expression, a clear 
association between this type of interaction and 
OVGP expression cannot be established.

Understanding the physiological events of the 
female reproductive tract necessitates an understand-
ing of the expression patterns of functions that elu-
cidate the dynamics of the oviductal environment 
during the estrous cycle, gamete transport, and early 
embryo development.
Conclusion

The luteal phase (early and late) of the estrous 
cycle affected gene expression patterns, which 
were reflected in antioxidant mechanisms (GPX4), 
energy metabolism (AKRIB1), growth factors 
(IGFBP3, EGFR), and cell adhesion - communica-
tion ( CCN2) in the oviductal AMP, while the fol-
licular phase influenced the gene expression of an 
essential glycoprotein, OVGP, in the oviductal IST. 
The dynamics of specific mechanisms in OECs, 
both in the AMP and IST, influence oviductal epi-
thelial renewal and population proportions, which 
further modify oviductal lumen conditions, as well 
as oviductal fluid secretions and volume, which 
influence gamete and embryo physiology during 
transit.
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