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Abstract: Hybrid polymer films of polyvinyl pyrrolidone (PVP)/polyvinyl alcohol (PVA) embedded
with gradient levels of Bi-powder were prepared using a conventional solution casting process.
XRD, FTIR, and SEM techniques have been used to examine the micro/molecular structure and
morphology of the synthesized flexible films. The intensities of the diffraction peaks and transmission
spectrum of the PVP/PVA gradually declined with the introduction of Bi-metal. In addition, filler
changes the microstructure surface of the pure film. The modification in the microstructure leads
to an enhancement in the optical absorption characteristic of the blend films. The indirect allowed
transition energy was calculated via Tauc’s and ASF (Absorption Spectra Fitting) models. The
decrease in the hybrid film’s bandgap returns to the localized states in the forbidden region, which
led the present films to be suitable for photo-electric, solar cell, etc., applications. The relation between
the transition energy and the refractive index was studied. The enhancement in the refractive index
with Bi-metal concentrations led to use the as-prepared films in optical sensors. The rise of Bi-
metal concentrations leads also to the improvement of the nonlinear susceptibility and refractive
parameters. The optical limiting characteristics revealed that the higher concentration dopant films
reduce the light transmission intensity which is appropriate for laser attenuation and optical limiting
in photonic devices. The results suggest that hybrid films are promising materials in a wide range of
opto-electronic applications.

Keywords: PVA/PVP; XRD/FTIR; SEM; optical absorption parameters; optical transition bandgap
(Eopt

gi ); optical limiting characteristic (OLC); L/NL optical parameters

1. Introduction

Polymer materials have fascinated scientists because they are safe, economical, plenti-
ful, and have eco-sustainable properties and extensive application in technical and scientific
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study. They can be used in optoelectronics, solar cells, UV-filters, coatings, photovoltaics,
light-emitting diodes (LEDs), laser production, as well as several other potential appli-
cations [1–5]. The synthesis and examination of various polymer blends recently had a
tremendous degree of concern. A polymer blend is a substance that combines two or
sometimes more polymers to improve the product’s behavior with appropriate properties.
It may have a distinct feature, enhancing the advantages of both additive polymers and
improving their desirable characteristics. Moreover, they are dependent on the miscibility
degree of the host polymers [6–9]. Their properties can be modified by adding different sub-
stances and particles [3–5]. Therefore, composites can be produced because the polymeric
materials create a miscible solvent of strong hydrogen bonding between the molecules of
the constituents [10].

Poly(vinyl alcohol) (PVA) [(C2H4O)n] is an exciting polymer due to its physical, chem-
ical, mechanical, and thermal characteristics. Moreover, PVA has particular features such as
semi-crystalline, adhesive properties, and water-soluble. It is suitable for a wide range of
scientific, biomedical, and technological applications [11–14]. However, another polymer
material such as poly (vinyl pyrrolidone) (PVP) [(C6H9ON)n] show biological compatibil-
ity, an amorphous structure, soft processing capability, good environmental stability, and
outstanding solubility, which make it suitable for a variety of applications such as optics
and photonics [2,6].

PVP and PVA are considered the famous and desired polymers as perfect and opera-
tive binders in the production of optical responsive materials employed in the designing of
sensor systems, optoelectronics, and organic electronic systems [12]. They are highly com-
patible thermodynamically. Their blend interrelates through hydrogen bonding between
the PVA’s hydroxyl (−OH) and the PVP’s carbonyl (C=O) groups. PVA and PVP polymer
solutions are the most widely used, economical, and easily accessible methods for creating
novel materials with advanced properties for promising optoelectronic applications [13].
The blend polymers with inorganic nano-dopants, metal salts, rare-earth ions, ceramic, or
other additives, can be an appropriate composite for several technological and industrial
fields [7]. Badawi et al. [2] examined the effect of tin sulfide (SnS) on the PVP/ PVA blend’s
physical properties. The concentration of SnS dopant influences the structural and optical
properties of the synthesized polymer composite films. However, Ali et al. [13] investigated
the optical properties of PVP/ PVA polymeric films loaded with lanthanum ions (La3+).
The participation of the La3+-ions results in substantial changes in such properties. PVP/
PVA: silver sulfide (Ag2S) composites, as described by Aziz et al. [14], have widespread
applications in optoelectronic and electronic devices, including photoconductive cells, solar
cells, and photodetectors.

Various polymer-metal composites were prepared using various techniques, and their
properties were investigated by several research groups [15–18]. Most of the previous work
concerns the study of metal oxide’s effect on the microstructure, mechanical, dielectric,
linear optical properties of blend composites [2,7,14,18]. Here, the influence of Bi-metal
percentage on the microstructural and morphology of PVA/PVP blend matrix was detailly
investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning
electron microscope (SEM). Then, the physio-chemical relation was observed by studying
the band gap, Urbach energy, absorption edge, refractive index—energy gap relation,
and nonlinear optical parameters for solar cell, sensors, and photoelectrical applications.
Moreover, for laser attenuation in photonic devices, the optical limiting of the films was
studied as a function of Bi-metal concentrations.

2. Experimental Details
2.1. Materials

Polyvinyl alcohol PVA [(C2H4O)n] with molecular weight (M.W. = 115,000 g/mol) and
polyvinyl pyrrolidone PVP [(C6H9ON)n] with M.W. = 40,000 g/mol were sourced from
Alfa aesar, Germany. Both have 4N purity and were used in powder form without extra
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purification. Bi-metal powder with 3N purity and molecular weight (M.W. = 208.98 g/mol)
was used as a dopant substance. It was received from LOBA Chemie.

2.2. Pure and Hybrid Films Preparation

Pristine PVA, PVA/PVP polymer blend, and composite polymer blend films with
Bi-metal powder concentrations of 0.001, 0.01, 0.05, and 0.1 g were prepared using the con-
ventional solution-casting method. First, each polymer’s solution was fabricated separately
by dissolving 45 g from PVP and PVP powders within 1 L of double distilled water (DDW).
Next, the 50%PVA/50%PVP mixtures were stirred at 90 ◦C for homogeneous, transparent,
and viscous solutions. After that, the blend solution was mixed with different weights of
Bi-metal and ultrasonically homogenous distributed with 60 mL of the blend for 2 min.
Finally, the weights of the polymer blend wb and the Bi-dopant wBi were used to calculate
Bi-metal’s dopant concentrations (x wt.%).

wBi(%) =
wBi

wBi + wb
× 100 (1)

The homogenous and final solutions were then poured on 80 mm Petri glass dishes.
The solutions were dried in a warmer furnace at 35 ◦C for three days to create fully
dried homogeneous and bubble-free polymer films. The produced polymer samples were
removed from the glass dishes and cut into 2 × 2 cm2 pieces that could be used for all
measurements. The final films have thickness with a 0.40 mm average. These films were
labeled: pristine PVA, PVA/PVP blend, PVA/PVP: 0.037 wt.% Bi (1Bi-blend), PVA/PVP:
0.37 wt.% Bi (2Bi-blend), PVA/PVP: 1.8 wt.% Bi (3Bi-blend), and PVA/PVP: 3.7 wt.%
Bi (4Bi-blend).

2.3. Experimental Techniques

Pieces of regular thickness polymer films were carefully placed on a specimen holder
of Shimadzu diffractometer (XRD-6000) (Kyot, Japan)-copper target (λCu-kα = 1.54108 Å). It
was working at a V = 40 kV and I = 25 mA. The samples’ examination was done in a range
of 10◦ ≤ 2θ ≤ 70◦ and rate 0.02/s to distinguish all phases formed in the polymer films.
6700 FTIR spectrometer was operated to evaluate the sample’s transmission spectra with
a resolution 4 cm−1. The synthesized polymer film’s surface morphology was analyzed
using a scanning electron microscope (SEM) (JSM-6360 model) (Peabody, MA, USA) at 10
kV operating voltage.

A double beam spectrophotometer (V-570 model—JASCO) (Easton, MD, USA) was
used to measure the pure and composite blend film’s optical transmission and absorbance
characteristics in the wavelength range of 200–1000 nm.

For optical limiting measurement, a sensitive laser power meter (Lab-Master Ultima,
COHERENT, Santa Clara, CA, USA) and lens of focal length 10 cm were set to detect
the output beam and focus the laser beam. In addition, He−Ne and green lasers with
constant energy (0.5 mW and 15.4 W) and wavelengths 632.8 and 533 nm, respectively,
were operated to show the influence of Bi content on the film’s absorption.

3. Results and Discussion
3.1. X-ray Diffraction (XRD) Investigation

The XRD pattern of pristine and Bi-blend composites can be seen in Figure 1. The
pattern of the PVA demonstrates two diffraction peaks at approximately 2θ = 20◦ and 41.7◦.
This is attributed to the semi-crystalline feature of the pristine PVA [9]. Due to the −OH
groups within the main matrix of PVA, it involves good intermolecular and intramolecular
hydrogen bonding [19]. However, the blend film’s pattern shows that the intensity of the
main crystalline peak of the PVA was considerably shifted to 19.86◦, and the broadest of the
bandwidth. This means the amorphous portion in the mixed sample is more significant than
that in the pristine PVA sample. It is known that PVP has an amorphous structure, which
is an appropriate polymer for various applications [20]. Therefore, the mixture between
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two polymers causes a reduction in PVA crystallinity and an amorphous increment in
the blend matrix. This demonstrates the better miscibility and connectivity between the
−OH groups of PVA and C=O of PVP groups [16]. Moreover, this decline becomes more
significant with Bi-metal content due to the disruption of particles in the crystalline portion
of the blend matrix, making the amorphous performance major in the composite/hybrid
films. Therefore, there is a direct correlation between the crystallinity degree and the peak
intensity, as recognized via El-Naggar and coauthors [21]. They noticed that the intensity of
PVA/PVP diffraction decreased with the increase in amorphous nature by adding filler. The
XRD pattern of Bi-nanoparticle shows reflection peaks corresponding to the rhombohedral
structure with space group R3m (#166). This diffraction was compatible with the file JCPDS:
44–1246 for pure Bi-metal [22,23]. The addition of a low ratio of Bi-particles to the blend
presented no specific peak relating to the crystal structure of the powder. However, the
composite’s crystallinity decrease suggests a complexation of Bi particles in the matrix
chains via the hydroxyl and carbonyl groups. By increasing the ratio of Bi-metal powder
to 3.7 wt.%, small peaks were found at 2θ = 27.32◦, 38.06◦, 39.70◦, 48.84◦, 56.18◦, 62.32◦,
and 64.5◦ related to the reflections from the crystallographic Bi-powder. The presence
of specifically distinguished peaks is due to the Bi-metal powder accumulation on the
polymer matrix at a high concentration. It was reported that the filler’s concentration
affected the crystallinity of the polymer material [24,25]. The XRD of PVA doped with
metal shows a decrease in the intensity of diffraction peaks of PVA [26]. This is related to
the growth of distortion and imperfection due to the strong interaction between the PVA
matrix and the metal. Herein, the peaks observed from the Bi-metal increased with the
concentration of bismuth in polymer, and the intensity of diffraction peaks from PVA/PVP
decreased, probably due to interaction between the Bi-particles and the hydrogen bond.
These observations are consistent with other prior research on PVA filled by CdSe quantum
dots and PVP/PVA doped with Pb(NO3)2 [27,28].
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The degree of crystallinity of the pure and composite films was estimated by fitting
their diffraction patterns of the main peak via Fityk 0.8.9 software (Figure 2). The crystalline
fraction (Xcryst.) was calculated using the next relation [29].

Xcryst. =
Acryst.

A(cryst.+amorph.)
% (2)
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Figure 2. Deconvoluted XRD patterns of pure and composite films.

Acryst. and A(cryst. + amoph.) represent the area under the crystalline and all curves. The
values are reported in Table 1. A significant decrease in crystallinity was observed in Bi-
blend composite films. However, for 4Bi-blend composite film, the crystallinity increased
again due to the presence of a high ratio of Bi-crystalline particles. This behavior was
reported in various studies of doping polymeric material with different fillers [30–32]. The
intensity of diffraction peaks of PVA decreased with increasing cobalt metal concentration,
probably due to interaction between the Co particles and the hydrogen bond [29]. This is
related to the growth of imperfection and distortion due to the strong interaction between
the PVA matrix and the metal. Herein, the peaks observed from the Bi-metal increased
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with the increasing concentration of bismuth in the polymer, and the intensity of diffraction
peaks from PVA/PVP decreased.

3.2. FTIR Investigations

FTIR spectroscopy is an effective widespread technique applied to acquire a broad
range of infrared spectra that describes and identifies the interactions of polymer matrix
with dopant materials [33]. Figure 3 illustrates FTIR transmission spectra over the range
4000–500 cm−1 of pristine PVA, PVP/PVA blend, and Bi-blend composites. The vibration
bands of PVA were centered at 3258, 2922, 1416, 1323, 1085, 917, and 839 cm−1 for −OH,
−CH, −CH2 bending, −CH2 waging, C–O, C−C, and −CH stretching vibrations, respec-
tively [8,10]. Moreover, the peaks located at 1647, 1375, and 1290 cm−1 match with C=O
stretching, −CH2 bending, and CH2 twisting or wagging vibrational modes of the PVP
chains, respectively [34,35]. Moreover, the band centered at 1495 cm−1 corresponds to the
characteristic vibration of C=N (pyridine ring) of PVP [36]. The intensity of such peaks
slightly decreased with the increase in Bi-metal powder concentration in the blend relative
to the pure films. This is similar to the result of the XRD study. Thus, it can be deduced
that the Bi-particles interact with the backbone chains of the hydroxyl groups in PVA and
carbonyl (C=O) groups in PVP [37]. PVA/PVP matrix feature dominates at a small Bi-metal
percentage, while the decrease in the intensity of the functional vibration groups in the
matrix reflects the strong interactions between the metal and the PVA/PVP matrix.
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3.3. Morphological Analysis

The surface morphology of the synthesized pure and hybrid films were investigated
using SEM. Pure and different Bi-contents loaded blend composite images are shown
in Figure 4a–d. The blend film has a homogeneous and smooth surface without cracks
(Figure 4a). These results are consistent with PVA/PVP blend film [2,12,32]. The bright
area on the surface of the composites is related to the Bi-particles that are randomly
distributed over the polymer blend surface. This induces a significant change in the surface
morphology of the PVA−PVP matrix. There is little agglomeration when the dopant
content increases to 3.7 wt.% [2Bi-blend] (Figure 4c). This agglomeration increased in
4Bi-blend film. These clusters are dispersed throughout the film’s surface, suggesting
proper polymer–particle interaction; the organic–inorganic components in the polymer
composites are compatible [38]. Thus, the hybrid film’s surface roughness increases with
the increase in concentration of Bi-metal. Adding high percentage of Bi-metal causes the
particles to agglomerate (as seen by SEM images) and more incident light to be absorbed or
reflected in the UV–Vis spectra.
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3.4. UV-Vis-NIR Spectroscopy
3.4.1. Optical Properties

The analysis of optical characteristics of the materials is a valuable method for in-
vestigating the band structure as well as the density of electronic states [36]. The optical
features of polymer blends often change when mixed with a filler [32]. The regular optical
measurement of pristine and Bi-blend hybrid samples was analyzed in the spectral range
200–1000 nm, as illustrated in Figure 5a,b. Figure 5a shows the highest transmission for
pristine PVA film (T%~95%). This optical transmission decreases to about 93.5% for the
pristine blend. This results from the mixture through inter-chain hydrogen bonding be-
tween PVA hydroxyl groups and PVP carbonyl groups. Therefore, the Bi-metal affects the
optical features of the blend matrix. The transmittance drops significantly in the UV-visible
region with the increase in Bi-metal powder to 3.7 wt.% in the PVA/PVP blend due to
the agglomeration of the particles at the surface. Thus, the incident light is absorbed or
dispersed and leads to a decrease in transmissions significantly [21,39]. The feature can
be considered a novel implementation for UV block and laser attenuation. In the pristine
PVA, tiny peaks at about 279 nm and 333 nm were noticed, indicating the presence of an
electronic movement from n to π* and π to π* electronic transitions [40]. However, this
peak is wholly disappeared in the pristine blend and Bi-blend samples. This result is well
matched with those of PVA/PVP filled with SnS nanocomposites [2].
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Regarding the optical absorption spectra in Figure 5b, the high absorption level was
improved by the 4Bi-blend film. The absorption edge of pristine and Bi-blend composites
moves to lower energy (higher wavelength) than pristine PVA film. Therefore, the bandgap
changes with Bi-metal in the blend, suggesting the complex interaction. This confirms the
creation of levels between VB and CB, leading to easy electron transfer throughout the
structure [41].

One of the significant parameters for investigating the variation of the polymer ma-
terial’s band structure is the absorption coefficient [42]. It offers valuable information
about the nature of the energy of the forbidden optical gap, which is exploited in all future
applications. The absorption coefficient (α) can be calculated from the absorption A(λ) and
the thickness of the synthesized films, d, by applying the Beer–Lambert law [43]:

α =
2.303× A(λ)

d
(3)

The variations of the α-spectra with the photon energy, hυ, are shown in Figure 6. The α
values for all films are evaluated within the range of 104 m−1. This suggests that the energy
required is sufficient to excite the electrons from LUMO (lowest unoccupied molecular
orbital) to HOMO (highest occupied molecular orbital) [44]. By extrapolating the sharp
part of the absorption graph to intersect the hυ axis at the point of α = 0, the absorption
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edge’s energy (Ee) could be calculated. Table 1 presents the values of the measured Ee of
the polymer samples. It is decreased from 5.25 eV of PVA to 5.01 eV for the blend after
combining with PVP representing the decrease in the optical gap of PVA [45]. This confirms
the significant interactions between PVA and PVP matrices. Moreover, the absorption
edges move to the lower energy direction (3.8 eV) by loading the Bi-powder (4Bi-blend).
This result matches with the XRD and FTIR performances of the composite films due to the
influence of Bi-metal percentage on the microstructure of the PVA/PVP matrix. This value
is close to those reported for PVA/PVP filled by Ce3+-ions [46].
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3.4.2. Urbach’s Tail Energy and Optical Energy Gap Calculations

The performance of several solid-state devices (emissive displays, integrated optical
circuits, optical sensors, etc.,) can be enhanced by applying a high refractive index coating
onto the sensing surface of the device (a regular change from the high refractive index of
the active circuitry to the low index of air permits light to be coupled more efficiently). The
refractive index of the materials varied with the change in the energy gap which is affected
by the localized states in the forbidden band. The change in the absorption coefficient
was contributed to the band tail (Urbach’s energy). The tail energy (Eu) value indicates
the defects and the disorder in the polymer matrix. It is located inside the prohibited
bandgap close to the valence and conduction band’s edges and describes the localized
states’ width [39]. Urbach proposed that this band tail is defined through the following
empirical relationship [17]:

lnα = lnβo +
hυ

Eu
(4)

where βo is constant. Urbach’s tail energy (Eu) was calculated by plotting the logarithm
values of the absorption coefficient (lnα) versus the photon energy (hυ), as shown in Figure 7.
By fitting the straight part of the graph, the inverse of its slope is the Eu values. It varies
between 0.973 and 3.007 eV for the Bi-embedded blend (Table 1). This value is higher than
that of PVA/PVP filled with 10 wt.% MWCNTs [34]. The variations of Eu with composition
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are related to the nature and the content of defects/disorders created in the prohibited gap.
These results are compatible with the results obtained from the structure study.
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Bi-blend hybrid films.

The electron transitions of the materials typically depend on the incident photon’s
energy, as suggested by Tauc’s law. The relationship between the α and the energy of the in-
cident photon (hυ) was calculated in the region of strong absorption using the formula [47]:

(αE)x = K
(

E− Eopt
g

)
(5)

K is the energy-independent band tail parameter and depends on the probability of
electronic transition between the valance and conduction bands. x is the power parameter
of transition type determined from the material’s nature, i.e., crystalline or amorphous. It
can be 2, 1/2, 2/3, and 1/3 for direct permitted, indirect permitted, direct prohibited, and
indirect prohibited transitions. The graphical relationship between (αE)x versus the photon
energy (E = hυ) is presented in Figure 8. The distinct straight segment that corresponds to
the material’s onset of absorption is observed in the graphs. By extrapolating this linear
part to the x-axis (photon energy), each material’s band gap Eopt can be specified.
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Here, all synthesized polymer films have values less than 106 m−1, describing the
indirect electron transport. For estimating the optical bandgap, we plot (αE)1/2 and (αE)2

against photon energy (hυ), as shown in Figure 8. The results are reported in Table 1. The
optical energy gap was reduced by raising the Bi-metal powder concentration to 3.7 wt.%
due to the increment of localized states (trapping centers). These states are close to the
valence and conduction bands, as they exponentially move into the prohibited band [48].
The result indicates that the PVA/PVP blend doped with Bi-metal is more effective than that
reported for those doped with SnS2/Fe nanoparticles [49]. The present flexible polymers
have effective optical performance.

Table 1. Absorption edge, Urbach energy, and optical bandgap of Bi-blend hybrid films.

Films Xc (%) Ee (eV) Eu (eV) Eopt
gi (eV)±±± 0.01

(Tauc’s Relation)
Eopt

gd (eV)±±± 0.001
(Tauc’s Relation)

Eopt
gi (eV)±±± 0.01

(ASF Method)

PVA 26.45 5.254 0.566 4.935 5.539 5.022
PVA/PVP blend 25.67 5.018 0.936 4.573 5.238 4.600

1Bi-blend 23.80 4.925 0.973 4.496 5.143 4.526
2Bi-blend 19.86 4.804 1.073 4.406 5.095 4.439
3Bi-blend 19.42 4.617 1.301 4.257 5.041 4.290
4Bi-blend 23.20 3.800 3.007 2.938 4.623 3.031

Blend: 0–5 wt.%
MWCNTs [34] − − 0.43–0.82 5.06–4.46 − −

Blend: 0–10 wt.%
SnS2/Fe [49] − − − 5.09–3.85 5.26–4.49 5.20–4.18

The type of electronic transitions, whether direct or indirect, can be distinguished
according to the absorption coefficient values (α). Electrons are supposed to be transported
directly if α > 106 m−1, and indirect for α < 106 m−1 [50]. Thus, another approach depending
on the fitting of the absorption spectra (ASF) model can be used to evaluate the optical
energy bandgap. This model is thickness-independent according to the relationship [51]:

A(λ) = D1λ

[
1
λ
− 1

λopt

]x−1
+ D2 (6)

D1 =
[
d(Eλ)x−1/2.303

]
K (7)

The forbidden optical gap Eopt
ASF (eV) was estimated by extrapolating the linear segment

of (Abs1/2/λ) − 1/λ plot to (Abs1/2/λ)= 0, as shown in Figure 9. Then, the optical band gap
was calculated by using the relationship: Eopt

ASF = 1240
λopt

. Finally, the Eopt
ASF value of each film
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was recorded in Table 1. The bandgap calculated by the ASF approach is almost close to
that from Tauc’s model.
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Figure 10 indicates a graphical relation between the indirect optical energy gap (Eopt
ASF)

versus the values of Urbach energy (Eu) for pristine and Bi-embedded blend. Thus, from
these two approaches, we can estimate the following linear fitting formula:

Eopt
ASF = 5.336− 0.778Eu (8)
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These observed results represent a typical attitude, since the bandgap reduction is
due to localized states at the prohibited band’s boundaries. For many polymer films, this
indirect attitude between Eopt and the Eu is indicated [52–54].

3.4.3. Extinction Coefficient and Refractive Index Investigations

The coefficient of extinction index (k) is the quantity of energy absorbed when the
electromagnetic radiation propagated through the material. It indicates the proportion of
light losses owing to the penetrating material’s absorption and dispersion per unit distance.
In addition, it depends on the structural defects and the amount of the material’s charged
particles. The study of this parameter is essential for future optoelectronic applications of
the materials under investigation. It is the imaginary component of the complex index of
refraction, n = n− ik, and evaluated in terms of α by using the relationship [55]:

k =
αλ

4π
(9)

The variation of k with the incident photon wavelength, λ, is shown in Figure 11. It is
observed that k-values are substantially reduced as the wavelength increases between 200
and ~340 nm and then become constant in the visible region for the pristine PVA, blend,
and blend films with lower Bi-dopant concentrations. Such low absorption index values are
due to the high optical transmission for these polymer films within this zone (UV-visible).
Furthermore, by increasing the Bi-dopant concentration to 3.7 wt.%, the k-values increased
because the optical absorption for those composites is improved [56]. A similar behavior
was observed for PVA/PVP blend doped with SnS2/Fe [49].
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Moreover, the index of refraction, n, is an essential parameter for using the materials
in the manufacturing of optical instruments, optoelectronic devices, optical switches, filters,
light-emitting diodes, modulation, and waveguides [57,58]. It would be relevant to the ion
electronic polarization and the local field within the optical substances [20]. Furthermore,
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there is a relation between their values and the energy gap, Eopt. According to their
significance in studying material’s band structures, these two essential parameters were
studied intensively. The energy gap is commonly evaluated by the electromagnetic wave
threshold absorption, while the transparency of the material is estimated utilizing the
refractive index. The n value was calculated depending on the optical bandgap as [59]:

n2 − 1
n2 + 2

= 1−
√

EASF
/

20 (10)

Table 2 summarizes the calculated refractive index of each model. The variation of
the n is related to the sample’s structural characterization (i.e., the optical bandgap). The
obtained values are higher than PVA/PVP with SnS [2], Ag2S [17], and SnS2Fe [49].

Table 2. Dielectric, L/NL optical parameters of Bi-blend hybrid films.

Films n ε∞ εo χ(1) (e.s.u.) χ(3)×××10−13 (e.s.u.) n2 ×××10−11

PVA 1.996 3.984 263.12 0.237 5.416 1.022
PVA/PVP blend 2.062 4.251 171.45 0.258 7.638 1.395

1Bi-blend 2.074 4.301 158.02 0.262 8.115 1.474
2Bi-blend 2.089 4.363 143.18 0.267 8.747 1.577
3Bi-blend 2.115 4.473 120.03 0.276 9.940 1.771
4Bi-blend 2.388 5.702 16.90 0.374 33.405 5.271

10%
SnS2/Fe-blend

[49]
1.750 5.039 − 0.040 4.1 × 10−16 1.25 × 10−14

Figure 12 demonstrates the variation of n with the bandgap, Eopt
ASF, for pristine and

Bi-blend hybrid films. By fitting the straight line, we can obtain a linear formula for the
as-prepared polymer films as follows:

n = 2.991− 0.201Eopt
ASF (11)
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The negative slope indicates that the refractive index behaves inversely with the energy
gap value.

The high (ε∞) and static-frequency (εo) dielectric constants are effective for various
electronic instruments. They are calculated based on the formulas [54]:

n =
√

ε∞ (12)

εo = −33.26876 + 78.61805Eopt − 45.70795E2
opt + 8.32449E3

opt (13)

Their values changed with the refractive indices and the optical energy gap, respec-
tively, as reported in Table 2. The result indicates the linear optical parameters changed
with the modification of the electronic structure of the blend by the Bi-metal content.

3.4.4. Nonlinear Optical Parameters

Nonlinear optics play a major role in many of the optical applications such as optical
signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors,
laser amplifiers, and many others. So, the calculation of nonlinear optical susceptibility
and refractive index is important as present in the present work. The characteristics of
nonlinear optical polymeric materials primarily depend on dopant concentration and host
polymer properties. High-value nonlinear optical materials are commonly required to
design various optoelectronic instruments [60]. Nonlinear material behavior is induced by
large radiation intensities, such as lasers [61]. This is due to the induced polarization (P)
and the applied electric field (E). Therefore, the nonlinear refractive index (n2), first-order
susceptibility (χ(1)), and higher-order susceptibility (χ(3)) of the as-prepared polymer films
must be examined. First, χ(3) can be determined using the following relation:

χ(3) = C
(

χ(1)
)4

(14)

where C = 1.7 × 10−10 esu, and χ(1) is determined by the known linear refractive index
(nav) using the formula:

χ(1) =
n2 − 1

4π
(15)

Therefore, it is possible to estimate the n2 value from the below relation:

n2 =
12πχ(3)

nav
(16)

The first-order χ(1) and nonlinear parameters (χ(3) and n2) are summarized in Table 2.
The larger values are observed for 3Bi-blend, as shown in Figure 13. At higher Bi-metal con-
centrations, more particles absorb extra electromagnetic waves, leading to high polarization
of the polymer films and an improvement in the nonlinear parameters. This means that as
the transition energy gap decreased, the nonlinear properties of the polymeric composite
enhanced. The present values of optical susceptibilities and n2 are higher than those doped
with SnS2/Fe [49]. Therefore, the as-prepared hybrid films could be used in nonlinear
optoelectronic devices.
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3.5. Optical Limiting Characterization

Optical limiters are devices made to filter the incident electromagnetic waves [14].
The protection of optical sensors and components from laser deterioration is one of the
most commonly used application fields of this effect [62,63]. Therefore, the output power
and normalized (output/input) power of two distinct laser sources (green and He-Ne
laser sources) with wavelengths of 533 nm and 632.8 nm, respectively, were operated
to investigate the optical limiting characteristics (OLC) for the films under examination.
Table 3 summarizes the optical limiting parameters for each source. Figure 14a indicates
that the values of the used source’s output powers are large for pristine PVA, blend, and
blend: 0–3.7 wt.% Bi polymer films. However, increasing the Bi-metal concentration in
the blend matrix to 3.7 wt.% reduces the output power from 317.5 to 14.2 µW and 19.6 to
4.57 mW, respectively, for lasers with 533 nm and 632.8 nm. Hence, the filler concentration
plays a significant role in the OLC. The variation in the output power values between the
two sources is due to the composite film’s reaction sensitivity to incident light. A sample
with greater Bi-metal nanopowder concentrations has more molecules per unit volume in
the blend matrix, which participates in the optical interactions during nonlinear absorption
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mechanisms [14]. Consequently, the OLC of polymer films is correlated with the sample’s
ability to absorb and scatter light. As shown in Figure 14b, the 3Bi-blend polymer sample
produced the lowest value of normalized power. Therefore, the sample can be used as an
optical limiting laser, since the light power is strongly attenuated.

Table 3. Optical limiting parameters for Bi-blend hybrid samples.

Films

He–Ne Laser of 632.8 nm
Io = 348.9 µW

Green Laser of 533 nm
Io = 20.06 mW

Output Power
(µW) ± 0.05

Normalized
Power (%)

Output Power
(mW) ± 0.05

Normalized
Power (%)

PVA 317.5 91.24 19.60 93.33
PVA/PVP blend 317.2 91.15 19.44 92.57

1Bi-blend 315.2 90.57 19.29 91.86
2Bi-blend 295.5 84.91 19.17 91.28
3Bi-blend 105.1 30.20 4.37 20.81
4Bi-blend 14.2 4.081 0.96 4.57
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4. Conclusions

Facile synthesized PVA/PVP polymeric composite films with different concentrations
of Bi-metal were prepared using the low-cost solution casting process. The (101) diffraction
peak of PVA is affected by PVP and the Bi-metal’s weight percentage, which indicates
a reduction in crystallinity. The morphological surface change was observed via SEM
with increasing Bi-metal concentration up to 3.7 wt.%. The optical absorption spectrum in
UV–Vis of the blend film was influenced by Bi-metal content in the matrix. The absorption
edge shifted from 5.254 eV to 3.8 eV, while the Urbach energy changed from 0.566 eV
to 3.007 eV, respectively. Therefore, there is a reduction in the energy required for the
electronic transition from VB to CB. The optical bandgap of the films reduced from 5.02 eV
for a pristine blend to 3.03 eV for Bi-blend. As a function of the energy bandgap values, the
refractive index increased from 1.99 to 2.38. The nonlinear χ(3) and n2 parameters results
and OLC of the films indicate that we can conclude that the Bi-embedded blend films are
promising materials for waveguides, aircraft windows, laser absorbers, nonlinear optical
applications, and optoelectronics.
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