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Abstract: In this paper we consider the initial–boundary value problem describing the motion of
weakly concentrated aqueous polymer solutions. The model involves the regularized Jaumann’s
derivative in the rheological relation. Also this model is considered with non-linear viscosity. On
the basis of the topological approximation approach to the study of hydrodynamics problems the
existence of weak solutions is proved. Also we consider an optimal feedback control problem for
this initial–boundary value problem. The existence of an optimal solution minimizing a given
performance functional is proved.
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1. Introduction

In the fluid dynamics theory the motion of an incompressible fluid with a constant
density can be described by the equations [1]:

∂v
∂t

+
n

∑
i=1

vi
∂v
∂xi

+ grad p = Div σ + f , (1)

div v = 0, (2)

where v(x, t) = (v1, . . . , vn) is an unknown velocity field of the fluid; p = p(x, t) is an
unknown pressure; f = f (x, t) is the external force; σ is an unknown deviator of the stress
tensor. The divergence Div σ of the tensor σ is the vector with coordinates( n

∑
j=1

∂σ1j

∂xj
,

n

∑
j=1

∂σ2j

∂xj
, . . . ,

n

∑
j=1

∂σnj

∂xj

)
.

System (1) and (2) describes the motion of all kinds of incompressible fluids. However,
it is incomplete. As a rule, the additional relation between the deviator of the stress tensor σ

and the strain rate tensor E(v) = (Eij(v))
i=1,...,n
j=1,...,n, Eij(v) =

1
2

( ∂vi
∂xj

+
∂vj

∂xi

)
. Such relations are

known as constitutive or rheological laws. Choosing a rheological relation we specify a type
of fluid (see [2]). Note that this relation should corresponds to the general requirements
for a mathematical model. The main of which are the maximum proximity of the results
obtained by this relation to the real fluid characteristics at the maximum simplicity of the
relation itself.

This paper is devoted to the viscoelastic fluids. The rheological relation for such type
of fluids is the following (see [3–6]):

σ = 2µE + 2κĖ . (3)
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Here µ > 0 is the fluid viscosity and κ > 0 is the retardation time.
The rheological relation of viscoelastic fluids always contain the time parameter.

From the mathematical point of view, it is possible to divide them into two groups: dif-
ferential (coupling the instantaneous stress values with velocity gradient of the fluid) and
integral (reflecting the dependence of the fluid stress from the prehistory of flow). In this
paper the first group of rheological relations are considered.

Note that the relation (3) contains time derivative of the strain rate tensor. Mathemati-
cal studies of this model started with consideration in rheological relation (3) the partial
derivative. This mathematical model (by analogy for the solid body model) received the
name: Voigt model and have been studied in detail (see, for example [7,8]). Then one began
consider the relation (3) with the total derivative. This model received the name of the
Kelvin–Voigt model. The mathematical investigation of an initial–boundary value problem
for this case is consider in many papers [9–12] and the solubility of the stationary case of
the problem under consideration is proved in [13,14]. The next investigations of this model
are connected with consideration in the relation (3) the objective derivative [15]. This leads
to the fact that this rheological relation does not depend on the observer, i.e., this relation
does not change under Galilean change of variables. The most general view of the objective
derivative has the regularized Jaumann’s derivative (see [16]):

DT(t, x)
Dt

=
dT(t, x)

dt
+ T(t, x)Wρ(t, x)−Wρ(t, x)T(t, x), (4)

Wρ(v)(t, x) =
∫
Rn

ρ(x− y)W(t, y) dy,

where ρ : Rn → R is a smooth function with compact support such that
∫
Rn

ρ(y) dy = 1

and ρ(x) = ρ(y) for x and y with the same Euclidean norm; W(v) = (Wij(v))
i=1,...,n
j=1,...,n,

Wij(v) =
1
2
(

∂vi
∂xj
−

∂vj

∂xi
) is the vorticity tensor. Note that the rheological law (3) with the

regularized Jaumann’s derivative is similar to a particular case of second grade fluids (e.g.,
see [17–19] and the bibliography therein). The weak solvability for this model is proved
in [20]. Trajectory, global and pullback attractors for this model are considered in [21].
And finally an optimal feedback control problem for this model is investigated in [22].

At the same time according to Stokes’ hypothesis the stress tensor at a point at a given
time is completely determined by the strain rate at the same point and at the same time.
However, this relationship does not imply any restrictions associated with linearity, but it
is believed that deformation occurring at some other point or at some other point in time
prior to the considered one does not affect the value of stresses. The latter circumstance is
taken into account in models of nonlinear viscoelastic media. The study of models with
nonlinear viscosity, on the one hand, makes it possible to significantly expand the class of
studied media, on the other hand, it significantly complicates the mathematical research of
such initial–boundary value problems (due to the complexity of the problem). Note that
many functions of nonlinear viscosity have been proposed in the literature. At this paper
we will consider some of the natural viscosity constraints for real fluids proposed by V.G.
Litvinov [23]:

µ = µ(I2(v)), (5)

where the tensor I2(v) is defined by the relation I2(v)2 = E(v) : E(v). Here we use the

notation A : B :=
n
∑

i,j=1
aijbij for arbitrary square matrices A = (aij) and B = (bij) of the

same order.
Professor V.G. Litvinov gave examples of such fluids and natural restrictions on the

viscosity of the fluid under consideration expressed via the properties of the function µ :
Rn → R. This function µ(s) must be continuously differentiable and satisfy the inequalities
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(µ1) 0 < C1 ≤ µ(s) ≤ C2 < ∞;
(µ2) −sµ′(s) ≤ µ(s) for µ′(s) < 0;
(µ3) |sµ′(s)| ≤ C3 < ∞.

Hereinafter, Ci denotes various constants. Conditions (µ1)− (µ3) have a clear physical
meaning. Condition (µ1) is connected with the existence of limit “Newtonian” viscosities
for real fluids;(µ2)− (µ3) express the law that the shift stresses grow together with the
deformation rates. Similar mathematical models with nonlinear viscosity have been consid-
ered in many papers (see, for example, Waele–Ostwald model, Norton–Hoff model, Sisko
model et al.). In general, many types of function µ have been proposed in the literature,
but most of them have been applied to the study of one–dimensional models. In the pa-
per [23] it is shown that the given restrictions on the function µ are natural for real fluids and
that the numerical results for this model is very close to the results of experimental studies.

Substituting the right–hand of (3) with nonlinear viscosity (5) and with the regularized
Jaumann’s derivative (4) for σ in Equations (1) and (2), we obtain

∂v
∂t

+
n

∑
i=1

vi
∂v
∂xi
− 2Div[µ(I2(v))E(v)]−κ ∂∆v

∂t
− 2κDiv

[
vk

∂E(v)
∂xk

]
−

−2κDiv
[
E(v)Wρ(v)−Wρ(v)E(v)

]
+ grad p = f , (t, x) ∈ (0, T)×Ω, (6)

div v = 0, (t, x) ∈ (0, T)×Ω. (7)

For the system (6) and (7) we consider the initial–boundary value problem with the
initial condition

v(x, 0) = v0(x), x ∈ Ω, (8)

and the boundary condition
v|∂Ω×[0,T] = 0. (9)

The obtained with such rheological relation mathematical model have to satisfy with
the experimental data. The experimental data for this mathematical model have been
also obtained. Obviously, if a small amount of polymer is added to the water, then the
viscosity and the density of the resulting solution practically does not change and remain
constant (in contrast to its rheological properties). It is fixed the reduction of friction
resistance due to polymer additives. In such fluids the equilibrium state is not established
immediately after a change in external conditions. It is established with some delay, which
is characterized by the value of the retardation time. This delay explained by the processes
of internal rearrangement. A group of scientists carried out experiments and proved that
these mathematical model describes the flow of weakly concentrated water solutions of
polymers, for example, solutions of polyethyleneoxide and polyacrylamid or solutions of
polyacrylamide and guar gum [24,25]. Therefore, the model considered in this paper is also
often called the model of aqueous polymers solutions motion.

Our aim is to investigate the weak solvability of this initial–boundary value problem
(6)–(9) describing the motion of weakly concentrated aqueous polymer solutions with
non-linear viscosity. Also we consider the existence of a feedback control problem for this
model and prove the existence of an optimal solution of the problem under consideration
minimizing a given bounded performance functional.

2. Preliminaries and Main Results

At the beginning we introduce some basic notations and auxiliary assertions.
Denote by C∞

0 (Ω) the space of smooth functions with compact supports in Ω and
values in Rn. Let V be the set {v ∈ C∞

0 (Ω), div v = 0} and let V0 and V1 be the closures of
V in L2(Ω) and W1

2 (Ω), respectively. We also use the space V2 = W2
2 (Ω) ∩V1.

We introduce a scale of space Vα, α ∈ R (see [26]). To do this, cosider the Leray
projection π : L2(Ω)→ V0 and the operator A = −π∆ defined on V2. This operator can
be extended to a closed self–adjoint operator in V0 (we denote the extension by the same
letter). The extended operator A is positive and has a compact inverse. Let 0 < λ1 6
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λ2 6 λ3 6 . . . 6 λk 6 . . . be the eigenvalues of A. By Hilbert’s theorem on the spectral
decomposition of compact operators, the eigenfunctions {ej} of A form an orthonormal
basis in V0. Put

E∞ =

{
v =

n

∑
j=1

vjej : vj ∈ R, n ∈ N
}

for the set of finite linear combinations of the vectors ej and define Vα, α ∈ R, by the
completion of E∞ with respect to the norm

‖v‖Vα =

(
∞

∑
k=1

λα
k |vk|2

)1/2

.

Note that this norm for α > − 1
2 is equivalent to the norm of space Wα

2 (Ω) (see [26])
and in the case of α equals 0,1,3 is equivalent to following norms

‖v‖V0 =
( ∫

Ω

v2(x) dx
)1/2

; ‖v‖V1 =
( ∫

Ω

(
∇v(x)

)
:
(
∇v(x)

)
dx
)1/2

;

‖v‖V3 =
( ∫

Ω

(
∆∇v(x)

)
:
(
∆∇v(x)

)
dx
)1/2

.

By 〈 f , v〉 we denote the value of a functional f ∈ V−α on a function v ∈ Vα. We will
need following two functional spaces E1 and E2:

E1 = {v : v ∈ L∞(0, T; V1), v′ ∈ L2(0, T; V−1)} with norm

‖v‖E1 = ‖v‖L∞(0,T;V1) + ‖v′‖L2(0,T;V−1) and

E2 = {v : v ∈ C([0, T], V3), v′ ∈ L2(0, T; V3)} with norm

‖v‖E2 = ‖v‖C([0,T],V3) + ‖v′‖L2(0,T;V3).

Weak solutions of the original initial–boundary value problem will be belong to
the space E1 and weak solutions of the approximation problem will be belong to the
space E2. Now we ready to define weak solutions to the problem (6)–(9). Assume that
f ∈ L2(0, T; V−1) and v0 ∈ V1.

Definition 1. A function v from the space E1 is called a weak solution to problem (6)–(9) if for any
ϕ ∈ V3 and almost all t ∈ (0, T) it satisfies the equality

∫
Ω

∂v
∂t

ϕ dx−
∫
Ω

n

∑
i,j=1

vivj
∂ϕj

∂xi
dx + 2

∫
Ω

µ(I2(v))E(v) : E(ϕ) dx +κ
∫
Ω

∇(∂v
∂t

) : ∇ϕ dx−

−κ
∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 ϕj

∂xi∂xk
dx−κ

∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 ϕj

∂xi∂xk
dx+

+2κ
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx = 〈 f , ϕ〉

and the initial condition v(0) = v0.

Our main result provides existence of weak solutions.

Theorem 1. Let Ω ⊂ Rn, n = 2, 3, be bounded domain with smooth boundary. Then for any
external force f ∈ L2(0, T; V−1) and initial condition v0 ∈ V1 there exists a weak solution of
problem (6)–(9).
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Proof of this Theorem is based on the topological approximation approach used for
studying mathematical problems of hydrodynamics (see [27,28]). First, we introduce a
family of auxiliary problems which depend on a small parameter ε > 0, obtain a priori
estimates for solutions, and on the base of the theory of topological degree for maps of the
Leray–Schauder type prove the existence of weak solutions to the auxiliary problem. Then,
we pass to the limit using appropriate estimates.

3. Approximating Problem

Assume that external force f ∈ L2(0, T; V−1) and initial condition v0 ∈ V3. We con-
sider the following auxiliary problem: find a function v ∈ E2 satisfies the initial condition
v(0) = v0, such that for any ϕ ∈ V3 and a.a. t ∈ (0, T) the equality holds

ε
∫
Ω

∇
(

∆(
∂v
∂t

)

)
: ∇(∆ϕ) dx +

∫
Ω

∂v
∂t

ϕ dx−
∫
Ω

n

∑
i,j=1

vivj
∂ϕj

∂xi
dx+

+2
∫
Ω

µ(I2(v))E(v) : E(ϕ) dx +κ
∫
Ω

∇
(

∂v
∂t

)
: ∇ϕ dx−κ

∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 ϕj

∂xi∂xk
dx− (10)

−κ
∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 ϕj

∂xi∂xk
dx + 2κ

∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx = 〈 f , ϕ〉.

Let us first give an operator statement of the problem under consideration. Consider
the following operators:

J : V3 → V−3, 〈Jv, ϕ〉 =
∫
Ω

vϕ dx, v, ϕ ∈ V3;

A : V1 → V−1, 〈Av, ϕ〉 =
∫
Ω

∇v : ∇ϕ dx, v, ϕ ∈ V1;

B1 : L4(Ω)n → V−1, 〈B1(v), ϕ〉 =
∫
Ω

n

∑
i,j=1

vivj
∂ϕj

∂xi
dx, v ∈ L4(Ω)n, ϕ ∈ V1;

B2 : V1 → V−3, 〈B2(v), ϕ〉 =
∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 ϕj

∂xi∂xk
dx, v ∈ V1, ϕ ∈ V3;

B3 : V1 → V−3, 〈B3(v), ϕ〉 =
∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 ϕj

∂xi∂xk
dx, v ∈ V1, ϕ ∈ V3;

B4 : V1 → V−3, 〈B4(v), ϕ〉 =
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx, v ∈ V1, ϕ ∈ V3;

N : V1 → V−1, 〈N(v), ϕ〉 = 2
∫
Ω

µ(I2(v))E(v) : E(ϕ) dx, v, ϕ ∈ V1;

D : V3 → V−3, 〈Dv, ϕ〉 =
∫
Ω

∇(∆v) : ∇(∆ϕ) dx, v, ϕ ∈ V3.

Since ϕ ∈ V3 is arbitrary in (3), this equality is equivalent to the following operator
equation:

Jv′ +κAv′ + εDv′ + N(v)− B1(v)−κB2(v)−κB3(v) + 2κB4(v) = f . (11)

Thus a weak solution of the approximating problem is a solution v ∈ E2 of operator
Equation (11) satisfying the initial condition v(0) = v0.
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We also define the following operators:

L : E2 → L2(0, T; V−3)×V3, L(v) =
(
(J +κA + εD)v′ + N(v), v|t=0

)
;

K : E2 → L2(0, T; V−3)×V3,

K(v) = (−B1(v)−κB2(v)−κB3(v) + 2κB4(v), 0).

Thus our auxiliary problem can be rewritten in the following way: find a function
v ∈ E2 satisfying the following operator equation:

L(v) + K(v) = ( f , v0). (12)

Now we need following properties of the operators

Lemma 1. The function Av belongs to L2(0, T; V−3) for any function v ∈ E2. Also the operator
A : E2 → L2(0, T; V−3) is compact and obeys the estimate:

‖Av‖L2(0,T;V−3) 6 C4‖v‖C([0,T],V1).

Lemma 2. For any function v ∈ L2(0, T; V3) the function Dv belongs to L2(0, T; V−3), the
operator D : L2(0, T; V3)→ L2(0, T; V−3) is continuous and obeys the estimate:

‖Dv‖L2(0,T;V−3) 6 ‖v‖L2(0,T;V3).

Lemma 3. For any function v ∈ L2(0, T; V3) the function (J +κA+ εD)v belongs to L2(0, T; V−3),
the operator (J +κA + εD) : L2(0, T; V3)→ L2(0, T; V−3) is continuous, invertible, and obeys
the estimate

ε‖v‖L2(0,T;V3) 6 ‖(J +κA + εD)v‖L2(0,T;V−3) 6 (C5 + ε +κC6)‖v‖L2(0,T;V3). (13)

Moreover, the inverse operator (J + κA + εD)−1 : L2(0, T; V−3) → L2(0, T; V3)
is continuous.

Lemma 4. For any function v ∈ L2(0, T; V−1) the function (J +κA)v belongs to L2(0, T; V−3),
the operator (J +κA) : L2(0, T; V−1)→ L2(0, T; V−3) is continuous and obeys the estimate:

C7‖v‖L2(0,T;V−1) 6 ‖(J +κA)v‖L2(0,T;V−3). (14)

Lemma 5. For any function v ∈ E2 the function B1(v) belongs to L2(0, T; V−3), the mapping
B1 : E2 → L2(0, T; V−3) is compact and obeys the estimate:

‖B1(v)‖L2(0,T;V−3) 6 C8‖v‖2
C([0,T],V1). (15)

Lemma 6. For any function v ∈ E2 the function Bi(v) belongs to L2(0, T; V−3), Bi : E2 →
L2(0, T; V−3), i = 2, 3, is compact and obeys the estimate:

‖Bi(v)‖L2(0,T;V−3) 6 C9‖v‖2
C([0,T],V1). (16)

Proofs of Lemmas 1–6 can be found, for example, in [10].

Lemma 7. The operator B4 has the following properties:

1. The operator B4 : V1 → V−3 is continuous and for any v ∈ V1 obeys the estimate:

‖B4(v)‖V−3 6 C10‖v‖2
V1 . (17)
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2. For any function v ∈ L4(0, T; V1) we have B4(v) ∈ L2(0, T; V−3) and the mapping B4 :
L4(0, T; V1)→ L2(0, T; V−3) is continuous.

3. For any function v ∈ E2 we have B4(v) ∈ L2(0, T; V−3) and the mapping B4 : E2 →
L2(0, T; V−3) is compact and obeys the estimate:

‖B4(v)‖L2(0,T;V−3) 6 C11‖v‖2
C([0,T],V1). (18)

Proof. (1) We start by estimating E and Wρ.

‖E(v)‖2
L2(Ω) =

n

∑
i,j=1
‖Eij(v)‖2

L2(Ω) 6 C12

n

∑
i,j=1

∫
Ω

(
∂vi
∂xj

+
∂vj

∂xi
)2 dx =

= C12

n

∑
i,j=1

∫
Ω

(
∂vi
∂xj

∂vi
∂xj

+ 2
∂vi
∂xj

∂vj

∂xi
+

∂vj

∂xi

∂vj

∂xi
) dx =

= C12

n

∑
i,j=1

[ ∫
Ω

∂vi
∂xj

∂vi
∂xj

dx− 2
∫
Ω

vi
∂2vj

∂xi∂xj
dx +

∫
Ω

∂vj

∂xi

∂vj

∂xi
dx
]
=

= C12

[ ∫
Ω

∇v : ∇v dx +
∫
Ω

∇v : ∇v dx
]
6 2C12‖v‖2

V1 .

Therefore, ‖E(v)‖L2(Ω) 6 C13‖v‖V1 .

‖(Wρ)ij(v)‖L2(Ω) 6 ‖(Wρ)ij(v)‖L∞(Ω) 6

6
1
2

sup
x∈Ω
|
∫
Ω

ρ(x− y)(
∂vi(t, y)

∂yj
−

∂vj(t, y)
∂yi

) dx| 6

6
1
2

sup
x∈Ω
|
∫
Ω

−∂ρ(x− y)
∂yj

vi(t, y) +
∂ρ(x− y)

∂yi
vj(t, y) dx| 6 ‖grad ρ‖L2(Ω)‖v(t)‖L2(Ω).

By definition, for any v ∈ V1, ϕ ∈ V3 we have

|〈B4(v), ϕ〉| =

∣∣∣∣∣∣
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx

∣∣∣∣∣∣ 6
6 C14

[
‖E(v)‖L2(Ω)‖Wρ(v)‖L2(Ω) + ‖Wρ(v)‖L2(Ω)‖E(v)‖L2(Ω)

]
‖∇ϕ‖C(Ω)n 6

C15‖v‖2
V1‖ϕ‖V3 .

This yields the estimate (17).
Now prove that the operator B4 continuous. For any vm, v0 ∈ V1 we have:
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∣∣∣〈B4(vm), ϕ〉 − 〈B4(v0), ϕ〉
∣∣∣ = ∣∣∣ ∫

Ω

(
E(vm)Wρ(vm)−Wρ(vm)E(vm)

)
: ∇ϕ dx−

−
∫
Ω

(
E(v0)Wρ(v0)−Wρ(v0)E(v0)

)
: ∇ϕ dx

∣∣∣ 6 C16

∣∣∣ ∫
Ω

E(vm)Wρ(vm)−

−Wρ(vm)E(vm)− E(v0)Wρ(v0) + Wρ(v0)E(v0) dx
∣∣∣‖ϕ‖V3 6

6 C16

∣∣∣ ∫
Ω

E(vm)
(

Wρ(vm)−Wρ(v0)
)
+
(
E(vm)− E(v0)

)
Wρ(v0)−

−Wρ(vm)
(
E(vm)− E(v0)

)
−
(

Wρ(vm)−Wρ(v0)
)
E(v0) dx

∣∣∣‖ϕ‖V3 6

6 C16

[
‖E(vm)‖L2(Ω)‖Wρ(vm − v0)‖L2(Ω) + ‖E(vm − v0)‖L2(Ω)×

×‖Wρ(v0)‖L2(Ω) + ‖Wρ(vm)‖L2(Ω)‖E(vm − v0)‖L2(Ω) + ‖Wρ(vm − v0)‖L2(Ω)×

×‖E(v0)‖L2(Ω)

]
‖ϕ‖V3 6 C17

[
‖vm‖V1‖vm − v0‖V1 + ‖vm − v0‖V1‖v0‖V1+

+‖vm‖V1‖vm − v0‖V1 + ‖vm − v0‖V1‖v0‖V1

]
‖ϕ‖V3 6

6 C18(‖vm‖V1 + ‖v0‖V1)‖vm − v0‖V1‖ϕ‖V3 .

Thus we get ∥∥∥B4(vm)− B4(v0)
∥∥∥

V−3
6 C18

(
‖vm‖V1 +

∥∥∥v0
∥∥∥

V1

)∥∥∥vm − v0
∥∥∥

V1
. (19)

Let the sequence {vm} ⊂ V1 converge to some limiting function v0 ∈ V1. Then the
continuity of the mapping B4 : V1 → V−3 follows from the previous inequality.

(2) Let v ∈ L4(0, T; V1). Then from (17) for almost all t ∈ (0, T) we get the estimate

‖B4(v)(t)‖V−3 6 C10‖v(t)‖2
V1 .

Squaring this estimate and integrating with respect to t from 0 to T, we get

T∫
0

‖B4(v)(t)‖2
V−3 dt 6 C2

10

T∫
0

‖v(t)‖4
V1 dt = C2

10‖v‖4
L4(0,T;V1).

This yields B4(v) ∈ L2(0, T; V−3).
Now prove that the continuity of the mapping B4 : L4(0, T; V1)→ L2(0, T; V−3).
Let the sequence {vm} ⊂ L4(0, T; V1) converge to some limit v0 ∈ L4(0, T; V1). Square

the inequality (19) and integrate with respect to t from 0 to T. Using the Hölder inequality,
we obtain∥∥∥B4(vm)− B4(v0)

∥∥∥
L2(0,T;V−3)

6 C2
18‖vm − v0‖L4(0,T;V1)×

×
(

4

∑
i=0

4!
i!(4− i)!

‖vm‖i
L4(0,T;V1)

∥∥∥v0
∥∥∥4−i

L4(0,T;V1)

) 1
4

.

We get that the left–hand side tends to zero. So we prove that B4 : L4(0, T; V1) →
L2(0, T; V−3) is continuous.

(3) Finally, to prove (3) part we use the following Theorem

Theorem 2 (Simon, [29]). Let X ⊂ E ⊂ Y be Banach spaces, the embedding X ⊂ E be compact,
and the embedding E ⊂ Y be continuous. Let F ⊂ Lp(0, T; X), 1 6 p 6 ∞. Suppose that for
any f ∈ F its generalized derivative in the space D′(0, T; Y) belongs to Lr(0, T; Y), 1 6 r 6 ∞.
Then, let
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1. the set F be bounded in Lp(0, T; X),
2. the set { f ′ : f ∈ F} be bounded in Lr(0, T; Y).

Then the set F is relatively compact in Lp(0, T; E) for p < ∞, and the set F is relatively
compact in C([0, T], E) for p = ∞ and r > 1.

In our case let

X = V3, E = V1, Y = V0,

F = {v : v ∈ L4(0, T; V3); v′ ∈ L2(0, T; V0)}.

We have the compact embedding V3 ⊂ V1. So why F is embedded into L4(0, T; V1)
compactly. Also we have

C([0, T], V3) ⊂ L4(0, T; V3), L2(0, T; V3) ⊂ L2(0, T; V0).

that gives us that E2 ⊂ F. Finally, we have

E2 ⊂ F ⊂ L4(0, T; V1)
B4−→ L2(0, T; V−3).

Here the first embedding is continuous, the second embedding is compact and the map-
ping B4 is continuous. Thus, for any function v ∈ E2 we see that the function B4(v) ∈
L2(0, T; V−3), and the mapping B4 : E2 → L2(0, T; V−3) is compact.

Now prove the estimate (18). By (17), the estimate

‖B4(v)(t)‖V−3 6 C10‖v(t)‖2
V1 .

holds for all t ∈ [0, T]. Squaring it and integrating with respect to t from 0 to T, we get

T∫
0

‖B4(v)(t)‖2
V−3 dt 6 C2

10

T∫
0

‖v(t)‖4
V1 dt 6 C2

10T‖v‖4
C([0,T],V1).

This yields the required estimate (18).

Lemma 8. If the function µ satisfies conditions (µ1)− (µ3) for any function v from C([0, T], V3)
the function N(v) belongs to L2(0, T; V−3). The map N : C([0, T], V3) → L2(0, T; V−3) is
bounded, continuous, monotone and the following inequality holds:

〈N(v), v〉 ≤ C19‖v‖4
C([0,T],V3) − C20, (20)

with constants C19 and C20 independent of v.

The proof of this Lemma can be found in [30].

Lemma 9. The operators L and K have the following properties

1. The operator L : E2 → L2(0, T; V−3)×V3 is invertible and the inverse operator is continuous.
2. The operator K : E2 → L2(0, T; V−3)×V3 is compact.

Proof. (1) To prove that the operator L is invertible it is sufficient to use Theorem 1.1
from [31] (Chapter 4). Since N : V1 → V−1 is continuous and monotone then all conditions
of this Theorem 1.1 are hold. Applying this Theorem 1.1 shows that for each ( f , v0) there
exists solution v ∈ L2(0, T; V3) and, hence, v ∈ E2. Thus, the operator L is inverse.
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(2) The complete continuity of the operator

K : E2 → L2(0, T; V−3)×V3,

K(v) = (−B1(v)−κB2(v)−κB3(v) + 2κB4(v), 0)

follows from the compactness of the operators A : E2 → L2(0, T; V−3) Lemma 1; B1 :
E2 → L2(0, T; V−3) Lemma 5; B2 : E2 → L2(0, T; V−3) Lemma 6; B3 : E2 → L2(0, T; V−3)
Lemma 6; B4 : E2 → L2(0, T; V−3) Lemma 7.

4. A Priori Estimate

Along with Equation (12) consider the following family of operator equations:

L(v) + λK(v) = λ( f , v0), λ ∈ [0, 1], (21)

which coincides with the Equation (12) for λ = 1.

Theorem 3. If v ∈ E2 is a solution of operator Equation (21) for some λ ∈ [0, 1], then the following
estimate holds:

ε‖v‖2
C([0,T],V3) 6 C21 + 2ε‖v0‖2

V3 , (22)

κ‖v‖2
C([0,T],V1) 6 C21 + 2ε‖v0‖2

V3 , (23)

where
C21 =

4T
κ ‖ f ‖2

L2(0,T;V−1) + 2‖v0‖2
V0 + 2κ‖v0‖2

V1 .

Proof. Let v ∈ E2 be a solution of (21). Then for any ϕ ∈ V3 and almost all t ∈ (0, T) the
following equation holds:

∫
Ω

v′(t)ϕ dx− λ
∫
Ω

n

∑
i,j=1

vi(t)vj(t)
∂ϕj

∂xi
dx + 2λ

∫
Ω

µ(I2(v(t)))E(v(t)) : E(ϕ) dx+

+ε
∫
Ω

∇
(
∆v′(t)

)
: ∇(∆ϕ) dx +κ

∫
Ω

∇
(
v′(t)

)
: ∇ϕ dx−

−λκ
∫
Ω

n

∑
i,j,k=1

vk(t)
∂vi(t)

∂xj

∂2 ϕj

∂xi∂xk
dx− λκ

∫
Ω

n

∑
i,j,k=1

vk(t)
∂vj(t)

∂xi

∂2 ϕj

∂xi∂xk
dx+

+2λκ
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx = λ〈 f (t), ϕ〉 (24)

Note that

∫
Ω

n

∑
i,j,k=1

vk(t)
∂vi(t)

∂xj

∂2 ϕj

∂xi∂xk
dx +

∫
Ω

n

∑
i,j,k=1

vk(t)
∂vj(t)

∂xi

∂2 ϕj

∂xi∂xk
dx =

= 2
∫
Ω

n

∑
i,j,k=1

vk(t)Eij(v)(t)
∂2 ϕj

∂xi∂xk
dx = −2

∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂ϕj

∂xi
dx−

−2
∫
Ω

n

∑
i,j,k=1

∂vk(t)
∂xk

Eij(v)(t)
∂ϕj

∂xi
dx = −2

∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂ϕj

∂xi
dx−

−2
∫
Ω

div v(t)
n

∑
i,j=1
Eij(v)(t)

∂ϕj

∂xi
dx = −2

∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂ϕj

∂xi
dx.



Polymers 2022, 14, 1264 11 of 23

Then (24) can be rewritten in the form∫
Ω

v′(t)ϕ dx− λ
∫
Ω

n

∑
i,j=1

vi(t)vj(t)
∂ϕj

∂xi
dx + 2λ

∫
Ω

µ(I2(v(t)))E(v(t)) : E(ϕ) dx+

+ε
∫
Ω

∇
(
∆v′(t)

)
: ∇(∆ϕ) dx +κ

∫
Ω

∇
(
v′(t)

)
: ∇ϕ dx+

+2λκ
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂ϕj

∂xi
dx + 2λκ

∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx =

= λ〈 f (t), ϕ〉.

Since the last equation holds for all ϕ ∈ V3, it holds for ϕ = v as well:

∫
Ω

v′(t)v(t)dx− λ
∫
Ω

n

∑
i,j=1

vi(t)vj(t)
∂vj(t)

∂xi
dx + 2λ

∫
Ω

µ(I2(v(t)))E(v(t)) : E(v(t)) dx+

+ε
∫
Ω

∇
(
∆v′(t)

)
: ∇(∆v(t)) dx +κ

∫
Ω

∇
(
v′(t)

)
: ∇v(t)dx+

+2λκ
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂vj(t)
∂xi

dx+

+2λκ
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇v dx = λ〈 f (t), v〉. (25)

We reduce the terms on the left-hand side of the Equation (25) in the following way:∫
Ω

v′(t)v(t)dx =
1
2

∫
Ω

∂(v(t)v(t))
∂t

dx =
1
2

d
dt

∫
Ω

v(t)v(t)dx =
1
2

d
dt
‖v(t)‖2

V0 ;

〈N(v), v(t)〉 = 2
∫
Ω

µ(I2(v))E(v) : E(v) dx ≥ C22

∫
Ω

E(v) : E(v) dx ≥ C22‖v‖2
V1 ;

ε
∫
Ω

∇
(
∆v′(t)

)
: ∇(∆v(t)) dx =

ε

2

∫
Ω

∂

∂t

(
∇(∆v(t)) : ∇(∆v(t))

)
dx =

=
ε

2
d
dt

∫
Ω

∇(∆v(t)) : ∇(∆v(t)) dx =
ε

2
d
dt
‖v(t)‖2

V3 ;

κ
∫
Ω

∇
(
v′(t)

)
: ∇v(t)dx =

κ
2

∫
Ω

∂

∂t

(
∇v(t) : ∇v(t)

)
dx =

κ
2

d
dt
‖v(t)‖2

V1 ;

∫
Ω

n

∑
i,j=1

vi(t)vj(t)
∂vj(t)

∂xi
dx =

1
2

∫
Ω

n

∑
i,j=1

vi(t)
∂
(
vj(t)vj(t)

)
∂xi

dx =

= −1
2

∫
Ω

n

∑
i,j=1

∂vi(t)
∂xi

vj(t)vj(t) dx = −1
2

∫
Ω

div v(t)
n

∑
j=1

vj(t)vj(t) dx = 0;

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇v dx =

1
2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
:

:
(
E(v) + W(v)

)
dx =

1
2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: E(v) dx+
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+
1
2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: W(v) dx =

1
2

n

∑
i,j,k=1

∫
Ω

(
Eij(Wρ)jkEik−

−(Wρ)jkEkiEji

)
dx +

1
2

n

∑
i,j,k=1

∫
Ω

(
Eij(Wρ)jkWik − (Wρ)kjEjiWki

)
dx =

=
1
2

n

∑
i,j,k=1

∫
Ω

Eij(Wρ)jkEik − Eij(Wρ)jkEik dx +
1
2

n

∑
i,j,k=1

∫
Ω

Eij(Wρ)jkWik−

−Eij(Wρ)jkWik dx = 0;

2
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂vj(t)
∂xi

dx =
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂vj(t)
∂xi

dx+

+
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk

∂vi(t)
∂xj

dx = 2
∫
Ω

n

∑
i,j,k=1

vk(t)
∂Eij(v)(t)

∂xk
Eij(v)(t)dx =

=
∫
Ω

n

∑
i,j,k=1

vk(t)
∂
(
Eij(v)(t)Eij(v)(t)

)
∂xk

dx = −
∫
Ω

n

∑
k=1

∂vk(t)
∂xk

n

∑
i,j=1
Eij(v)(t)× Eij(v)(t)dx =

= −
∫
Ω

div v(t)
n

∑
i,j=1
Eij(v)(t)Eij(v)(t)dx = 0.

Here we take into account that the strain-rate tensor E(v) is symmetric and tensors
Wρ(v) and W(v) are skew-symmetric. Hence the Equation (25) can be rewritten in the
following form:

1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V3 +
κ
2

d
dt
‖v(t)‖2

V1 + λC22‖v(t)‖2
V1 ≤ λ〈 f (t), v(t)〉.

Estimating of the right-hand side of the last equation from above as follows

λ〈 f (t), v(t)〉 6 λ|〈 f (t), v(t)〉| 6 λ‖ f (t)‖V−1‖v(t)‖V1 6 ‖ f (t)‖V−1‖v(t)‖V1 ,

and the left-hand side from below as follows

1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V3 +
κ
2

d
dt
‖v(t)‖2

V1 6

6
1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V3 +
κ
2

d
dt
‖v(t)‖2

V1 + λC22‖v(t)‖2
V1 ,

we see that

1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V3 +
κ
2

d
dt
‖v(t)‖2

V1 6 ‖ f (t)‖V−1‖v(t)‖V1 .

Integrating the last inequality with respect to t from 0 to τ, where τ ∈ [0, T], we obtain

1
2
‖v(τ)‖2

V0 −
1
2
‖v0‖2

V0 +
ε

2
‖v(τ)‖2

V3 −
ε

2
‖v0‖2

V3 +
κ
2
‖v(τ)‖2

V1−

−κ2

2
‖v0‖2

V1 6

τ∫
0

‖ f (t)‖V−1‖v(t)‖V1 dt.



Polymers 2022, 14, 1264 13 of 23

The right-hand side of the last inequality can be estimated in the following way:

τ∫
0

‖ f (t)‖V−1‖v(t)‖V1 dt 6 max
t∈[0,τ]

‖v(t)‖V1

τ∫
0

‖ f (t)‖V−1 dt 6

6 max
t∈[0,T]

‖v(t)‖V1

T∫
0

‖ f (t)‖V−1 dt 6
√

T max
t∈[0,T]

‖v(t)‖V1

 T∫
0

‖ f (t)‖2
V−1 dt


1
2

=

=
√

T‖v‖C([0,T],V1)‖ f ‖L2(0,T;V−1) 6
κ
4
‖v‖2

C([0,T],V1) +
T
κ ‖ f ‖2

L2(0,T;V−1).

Here we used the Hölder inequality and the Cauchy inequality:

bc 6
δb2

2
+

c2

2δ

for δ = κ
2 . Thus, we get

1
2
‖v(τ)‖2

V0 +
ε

2
‖v(τ)‖2

V3 +
κ
2
‖v(τ)‖2

V1 6

6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 .

Taking into account that
1
2
‖v(τ)‖2

V0 > 0, we have

ε

2
‖v(τ)‖2

V3 +
κ
2
‖v(τ)‖2

V1 6

6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 .

Hence, since‖v(τ)‖2
V3 and ‖v(τ)‖2

V1 are positive we get the estimates

ε

2
‖v(τ)‖2

V3 6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 ;

κ
2
‖v(τ)‖2

V1 6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 .

The right-hand side of the last two inequalities does not depend on τ. Therefore, we
can take the maximum with respect to τ ∈ [0, T] on the left-hand side:

ε

2
‖v‖2

C([0,T],V3) 6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 ;

κ
2
‖v‖2

C([0,T],V1) 6
T
κ ‖ f ‖2

L2(0,T;V−1) +
κ
4
‖v‖2

C([0,T],V1) +
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V3 +
κ
2
‖v0‖2

V1 .

This proves (22) and (23).

Theorem 4. If v ∈ E2 is a solution of operator Equation (21) for some λ ∈ [0, 1], it satisfies the
following estimates:

ε‖v′‖L2(0,T;V3) 6 C23, (26)

‖v′‖L2(0,T;V−1) 6
2C23

C8
. (27)

where
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C23 = C24‖ f ‖L2(0,T;V−1) + C29

(
C21 + 2ε‖v0‖2

V3

κ

)
+ νC30

√
C21 + 2ε‖v0‖2

V3

κ .

Proof. Let v ∈ E2 be a solution of the problem (21). Then it satisfies the following operator
equation

v′ +κAv′ + εDv′ + λN(v)− λB1(v)− λκB2(v)− λκB3(v) + 2λκB4(v) = λ f . (28)

Therefore, ∥∥v′ +κAv′ + εDv′
∥∥

L2(0,T;V−3) =

= ‖λ f + λB1(v)− λN(v) + λκB2(v) + λκB3(v)− 2λκB4(v)‖L2(0,T;V−3). (29)

The right-hand side of the inequality can be estimated in the following way:

‖λ f − λN(v) + λB1(v) + λκB2(v) + λκB3(v)− 2λκB4(v)‖L2(0,T;V−3) 6

6 λ‖ f ‖L2(0,T;V−3) + λ‖N(v)‖L2(0,T;V−3) + λ‖B1(v)‖L2(0,T;V−3)+

+λκ‖B2(v)‖L2(0,T;V−3) + λκ‖B3(v)‖L2(0,T;V−3) + 2λκ‖B4(v)‖L2(0,T;V−3) 6

≤ ‖ f ‖L2(0,T;V−3) + ‖N(v)‖L2(0,T;V−3) + ‖B1(v)‖L2(0,T;V−3)+

+κ‖B2(v)‖L2(0,T;V−3) +κ‖B3(v)‖L2(0,T;V−3) + 2κ‖B4(v)‖L2(0,T;V−3) 6

using the continuous embedding L2(0, T; V−1) ⊂ L2(0, T; V−3) and estimates (15), (16),
(18) and (20) we have

6 C24‖ f ‖L2(0,T;V−1) + C25‖v‖2
C([0,T],V1) + C26‖v‖C([0,T],V1)+

+2κC27‖v‖2
C([0,T],V1) + C28‖v‖2

C([0,T],V1) =

= C24‖ f ‖L2(0,T;V−1) + C29‖v‖2
C([0,T],V1) + C30‖v‖C([0,T],V1) 6

in view of a priori estimate (23)

6 C24‖ f ‖L2(0,T;V−1) + C29

(
C21 + 2ε‖v0‖2

V3

κ

)
+ C30

√
C21 + 2ε‖v0‖2

V3

κ .

Now using the estimate (13):

ε‖v′‖L2(0,T;V3) 6 ‖v′ +κAv′ + εDv′‖L2(0,T;V−3)

on the left-hand side of (29), we get the required inequality (26).
The estimate (27) is obtained in the following way. As above, v satisfies the Equation (28),

and, therefore,

‖v′ +κAv′‖L2(0,T;V−3) =

= ‖ − εDv′ + λ f + λB1(v)− λN(v) + λκB2(v) + λκB3(v)− 2λκB4(v)‖L2(0,T;V−3) 6

6 ε
∥∥Dv′

∥∥
L2(0,T;V−3) + ‖λ f + λB1(v)− λN(v) + λκB2(v) + λκB3(v)−

−2λκB4(v)‖L2(0,T;V−3) 6 ε‖v′‖L2(0,T;V3) + C23 6 2C23.

Thus, we get the estimate

‖v′ +κAv′‖L2(0,T;V−3) 6 2C23.
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From this inequality and from estimate (14):

C8‖v′‖L2(0,T;V−1) 6 ‖(J +κA)v′‖L2(0,T;V−3)

(27) follows.

Theorems 3 and 4 imply the following Theorem:

Theorem 5. If v is a solution of the operator Equation (21) it satisfies the following a priory
estimate:

‖v‖E2 6 C26 =

√
C21

ε
+ 2‖v0‖2

V3 +
C23

ε
. (30)

5. Existence Theorem for the Auxiliary Problem

Theorem 6. Let Ω ⊂ Rn, n = 2, 3, be bounded domain with smooth boundary and v0 ∈ V3,
f ∈ L2(0, T; V−1). Then there is a weak solution v ∈ E2 of the operator Equation (12).

Proof. The prove of this Theorem is based on the Leray–Schauder topological degree
theory for compact vector fields. If we consider the ball BR ⊂ E2 of radius R = C26 + 1
then all solutions of the family of Equation (21) will be in this ball by virtue of a priori
estimate (30).

We have the continuous operator L−1 : L2(0, T; V−3)×V3 → E2 and compact mapping

[−K(·) + ( f , v0)] : E2 → L2(0, T; V−3)×V3

(see Lemma 9). Thus, the mapping

G : [0, 1]× E2 → E2, G(λ, v) = λL−1[−K(v) + ( f , v0)]

is compact in (λ, v) (jointly in λ and v). In other word we have the compact vector field

Φ(λ, v) = v− G(λ, v).

Therefore, the Leray–Schauder topological degree degLS(Φ, BR, 0) is defined. By the
homotopy invariance and normalization condition of the degree we get

degLS(Φ(0, ·), BR, 0) = degLS(Φ(1, ·), BR, 0) = 1.

So why, the equation

v− L−1[−K(v) + ( f , v0)] = 0

and, therefore, the Equation (12) , and, therefore, the auxiliary problem, have a solution
v ∈ E2.

6. Proof of Theorem 1

Proof. Since the space V3 is dense in V1, there is a sequence (v0)m ∈ V3 converging to
(v0)∗ ∈ V1. If (v0)∗ ≡ 0, then put

(v0)m ≡ 0, εm =
1
m

.

But if ‖(v0)∗‖V1 6= 0, then ‖(v0)m‖V3 6= 0 if m is sufficiently large. Then we set εm =
1

m‖(v0)m‖2
V3

.
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Then the sequence {εm} converges to zero as m→ +∞. The following estimate holds:

εm‖(v0)m‖2
V3 6 1. (31)

By Theorem 6 for any εm and (v0)m there exists a weak solution vm ∈ E2 ⊂ E1 of the
approximation problem. Thus, each vm satisfies the equation

∫
Ω

v′m ϕ dx−
∫
Ω

n

∑
i,j=1

(vm)i(vm)j
∂ϕj

∂xi
dx + 2

∫
Ω

µ(I2(vm)E(vm) : E(ϕ) dx+

+εm

∫
Ω

∇
(
∆v′m

)
: ∇(∆ϕ)dx +κ

∫
Ω

∇v′m : ∇ϕ dx−

−κ
∫
Ω

n

∑
i,j,k=1

(vm)k
∂(vm)i

∂xj

∂2 ϕj

∂xi∂xk
dx−κ

∫
Ω

n

∑
i,j,k=1

(vm)k
∂(vm)j

∂xi

∂2 ϕj

∂xi∂xk
dx+

+2κ
∫
Ω

(E(vm)Wρ(vm)−Wρ(vm)E(vm)) : ∇ϕ dx = 〈 f , ϕ〉. (32)

and the initial condition

vm
∣∣
t=0(x) = (v0)m(x), x ∈ Ω. (33)

Since the sequence {(v0)m} converges in V1, it is bouned in the norm of V1. Therefore,

2‖(v0)m‖2
V0 + 2κ‖(v0)m‖2

V1 6 C27, (34)

where C27 is a constant which doesn’t depend on m.
Recall that the constant C21 from the inequality (23) depends on m :

C21 =
4T
κ ‖ f ‖2

L2(0,T;V−1) + 2‖(v0)m‖2
V0 + 2κ‖(v0)m‖2

V1 .

Hence, with the help of (34), it can be estimated in the following way:

C21 6
4T
κ ‖ f ‖2

L2(0,T;V−1) + C27 = C28. (35)

Thus, in view of inequalities (31) and (35) from (23) we get that

κ‖vm‖2
C([0,T],V1) 6 C28 + 2. (36)

Similarly from (31) and (35) with the help of inequalities (26) and (27) we get:

ε‖v′m‖L2(0,T;V3) 6 C24‖ f ‖L2(0,T;V−1) + C29

(
C28 + 2

κ

)
+ C30

√
C28 + 2

κ , (37)

‖v′m‖L2(0,T;V−1) 6
2C24

C8
‖ f ‖L2(0,T;V−1) + 2C29

(
C28 + 2
κC8

)
+

2C30

C8

√
C28 + 2

κ . (38)

Since the embeddings

C([0, T], V1) ⊂ L2(0, T; V1) and C([0, T], V1) ⊂ L∞(0, T; V1)

are continuous, it follows from (36) and (38) that without loss of generality (passing to a
subsequence if needed) we have
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vm ⇀ v∗ weakly in L2(0, T; V1) as m→ +∞;

vm ⇀ v∗ *-weakly in L∞(0, T; V1) as m→ +∞;

v′m ⇀ v′∗ weakly in L2(0, T; V−1) as m→ +∞.

Then by definition of weak convergence∫
Ω

µ(I2(vm))E(vm) : E(ϕ) dx →
∫
Ω

µ(I2(v∗))E(v∗) : E(ϕ) dx as m→ +∞, ϕ ∈ V3;

∫
Ω

v′m ϕ dx +κ
∫
Ω

∇v′m : ∇ϕ dx =
〈
(J +κA)v′m, ϕ

〉
→
〈
(J +κA)v′∗, ϕ

〉
.

as m→ +∞.
In view of the estimate (37) we have that εmv′m ⇀ u converges weakly in L2(0, T; V3).

On the other hand, for any χ ∈ D([0, T]), ϕ ∈ V5 we have

lim
m→∞

∣∣∣∣∣∣εm

T∫
0

∫
Ω

∇
(
∆v′m(t)

)
: ∇(∆ϕ) dxχ(t)dt

∣∣∣∣∣∣ = lim
m→∞

εm

∣∣∣∣∣∣
T∫

0

∫
Ω

∆v′m(t)∆
2 ϕ dxχ(t)dt

∣∣∣∣∣∣ =
= lim

m→∞
εm

∣∣∣∣∣∣
T∫

0

∫
Ω

∇
(
v′m(t)

)
: ∇
(

∆2 ϕ
)

dxχ(t)dt

∣∣∣∣∣∣ =
= lim

m→∞
εm lim

m→∞

∣∣∣∣∣∣
T∫

0

∫
Ω

∇
(
v′m(t)

)
: ∇
(

∆2 ϕ
)

dxχ(t)dt

∣∣∣∣∣∣ =
= lim

m→∞
εm lim

m→∞

∣∣∣∣∣∣
∫
Ω

 T∫
0

∇
(
v′m(t)

)
χ(t)dt

 : ∇
(

∆2 ϕ
)

dx

∣∣∣∣∣∣ =
= lim

m→∞
εm lim

m→∞

∣∣∣∣∣∣
∫
Ω

 T∫
0

∇vm(t)
∂χ(t)

∂t
dt

 : ∇
(

∆2 ϕ
)

dx

∣∣∣∣∣∣ =
= lim

m→∞
εm lim

m→∞

∣∣∣∣∣∣
T∫

0

∫
Ω

∇vm(t) : ∇
(

∆2 ϕ
)

dx
∂χ(t)

∂t
dt

∣∣∣∣∣∣ =
Since vm weakly converges to v∗ in L2(0, T; V1) (and, therefore, converges to v∗ in the sense
of distributions) the latter expression equals

=

∣∣∣∣∣∣
T∫

0

∫
Ω

∇v∗(t) : ∇
(

∆2 ϕ
)

dx
∂χ(t)

∂t
dt

∣∣∣∣∣∣ lim
m→∞

εm = 0.

Thus, by uniqueness of the weak limit we get

εm

∫
Ω

∇
(
∆v′m

)
: ∇(∆ϕ) dx → 0 as m→ +∞.

Using Theorem 2 we have the compact embedding

F = {v : v ∈ C([0, T], V1); v′ ∈ L2(0, T; V−1)} ⊂ C([0, T], L4(Ω)n).

Hence, taking into account estimates (36) and (38), we obtain

vm → v∗, strongly in C([0, T], L4(Ω)n) as m→ +∞. (39)
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Thus, we get

∫
Ω

n

∑
i,j=1

(vm)i(vm)j
∂ϕj

∂xi
dx →

∫
Ω

n

∑
i,j=1

(v∗)i(v∗)j
∂ϕj

∂xi
dx as m→ +∞.

For the remaining integrals we have

∫
Ω

n

∑
i,j,k=1

(vm)k
∂(vm)i

∂xj

∂2 ϕj

∂xi∂xk
dx →

∫
Ω

n

∑
i,j,k=1

(v∗)k
∂(v∗)i

∂xj

∂2 ϕj

∂xi∂xk
dx;

∫
Ω

n

∑
i,j,k=1

(vm)k
∂(vm)j

∂xi

∂2 ϕj

∂xi∂xk
dx →

∫
Ω

n

∑
i,j,k=1

(v∗)k
∂(v∗)j

∂xi

∂2 ϕj

∂xi∂xk
dx,

as m→ +∞. Indeed, here the sequence vm converges to v∗ strongly in C([0, T], L4(Ω)) and
∇(vm) converges to ∇v∗ weakly in L4(0, T; L2(Ω)). Thus, their product converges to the
product of their limits.

In the last term we have∣∣∣ ∫
Ω

(
E(vm)Wρ(vm)− E(v∗)Wρ(v∗)

)
: ∇ϕ dx

∣∣∣ =
=
∣∣∣ ∫

Ω

(E(vm)(Wρ(vm)−Wρ(v∗)) + (E(vm)− E(v∗))Wρ(v∗)) : ∇ϕ dx
∣∣∣ ≤

≤ ‖E(vm)‖L2(Ω)n2 ‖∇ϕ‖L2(Ω)n2 ‖Wρ(vm − v∗)‖L∞(Ω)n2+

+‖Wρ(v∗)‖L∞(Ω)n2

∣∣∣ ∫
Ω

E(vm − v∗) : ∇ϕ dx
∣∣∣ ≤

≤ C31

(
‖E(vm)‖L2(Ω)n2 ‖∇ϕ‖L2(Ω)n2 ‖vm − v∗‖L2(Ω)n+

+‖Wρ(v∗)‖L∞(Ω)n2

∣∣∣ ∫
Ω

E(vm − v∗) : ∇ϕ dx
∣∣∣) ≤

≤ C32

(
‖E(vm)‖L2(Ω)n2 ‖∇ϕ‖L2(Ω)n2 ‖vm − v∗‖L4(Ω)n+

+‖Wρ(v∗)‖L∞(Ω)n2

∣∣∣ ∫
Ω

E(vm − v∗) : ∇ϕ dx
∣∣∣).

As above we get that vm → v∗ strongly in C([0, T], L4(Ω)) and ∇(vm) ⇀ ∇v∗ weakly
in L4(0, T; L2(Ω)), we obtain∫

Ω

E(vm)Wρ(vm) : ∇ϕ dx →
∫
Ω

E(v∗)Wρ(v∗) : ∇ϕ dx as m→ +∞.

∫
Ω

Wρ(vm)E(vm) : ∇ϕ dx →
∫
Ω

Wρ(v∗)E(v∗) : ∇ϕ dx as m→ +∞.

Pass to limit in (32) as m→ +∞. We get a function v∗ satisfying
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〈
(J +κA)

∂v∗
∂t

, ϕ

〉
−
∫
Ω

n

∑
i,j=1

(v∗)i(v∗)j
∂ϕj

∂xi
dx + 2

∫
Ω

µ(I2(v∗))E(v∗) : E(ϕ) dx−

−κ
∫
Ω

n

∑
i,j,k=1

(v∗)k
∂(v∗)i

∂xj

∂2 ϕj

∂xi∂xk
dx−κ

∫
Ω

n

∑
i,j,k=1

(v∗)k
∂(v∗)j

∂xi

∂2 ϕj

∂xi∂xk
dx+

+2κ
∫
Ω

(E(v∗)Wρ(v∗)−Wρ(v∗)E(v∗)) : ∇ϕ dx = 〈 f , ϕ〉.

As we have a strong convergence (39) then we get that this obtained function v∗
satisfies the initial condition v∗

∣∣
t=0= (v0)∗. So, we prove Theorem 1.

7. Optimal Feedback Control Problem

In this section based on the topological approximation approach to mathematical
hydrodynamics problems we prove the existence of an optimal feedback control for the
(6)–(9) problem. First, we formulate the notion of a solution to the problem under consider-
ation and the main result of this section.

Consider the multi-valued mapping Ψ : E1 ( L2(0, T; V−1) as a control function. We
will assume that Ψ satisfies the following conditions:

(Ψ1) The mapping Ψ is defined on the space E1 and has non-empty, compact, convex
values;

(Ψ2) The mapping Ψ is upper semicontinuous and compact;
(Ψ3) The mapping Ψ is globally bounded, that is, there exists a constant M > 0 such that

‖Ψ(v)‖L2(0,T;V−1) := sup
{
‖u‖L2(0,T;V−1) : u ∈ Ψ(v)

}
≤ M for all v ∈ E1;

(Ψ4) Ψ is weakly closed in the following sense: if {vl}∞
l=1 ⊂ E1, vl ⇀ v0 , ul ∈ Ψ(vl) and

ul → u0 in L2(0, T; V−1) then u0 ∈ Ψ(v0).

For completeness, we give an example of such a multi-valued mapping. Let continuous
mappings fi : E1 → L2(0, T; V−1), i = 1, 2, . . . m satisfy the following conditions:

1. fi is globally bounded and makes a bounded set relatively compact;
2. fi—weakly closed, i.e., {vl}∞

l=1 ⊂ E1, vl ⇀ v0, fi(vl)→ u0 follows u0 = fi(v0).

We define a multimap with feedback U : E1 → L2(0, T; V−1) as:

U(v) =
{

u =
m

∑
i=1

λi fi(v) :
m

∑
i=1

λi = 1
}

.

It is easy to see that U satisfies all the conditions of the multi-valued mapping Ψ.
We will consider a weak formulation of the optimal feedback control problem for the

initial–boundary value problem (6)–(9). By feedback, we mean the following condition:

f ∈ Ψ(v). (40)

We will assume that the initial condition v0 belongs to the space V1.

Definition 2. A pair of functions (v, f ) ∈ E1 × L2(0, T; V−1) is called a weak solution to the
feedback control problem (6)–(9), (40) if it is for any ϕ ∈ V3 and almost all t ∈ (0, T) satisfies the
feedback condition (40), the identity
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d
dt

∫
Ω

vϕ dx−
∫
Ω

n

∑
i,j=1

vivj
∂ϕj

∂xi
dx + 2

∫
Ω

µ(I2(v))E(v) : E(ϕ) dx +κ d
dt

∫
Ω

∇v : ∇ϕ dx−

−κ
∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 ϕj

∂xi∂xk
dx−κ

∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 ϕj

∂xi∂xk
dx+ (41)

+2κ
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx = 〈 f , ϕ〉

as well as the initial condition
v(0) = v0. (42)

The first result of this section is the following Theorem:

Theorem 7. Let the mapping Ψ satisfy the conditions (Ψ1)–(Ψ4). Then there exists at least one
weak solution to the feedback control problem (6)–(9), (40).

Denote by Σ ⊂ E1 × L2(0, T; V−1) the set of all weak solutions of the problem (6)–(9),
(40). Consider an arbitrary functional Φ : Σ→ R, satisfying the following conditions:

(Φ1) There exists a number γ such that Φ(v, f ) > γ for all (v, f ) ∈ Σ.
(Φ2) If vm ⇀ v∗ in E1 and fm → f∗ in L2(0, T; V−1), then Φ(v∗, f∗) 6 lim

m→∞
Φ(vm, fm).

As an example of such a quality functional, consider:

Φ(v, f ) =
T∫

0

(‖v(t, ·)−U(t, ·)‖2
V1 + ‖ f (t, ·)− F(t, ·)‖2

V−1)dt.

Here U and F are given speed and external force.
The main result of this section is the following Theorem.

Theorem 8. If the mapping Ψ satisfies the conditions (Ψ1)–(Ψ4) and the functional Φ satisfies
the conditions (Φ1)–(Φ2), then the problem of optimal control with feedback (6)–(9), (40) has at
least one weak solution (v∗, f∗) such that Φ(v∗, f∗) = inf

(v, f )∈Σ
Φ(v, f ).

To prove these Theorems we at first consider the auxiliary problem with some small
parameter ε > 0: We need to find a pair of functions (v, f ) ∈ E2 × L2(0, T; V−1), satisfying
for any ϕ ∈ V3 and almost all t ∈ (0, T) the feedback condition (40), identity

∫
Ω

∂v
∂t

ϕ dx−
∫
Ω

n

∑
i,j=1

vivj
∂ϕj

∂xi
dx + 2

∫
Ω

µ(I2(v))E(v) : E(ϕ) dx +κ
∫
Ω

∇
(

∂v
∂t

)
: ∇ϕ dx+

+ε
∫
Ω

∇
(

∆(
∂v
∂t

)

)
: ∇(∆ϕ) dx−κ

∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 ϕj

∂xi∂xk
dx− (43)

−−κ
∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 ϕj

∂xi∂xk
dx + 2κ

∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕ dx = 〈 f , ϕ〉

and the initial condition
v(0) = v0. (44)

Using the operator treatment (12) we can reformulate our auxiliary problem in the op-
erator form. Thus, the problem of the existence of a feedback control for the approximation
problem is equivalent to the problem of the existence of a solution v ∈ E2 satisfying the
initial condition (44) of the following operator inclusion:
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L(v) + K(v) ∈ (Ψ(v), v0).

Let’s introduce the following operator: Y : E1 → L2(0, T; V−1) × V3; Y(v) =
(Ψ(v), v0). Then the problem of the existence of a solution (v, f ) ∈ E2 × L2(0, T; V−1)
of the approximation problem is equivalent to the problem of the existence of a solution
v ∈ E2 for next inclusion

v ∈ M(v), whereM(v) = L−1(Y(v)− K(v)). (45)

Since the operator L−1 is linear and continuous, and the operator K is compact, using
the conditions (Ψ1)–(Ψ2) we obtain that the multi-valued mapping M : E2 ( E2 is
compact and has non-empty, convex and compact values.

Consider also the following family of inclusions

v ∈ λM(v), (46)

where 0 ≤ λ ≤ 1.

Remark 1. Note that the left side of the operator inclusion (46) is exactly the same as the left side
of (21). Therefore, the following Theorem hold for operator inclusion:

Theorem 9. If v is a solution (46) for some λ ∈ [0, 1], then the following estimate holds for it:

‖v‖E2 6 C26 =

√
C21

ε
+ 2‖v0‖2

V3 +
C23

ε
. (47)

Theorem 10. The operator inclusion (45) has at least one solution v ∈ E2.

Proof. To prove this Theorem we use topological degree theory for multivalued vector
fields (see, for example, [32]). By virtue of the a priori estimate (47), all solutions of the
family of operator inclusions (46) lie in the ball BR ⊂ E2 of radius R = C26 + 1 centered at
zero. Hence v /∈ λM(v) for all (v, λ) ∈ ∂BR × [0, 1]. Using the degree homotopy invariance
property and the degree normalization property, we obtain

deg(I −M, B̄R, 0) = deg(I, B̄R, 0) = 1.

Since this degree is nonzero, there exists at least one solution v ∈ E2 of the operator
inclusion (45).

Since there exists a solution v ∈ E2 of the inclusion (45), it follows from the above
reasoning that the approximation problem has at least one solution v ∈ E2.

Using the results of Theorem 10, we completely repeat the proof of Theorem 1 with a
small change related with the right-hand side. Taking into account the a priori estimates
(36), (38) and the conditions (Ψ1)− (Ψ4), we can assume without loss of generality that
there exists f∗ ∈ L2(0, T; V−1) such that fm → f∗ ∈ Ψ(v∗) as m→ ∞. From this we obtain
that there exists v∗ ∈ E1 and f∗ ∈ L2(0, T; V−1) satisfying (40), (2) and (42) which completes
the proof of the Theorem 7.

From the Theorem 7 we get that the solution set Σ is not empty. Therefore, there exists
a minimizing sequence (vl , fl) ∈ Σ such that

lim
l→∞

Φ(vl , fl) = inf
(v, f ,)∈Σ

Φ(v, f ).

As before, using the estimate (47), without loss of generality and passing to a sub-
sequence if necessary, we can assume that vl ⇀ v∗ *-weakly in L∞(0, T; V1); vl → v∗ is
strong in L2(0, T; L4(Ω)); vl ⇀ v∗ is weak in L2(0, T; V−1); fl → f∗ ∈ Ψ(v∗) is strong in
L2(0, T; V−1) for m→ +∞.
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Whence, just as in the previous proof, we get N(vl) ⇀ N(v∗)weakly in L2(0, T; V−1); (I +
κA)v′l ⇀ (I + κA)v′∗ weakly in L2(0, T; V−3); B1(vl) → B1(v∗) strongly in L2(0, T; V−1);
B2(vl) ⇀ B2(v∗) weakly in L2(0, T; V−3); B3(vl) ⇀ B3(v∗) weakly in L2(0, T; V−3);
B4(vl) ⇀ B4(v∗) weakly in L2(0, T; V−3) for m→ +∞.

Passing to the limit in the relation

(J +κA)v′l + N(vl)− B1(vl) + εNv′l −κB2(vl)−κB3(vl) + 2κB4(vl) = fl ∈ Ψ(vl),

we get that (v∗, f ∗) ∈ Σ. Since the functional Φ is lower semicontinuous with respect to the
weak topology, we have

Φ(v∗, f ∗) ≤ inf
(v, f )∈Σ

Φ(v, f ),

which proves that (v∗, f ∗) is the required solution. This completes the proof of Theorem 8.

8. Conclusions

To summarize all calculations and proofs in this paper the mathematical model de-
scribing the motion of weakly concentrated water polymer solutions is investigated. This
model contained the objective Jaumann derivative in the reological relation. Also this
model is considered in the case on non-linear viscosity.

The main result of this paper is the solutions existence to initial–boundary value prob-
lem and to the feedback control problem for the mathematical model under consideration.
Also the existence of an optimal solution to the problem under consideration that gives a
minimum to a given bounded quality functional is proved. Results of this paper provide
an opportunity for the future investigation of this model. Author proposes the following
future research directions for the model under consideration—(1) the numerical analysis of
the obtained solutions; (2) the consideration of a turbulence case of this problem; (3) the
investigation of alpha-models for this problem and so forth.
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