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Abstract
Background/Objective: Diabetes mellitus (DM) remains a major global health challenge due to its chronic nature
and associated complications. Traditional diagnostic approaches, though effective, often lack the sensitivity required
for early-stage detection. Recent advancements in molecular biology have identified RNA molecules, particularly non-
coding RNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), as
promising biomarkers for diabetes. This review aims to explore the role of RNA-based biomarkers in the diagnosis,
prognosis, and management of diabetes, highlighting their potential to revolutionize diabetes care.
Method: A comprehensive literature review was conducted using electronic databases including PubMed, Scopus, and
Web of Science. Articles published up to 2024 were screened and analyzed to extract relevant findings related to RNA-
based diagnostics in diabetes. Emphasis was placed on studies demonstrating clinical utility, mechanistic insights, and
translational potential of RNA molecules.
Results: Numerous RNA species, particularly miRNAs such as miR-375, miR-29, and lncRNAs like H19 and MEG3, exhibit
altered expression patterns in diabetic patients. These molecules are involved in key regulatory pathways of glucose metabolism,
insulin resistance, and β-cell function. Circulating RNAs are detectable in various biofluids, enabling non-invasive diagnostic
approaches. Emerging technologies, including RNA sequencing and liquid biopsy platforms, have enhanced the sensitivity and
specificity of RNA detection, fostering the development of novel diagnostic tools and personalized therapeutic strategies.
Conclusion: RNA-based biomarkers hold significant promise in advancing early detection, risk stratification, and
therapeutic monitoring in diabetes care. Despite current challenges such as standardization and clinical validation, the
integration of RNA diagnostics into routine clinical practice could transform diabetes management, paving the way for
precision medicine approaches. Further research and multi-center trials are essential to validate these biomarkers and
facilitate their regulatory approval and clinical implementation.
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Introduction

Diabetes mellitus is a chronic metabolic disease that is
associated with elevated blood sugar concentrations due to
impaired insulin production or effectiveness.1,2 It is clas-
sified into two types. These two forms of the disease are
Type 1 diabetes mellitus (T1DM) and Type 2 diabetes
mellitus (T2DM).3,4 Gestational diabetes and other specific
types are also known, though they are less frequent.5

T1DM is an autoimmune disease in which the body’s
immune system attacks and destroys insulin-secreting beta
cells in the pancreas, resulting in a lack of insulin. It is a
condition most commonly diagnosed in children and ad-
olescents, but it can affect anyone at any age. Patients need
to take insulin for the rest of their lives in order to survive.6

T2DM is a condition characterized by insulin resistance
and insufficient insulin secretion.4 Obesity, physical in-
activity, and an unhealthy diet closely correlate with
T2DM, affecting more adults.7,8 Genetic factors also in-
fluence it.9,10 While insulin injections are the only way to
regulate blood sugar in T1DM, changes in diet, exercise,
and oral agents can treat T2DM, which is more
frequent.11,12 Unmanaged diabetes can lead to complica-
tions such as microvascular and macrovascular diseases,
increased susceptibility to infections, diabetic foot ulcers,
and skin conditions.13,14

Diabetes mellitus is a widespread health issue that af-
fects millions of people globally, with 537 million adults
affected globally. If the current trends persist, this figure
will reach 643 million by 2030 and 783 million by 2045,
according to current estimates.15 T2DM affects 90–95% of
the diabetes population, while T1DM is also on the rise,
especially in the developed world. Diabetes is one of the
most pressing health issues of the present time, which has
major implications for healthcare systems and demands
actions regarding prevention, early identification, and
management.16 A timely and correct diagnosis is critical to
managing and preventing related complications. The cur-
rent diagnosis of diabetes is primarily based on blood
glucose testing and glycated hemoglobin (HbA1c) levels.
However, these approaches’ limitations include reduced
sensitivity and specificity, especially in the initial stages of
the disease.17

RNA-based diagnostics present a revolutionary ap-
proach to the diagnosis of diseases and help in the iden-
tification of disease developments as well as the
development of individualised treatments.18 These diag-
nostics are based on the RNA patterns of gene expression,
which can better mirror the actual physiological conditions
and disease conditions than conventional biomarkers. The
specificity and opportunities for individualization that
RNA-based diagnostics present could transform diabetes
management, resulting in improved outcomes and lower
costs.19

Despite the great potential of RNA-based diagnostics in
the diagnostics field, unlocking their full potential requires
overcoming several issues. These include assessing the
specificity of RNA biomarkers, developing accurate and
reproducible diagnostic approaches, and addressing practical
scenarios such as affordability, availability, and compatibility
with routine clinic work.20 It is thus important and appropriate
to present a comprehensive review of RNA-based diagnostics
in diabetes care. This review will thus aim at offering a
detailed review of the current literature, the identified gaps,
and the potential future research directions. This way, it seeks
to close the gap between new molecular diagnostic devel-
opments and their implementation in diabetes care, with the
overall goal of enhancing patient care.

Methodology

Literature search

We conducted an extensive search in various databases,
such as PubMed, Google Scholar, Web of Science, and
Scopus. We used the following search terms: RNA bio-
markers, diabetes diagnosis, microRNAs, long non-coding
RNAs, messenger RNAs, diabetes monitoring, personal-
ised medicine, diabetes management, molecular diagnos-
tics, and clinical application. We limited the search to
English articles published between 2014 and 2024.

Inclusion and exclusion criteria

Inclusion criteria:

- Articles from peer-reviewed journals, well-controlled
clinical trials, and high-level review articles.

- Research that addresses the participation of RNA
molecules in the detection, assessment, and treatment
of diabetes mellitus.

- Scientific papers describing the use of RNA-based
diagnostics in the treatment of diabetes and the ad-
vantages and disadvantages of their application.

Exclusion criteria:

- Articles, editorials, and opinion columns that are not
published in scholarly journals.

- Other research that is not specific to the development
of RNA-based diagnostics for diabetes.

- Articles that have been published prior to the
year 2015

Data extraction

Relevant data were extracted from the selected articles,
including:
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- The specific form of RNA molecules that are dis-
cussed (for example, microRNA, long non-coding
RNA, or mRNA).

- Techniques employed for the identification and es-
timation of RNA.

- The role of RNA biomarkers in diagnostics and
prediction of the disease course.

- Clinical implications and uses in the management of
diabetes mellitus.

- Challenges and shortcomings observed in the studies.

Data analysis and synthesis

We synthesized the obtained data to identify the common
outcomes, directions, and shortcomings of the current
investigations. We grouped the articles based on the type of
RNA molecule involved, its role in diabetes management,
and the methods used. We compiled the data to provide a
comprehensive understanding of the current state of RNA
for diagnostic purposes in diabetes care. This approach
allows for a comprehensive and structured analysis of the
literature on RNA-based diagnostics in diabetes care, as
well as offering important suggestions for further research
and practical application.

Types of RNA molecules in
diabetes diagnostics

MicroRNAs (miRNAs)

MicroRNAs, or miRNAs, are short, non-coding RNAs
that usually have 18 to 25 nucleotides.21,22 They control
gene expression after transcription by attaching to
specific sequences in target mRNAs and stopping
translation or destroying the mRNA.23 Many research
studies have described certain miRNA signatures that
are characteristic of T1DM and T2DM. For instance,
miR-375 and miR-126.24,25 T1DM and T2DM dysre-
gulate the expression level of miR-375, which plays a
role in pancreatic beta-cell development and insulin
secretion.26 miR-126 is involved in endothelial function
and insulin action. Decreased levels are associated with
T2DM and its vascular complications.27 Molecular
markers, such as circulating miRNAs in the blood and
other biofluids, can be useful in the diagnosis of diabetes
and the assessment of its course.28 According to Ka-
malden et al.,29 miR-15 has a critical role in insulin
release in pancreatic β-cells and plays a role in retinal
damage during the development of type 2 diabetes.
According to Jimenez-Lucena et al.30 study, HbA1c and
circulating miRNA levels may function as predictive
biomarkers for the development of T2DM in individuals
with coronary heart disease.

Long non-coding RNAs (lncRNAs)

Long non-coding RNAs (lncRNAs) are defined as RNA
molecules containing more than 200 nucleotides and not
coding for proteins. They are also involved in controlling
gene expression at different levels, such as the modification
of chromatin, transcription, and post-transcription, though
not all lncRNA have a functional purpose.31 lncRNAs have
been found to be dysregulated in Type 2 Diabetes.32 For
instance, lncRNA H19 is connected with insulin resistance
and diabetic complications, including retinopathy and
nephropathy; thus, it can be useful in detecting and as-
sessing complications.33 Fan et al.34 Found that by sup-
pressing the expression of the vitamin D receptor, a
negative feedback loop involving H19/miR-675/
EGR1 contributes to diabetic nephropathy. LncRNA
metastasis-associated lung carcinoma transcript 1 (MA-
LAT1) is implicated in endothelial cell dysfunction and
inflammation in diabetes.35 Lorenzen and Thum36 suggest
that inhibiting MALAT1 expression can maintain normal
inflammatory factors like IL6 and TNF-a, thereby reducing
diabetes-related complications. LncRNA
MALAT1 activates the p38 mitogen-activated protein ki-
nase signalling pathway in diabetic cataract, hence pro-
moting oxidative stress and death of human lens epithelial
cells.37 Therefore, lncRNAs can help identify the risk and
timing of the development of diabetic complications.38

LncRNAs also change the expression related with path-
ways of oxidative stress, inflammation and fibrosis in di-
abetic complications.39 It is proposed that they have altered
levels in diabetic patients, and as such, are potential early
markers for the progression of diabetes.38,39 It is also
proposed that all lncRNAs possess tissue specificity, im-
plying that they may be specific to particular organs. They
may also communicate with other molecules, for example
microRNAs or proteins and can regulate the action of such
molecules. LncRNAs are implicated in epigenetic regu-
latory mechanisms such as DNA methylation and histone
modification.40 The said observations result in better
identification of developmental complications and corre-
sponding treatments that may minimize or halt compli-
cations at their earliest stages.39 Thus, regulating lncRNA
levels may represent a novel strategy for minimizing or
managing complications associated with Diabetes

Circular RNAs (circRNAs)

Circular RNAs (circRNAs) are a class of noncoding RNAs
that form a covalent closed loop structure, which is more
stable than linear RNAs.41 It can serve as a miRNA sponge,
regulate transcription, and bind RNA-binding proteins.42

CircRNAs are involved in gene regulation and are known
to play a role in diabetes development.43,44 They are stable
and easily available in body fluids, and thus, excellent
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candidates for non-invasive diabetes diagnosis and man-
agement.44 The insulin gene’s circRNA, ci-Ins2/ci-INS,
was discovered by Stoll and colleagues. It interacts with the
43-kDa TAR DNA-binding protein to control insulin re-
lease. The islets of rats and individuals with type 2 diabetes
have decreased levels of ci-Ins2/ci-INS.45

CircHIPK3 plays a role in insulin secretion and beta-cell
proliferation, while CircCAMSAP1 has implications for
insulin resistance and glucose homeostasis.46 Shan et al.47

reported that retinal vascular dysfunction in diabetes
mellitus is mediated by circHIPK3. CircHIPK3 regulates
pancreatic β-cell insulin production and insulin mRNA
levels, according to research by Stoll and colleagues.48

Knowledge of circRNA functions can be useful in eluci-
dating diabetes pathogenesis.

Messenger RNAs (mRNAs)

mRNAs are RNA molecules that transport genetic infor-
mation from DNA to the ribosome, facilitating the syn-
thesis of proteins.49 Changes in the levels of mRNA are
useful in determining the functional state of cells, espe-
cially pancreatic beta cells, in the case of diabetes.50 Most
importantly, changes in glucagon mRNA levels can rep-
resent alpha-cell function and glucose balance.51 The de-
velopment of glucagon physiology indicates that it is
involved in multiple physiological mechanisms that control
energy balance and glucose homeostasis.52 Gene expres-
sion studies on the mRNA populations in samples taken
from diabetic patients can reveal gene expression alter-
ations involved in the development of diabetes and its
progression.53 Therefore, the measurement of mRNA
levels can help evaluate the effectiveness of diabetes
monitoring and therapies.

Exosomal RNAs in diabetes diagnostics

Exosomes are small vesicles with a size ranging from 30 to
150 nm that are secreted by cells and contain molecules
such as RNA, proteins, and lipids.54 The RNA content of
exosomes reflects the cells in which they are located, so
studying them can aid diagnosis. Thus, exosomal RNAs
derived from blood can be useful for diagnosing diabetes
and its development and can be considered as potential
biomarkers.55 The functions of beta cells, insulin resis-
tance, and diabetic complications are associated with some
of the miRNAs in the exosomes.56 In diabetes, exosomal
lncRNAs and circRNAs are involved in the evaluation of
cellular stress and metabolic alterations.57 According to
Sun et al.59’s research, exosomes produced from human
mesenchymal stem cells reverse peripheral insulin resis-
tance and reduce β-cell death to mitigate type 2 diabetes
mellitus. Similarly, Sun et al.58,59 observed that in the islets
of streptozotocin-induced diabetic mice, exosomes from

β-cells reduced hyperglycemia and increased angiogenesis.
Thus, exosomal RNAs derived from blood or urine samples
of diabetic patients may be utilised as diagnostic and
prognostic markers of the disease. This can be helpful in
tracking the disease’s progression and treatment success.

Single-cell RNA sequencing (scRNA-seq)
in diabetes research

The Single-cell RNA sequencing (scRNA-seq) process in-
cludes capturing single cells, converting the RNA to com-
plementary DNA (cDNA), and then sequencing to obtain gene
expression patterns in cells.60 Some of the techniques include
droplet-based methods such as 10x Genomics, microfluidic-
based systems such as Fluidigm C1, and plate-based tech-
niques such as SMART-seq.61 scRNA-seq helps in the ex-
amination of gene expression at the single-cell level and
therefore captures cellular diversity.60 In diabetes research,
scRNA-seq has been applied to identify pancreatic islet cells,
their function in diabetic conditions, and the subpopulation of
beta cells.62 This technology helps in discovering new bio-
markers and the pathophysiology of beta-cell failure. scRNA-
seq is a technique that has recently transformed the study of
cellular heterogeneity and gene expression in individual cells.63

Conventional RNA sequencing gives an overall gene ex-
pression pattern for a population of cells, which may hide
important variations between cells.64 This disadvantage is
solved by single-cell RNA sequencing, which allows analysing
the gene expression of single cells and thus identifying cellular
heterogeneity and certain transcriptional states.65 Specifically,
scRNA-seq has been applied to study pancreatic islet cell
heterogeneity, the function of beta-cells in diabetes, the dis-
covery of new biomarkers, and the development of therapeutic
interventions.66 It is useful in establishing early markers of
beta-cell stress and dysfunction, disease progression, and
complications in the kidney and retinal cells.67 Table 1 below
indicate applications of single-cell rna sequencing (scRNA-
seq) in unraveling cellular mechanisms of diabetes.

The limitations or challenges of using
single cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is a powerful
tool for studying gene expression at the single-cell level,
but it comes with several limitations and challenges90,91:

High cost and technical complexity

scRNA-seq is costly mainly because it needs expensive
instruments, chemicals, and computation facilities. This
includes steps that include cell isolation, RNA capture and
sequencing which are time consuming, technical and needs
optimization.91
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Low RNA quantity

In individual cells, RNA is in relatively limited availability;
hence, it can be difficult to acquire well-defined responses.
Therefore, new amplification steps are needed, but these
are often accompanied by biases and noise.

Dropout events

Dropout is defined as the inability of an experimental
technique to identify RNA transcripts that are actually
present in a cell at a given time. This is a well-known
problem for scRNA-seq, where lowly expressed genes are

often not detected but identification of their absence may
provide misleading information.92

Batch effects

Inter-sample or inter-run variation can generate batch ef-
fects disrupting the differentiation of biological contrasts.
This, in turn, entails appropriate design of experiments and
normalisations of acquired data properly.

Cell heterogeneity

Analysed samples include scRNA-seq which is used to
produce big data from different cell types yet the data is

Table 1. Applications of single-cell RNA sequencing (scRNA-seq) in unraveling cellular mechanisms of diabetes.

S/
N Example of study Outcome

Success/
failure Current state Reference

1 Identification of islet cell subtypes
using scRNA-seq in T1D
patients

Uncovered rare cell populations
involved in autoimmunity

Success Currently applied to identify
cellular heterogeneity in islets

68,69

2 Mapping β-cell heterogeneity in
T2D

Revealed different β-cell functional
states contributing to insulin
dysfunction

Success Ongoing studies linking β-cell
heterogeneity to T2D
progression

70,71

3 scRNA-seq of immune cells in
pancreatic islets

Identified immune cells infiltrating
islets and their activation states

Success Being utilized to study immune
cell contributions in diabetes

72,73

4 scRNA-seq of adipose tissue
macrophages

Showed altered macrophage
phenotypes contributing to insulin
resistance

Success Continued research on targeting
macrophage phenotypes

74,75

5 Profiling of liver cells in diabetic
patients

Identified dysregulated hepatocytes
and immune cell interactions

Success Applied to study liver dysfunction
in metabolic diseases

76,77

6 Study on α-cell plasticity in
diabetes

Discovered α-cell conversion to β-cell-
like cells in certain conditions

Success Under investigation for
therapeutic α-to-β cell
conversion

60,78

7 Single-cell analysis of pancreatic
ductal cells

Highlighted potential regenerative
roles of ductal cells in diabetes

Success Research focused on enhancing
ductal cell regeneration

68,73

8 Analysis of mesenchymal stem
cells in diabetic mice

Identified molecular markers for stem
cell differentiation into insulin-
producing cells

Success Potential future application in
stem cell therapy for diabetes

79,80

9 scRNA-seq in gestational
diabetes

Revealed pregnancy-specific β-cell
adaptations and dysfunctions

Success Being used to understand
diabetes during pregnancy

81,82

10 Endothelial cell profiling in
diabetic complications

Discovered endothelial cell subtypes
linked to diabetic retinopathy

Success Research expanding to other
vascular complications in
diabetes

83,84

11 Comparative scRNA-seq of
mouse and human islet cells

Identified species-specific differences
in islet cell responses

Success Data being integrated to
improve translational diabetes
models

68,82

12 Profiling tregs in diabetic
patients

Showed impaired treg function
contributing to islet inflammation

Success Used for immunotherapy
targeting in diabetes

69,85

13 scRNA-seq of skeletal muscle
cells in diabetes

Revealed altered muscle cell responses
contributing to insulin resistance

Success Studies ongoing for therapeutic
interventions targeting
muscles

78

14 Study on β-cell dedifferentiation
in diabetes

Identified pathways leading to β-cell
failure and dedifferentiation

Success Investigations on re-
differentiation therapies

86,87

15 scRNA-seq in diabetic
nephropathy

Identified new glomerular cell types
contributing to kidney damage

Success Used for understanding kidney
complications in diabetes

88,89
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challenging to analyse due to complexity in biological
samples. It always poses a challenge to distinguish between
biological variation and noise sources.

Data processing and interpretation

scRNA-seq data analysis and subsequent interpretation
processes involve some complex computations which can
only be handled by experts in computational biology. The
data generated can sometimes be huge and requires strong
computational processing, normalization and visualization.

Cell isolation and viability

Single cell sorting may adversely affect the cells or change
their transcriptional profiles which may in turn affect the
outcome. Also, some cells are hypothesized to be more
sensitive or harder to capture and hence impacts the nature
of cells that are measured.90

Limited spatial information

Current scRNA-seq approaches do not incorporate any
information about the spatial position of the cells in the
tissue. This has hampered analysis of cell – cell interactions
and tissues organization although new technologies such as
spatial transcriptomics are gradually filling this gap.

Technical artifacts

Sequencing and library preparation processes themselves
can generate artifacts such as overexpression of specific
transcripts which makes the results biases.

RNA-based monitoring of glycemic
control

Glycemic control is an essential component of diabetic
mellitus care to prevent complications using blood glucose
level regulation.13 Widely used tests such as HbA1c,
fasting blood glucose, and continuous glucose monitoring
(CGM) have their own limitations. Other techniques that
are based on RNA, for instance, miRNA and mRNA, can
enhance the conventional approaches by providing real-
time information on glucose and insulin functions.93 They
are able to assess fluctuations in glucose concentrations and
any abnormalities in glucose regulation. During hyper-
glycemia, characterized by high intracellular glucose
levels, the expression of certain RNA molecules rises to
promote insulin release or glucose absorption. Conversely,
RNA-mediated responses during hypoglycemia may
stimulate glucose synthesis or inhibit insulin secretion.94–96

They are associated with pancreatic β-cell development and

insulin secretion function, and the levels of miRNAs have
been shown to be associated with the function of β-cells
and glycemic control.97

LncRNAs are implicated in insulin resistance and di-
abetic complications, and the levels of their expression
correlate with glucose metabolism and insulin sensitivity.98

Therefore, lncRNAs can contribute to the regulation of
blood glucose fluctuations and long-term glycemic control,
and they may also have the potential to improve insulin
sensitivity and glucose management.99 circRNAs can act as
miRNA sponges, regulate transcription, and perform other
processes with RNA-binding proteins.100 As a result, they
are potential biomarkers for the long-term and sensitive
evaluation of glycemic control, and they describe the ways
and means of glucose metabolism regulation.

circRNAs are involved in glycemic regulation since
they act as miRNA sponges thus modulating the activity of
specific miRNAs that appear to impact on genes.101

Specifically, these circRNAs alter the pathways in insu-
lin secretion, insulin sensitivity, glucose transport and
utilization. These also modulate β-cell function a process
that plays a very sensitive role in the secretion of insulin.46

It has been identified that CirRNAs have the potential to be
biomarkers of glycemic control, because they are stable
molecules present in body fluids, such as blood, and their
detection does not require invasive procedures.46 They can
also be used to assess short-term glycemic fluctuations or
long-term glycemic control for providing prognostication
about complications arising out of diabetes.43 Some
circRNAs are involved in the development of insulin re-
sistance; therefore, enhancing or suppressing the expres-
sion of the circRNAs can enhance insulin sensitivity of the
cells. The potential of circRNA-based treatments could be
examined; one idea is to create synthetic circRNAs to
replace the disrupted circRNAs or use small molecules to
block the binding of circRNAs to their targets.

RNA-based monitoring of glycemic control has draw-
backs, such as a lag in reflecting glucose levels, the impact
of haemoglobin variations, and the absence of real-time
data. HbA1c, a form of glycated haemoglobin, indicates
blood glucose regulation during the preceding 2-3 months,
although it is not effective for monitoring daily varia-
tions.102 Fasting Blood Glucose (FBG) provides a single
measurement but fails to reflect glucose regulation
throughout the course of the day. Transient variables such
as dietary modifications, physical activity, stress, sickness,
and sleep may skew FBG values. FBG is reactive to in-
stances of hypoglycemia outside the fasting interval.
Continuous Glucose Monitoring (CGM) necessitates
sensor calibration, introducing inaccuracies, and exhibits a
lag time of 10–15 min, particularly during glycaemic
swings.103,104 Implantable continuous glucose monitoring
(CGM) is less expensive than continuous subcutaneous
glucose monitoring (SCGM) but remains unaffordable for
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some patients, particularly in poor nations. These con-
straints underscore the need for a focused strategy in an-
alysing glucose monitoring data.

RNA-based diagnostics for diabetic foot
ulcers

A diabetic foot ulcer (DFU) is a persistent wound that does
not heal, affects the quality of life of diabetic patients, and
can become complicated and result in amputations. Current
diagnostic approaches, such as clinical assessment and
imaging, have several limitations and fail to show the
necessary level of sensitivity and specificity for the iden-
tification and tracking of DFUs.105 RNA-based diagnostics
are a promising concept as they rely on the stability and
specificity of RNA molecules to understand the molecular
processes of DFU development and progression.106

New RNA-based diagnostic approaches, including
microRNA (miRNA), long non-coding RNA (lncRNA),
and circular RNA (circRNA), have shown potential for
enhancing the diagnosis and prognosis of DFUs.107

MiRNAs control gene expression at the post-
transcriptional level and are found to be downregulated
in DFUs, thus suggesting poor angiogenesis and wound
healing.108 It has been reported that altered levels are found
in DFUs and are related to chronic inflammation and poor
healing of DFUs.109 DFUs are associated with low levels of
miR-15b, miR-21, and miR-146a, all of which are im-
plicated in angiogenesis, inflammation, and cell prolifer-
ation.110 These downregulations can cause effects such as
inhibition of angiogenesis, inflammation, and delayed
healing. Circulating miRNAs can be used as biomarkers for
the early diagnosis and assessment of DFUs, and certain
miRNA signatures can be used to predict the chances of
healing and the chances of complications.111 It has been
proven that lncRNAs can participate in gene expression in
different ways, and it has been postulated that controlling
dysregulated lncRNAs could be beneficial in the en-
hancement of wound healing.112 Excessive MALAT1 and
H19 expression linked to chronic wound pathology, cell
proliferation, and migration is reported to be connected
with the formation of DFUs.113 These lncRNAs may act as
diagnostic markers and therapeutic targets, thus helping to
heal wounds and discover new treatments.114 The altered
levels are associated with impaired wound healing in the
DFUs, while the dysregulated expression is associated with
chronic inflammation and a slow healing rate.115 CircRNA-
HIPK3 and CircRNA-FOXO3 regulate cell proliferation
and migration in DFUs and, thus, the wound healing
process. If left unchecked, it leads to inflammation and poor
healing of the tissues.116 CircRNAs have the potential to be
used as diagnostic markers, help in monitoring the pro-
gression of DFUs, and may provide some insights into the

molecular mechanisms that underlie DFU development.117

Understanding the functions of circRNA can contribute to
the understanding of the molecular mechanism of DFU
development, and treat.

RNA interference (RNAi) for
treatment monitoring

RNA interference (RNAi) is a gene regulation mechanism
in which RNA molecules inhibit gene expression, usually
by mediating the degradation of target mRNA.118,119 This
mechanism has been understood to be very efficient in the
management and even prevention of various diseases, such
as diabetes mellitus.120 Glycemic control is vital in the
management of diabetes in order to avoid other compli-
cations that include cardiovascular diseases, neuropathies,
nephropathies, and retinopathies. Through the manipula-
tion of genes related to insulin production, insulin sensi-
tivity, and inflammation, RNAi can modulate the
manifestation of diabetes.121

RNAi has several steps, including dicer processing,
loading of the RNA-induced silencing complex, and target
recognition and cleavage. The guide strand directs the RNA-
induced silencing complex to bind to the complementary
mRNA, which stops translation of the mRNA.122 RNAi can
be used to treat diabetes through gene knockout.123 SiRNA
regulates the insulin gene, influencing the enzymes involved
in pro-insulin synthesis. This may help raise the secretion of
insulin in pancreatic beta cells.124 SiRNA, which controls the
PI3K/Akt pathway, can upregulate the insulin receptor gene,
thereby increasing insulin signalling and glucose transport.
This can be done either through the silencing of the genes or
by altering the levels of the miRNAs.125 Additionally, siRNA
targeting anti-inflammatory cytokines could potentially alle-
viate the inflammation associated with diabetic conditions.
The above can be achieved by siRNA gene knockdown of the
pro-inflammatory genes or by altering the level of miRNA in
order to regulate inflammation.126 These approaches are
useful in the prevention and control of chronic inflammation,
as well as in the enhancement of glycemic control in diabetic
patients.

Some of the benefits include high specificity since it can
pinpoint diseased genes, flexibility, and being non-
invasive.127 However, the problem of delivering RNAi
molecules to certain tissues, such as pancreatic islets, is still a
challenge. Stability is an important factor to consider in
treatment, and off-target effects are always a big problem that
must be considered and analyzed in the best way possible.128

Integration with digital health platforms

RNA-based diagnostics is promising if established as very
accurate and effective tools for the identification and
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assessment of diabetes-associated markers. Hence, the
combination of specific RNA biomarkers and the real-time
data of digital health technologies can leads to more ac-
curate, timely, and effective management and prevention of
diabetes.129 Technologies such as mobile health
(m-health), telemedicine, and other digital platforms have
revolutionised health care delivery systems as they enhance
real-time data capture and telemonitoring of patients.130

The use of these technologies can enhance the management
of individuals with diabetes as it provides an evidence-
based view of the patient and diabetes to the patient and
healthcare provider.131

The diagnostic techniques include next-generation se-
quencing, quantitative PCR, and microarray analysis for
overall characterization, biomarker identification, and
validation of specific RNA molecules for screening as
well.132 Some of the trends that are gathering momentum
today include the use of smartphones for diagnosis, the
storage of patient data in the cloud, and the wearing of
biosensors.133,134 Smartphone-Integrated Diagnostics will
empower users to conduct tests and immediately receive
results.135 Cloud-based data platforms assist in storing and
analyzing health data, providing recommendations and
forecasts for personalized diabetes treatment.136 Implant-
able biosensors check RNA biomarkers in body fluids to
monitor the patient’s health status on a regular basis.137

However, new challenges remain, and technological ad-
vancements, data protection concerns, and legal frame-
works will shape the continued evolution of the use of such
integrated approaches. Digital health technologies and
RNA biomarkers can enhance the care and well-being of
diabetes patients.

RNA biosensors for point-of-care testing

Point-of-care testing (POCT) which uses RNA biosensors
for diabetes management due to their fast, sensitive, and
selective nature will improve glucose monitoring in gly-
cemic control. These biosensors can detect specific RNA
molecules that are associated with diabetes, thereby en-
abling real-time intervention in diabetes management.138

Some common ways to use RNA biosensors are
hybridization-based detection, in which the target RNA is
linked to a probe sequence that is marked with a fluorescent
or electrochemical signal; enzyme-linked detection, in
which the target RNA is found with the help of RNA
aptamers or other molecules that can start enzymes
working; and electrochemical detection, which is used to
find out about electrical properties.139 RNA biosensors are
valuable tools in diabetes care because they help evaluate
glycemic control, diagnose complications, and monitor
patients. The development of the RNA biosensors that
detect miR375, miR192 and miR215 are beneficial due to
their pancreatic specific expression and thus they play a

crucial role in the functional activity of beta cells and
glucose regulation.140 Electrochemical and fluorescent
biosensors are the detection techniques. These biomarkers
can also be used for the diagnosis of diabetic nephropathy
and diabetic retinopathy and for the management of these
conditions.141 The idea of an individual approach to dia-
betes management according to the RNA profiles makes it
possible to fine-tune all of the necessary changes in the
therapeutic regimen immediately. Examples include mul-
tiplexed biosensors, which detect multiple RNA targets
simultaneously, and wearable biosensors, which integrate
the biosensors into wearable devices for continuous and
real-time monitoring of RNA biomarkers.142 Some of the
advancements in the field of RNA biosensors for diabetes
include the use of nanotechnology, nanoparticles, nano-
wires, nanotubes, microfluidics, point of use, the CRISPR-
Cas system, SHERLOCK, and DETECTR.143 Nonethe-
less, the current and future trends in research and devel-
opment suggest their application in clinical practice. The
future of RNA biosensors in diabetes POCT is to help
achieve better disease control through individualized,
quick, and constant monitoring of the patient’s status.

Artificial intelligence and machine
learning in developing
RNA-based diagnostics

Diabetes mellitus is one of the world’s most pressing and
widespread health issues, characterised by elevated blood
sugar levels that result from inadequate insulin production,
usage, or both. Management of diabetes mellitus entails the
monitoring of biomarkers with regards to the glycemic
status and the progression of complications.144 The inte-
gration of artificial intelligence (AI) and machine learning
(ML) into RNA-based diabetes diagnostics has revolu-
tionised diabetes care. Notably, AI andML can improve the
sensitivity and specificity of RNA-based diagnostic
methods, enabling early and personalized treatment of
diabetes patients.145

Some of the diagnostic methods are next-generation
sequencing (NGS), quantitative PCR (qPCR), and mi-
croarray analysis. AI and ML are applied in RNA-based
diagnostics for biomarker identification, in predictive an-
alytics, in anomaly detection, and in designing individual
treatment regimens, as well as in the integration of the RNA
data with the clinical data.146

In enhancing the discussion on deep learning, au-
toencoder as well as reinforcement learning applied to
RNA-based diagnostics of diabetes, it is pertinent to de-
scribe these strategies in detail, predicting the probability of
pre-diabetes or the outcome of a transition to diabetes.
Deep learning is categorized under machine learning uti-
lizing high-dimensional RNA sequencing data and
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Artificial Neural Network.147 This has been applied in
identifying microRNA signatures that associate with dia-
betes thereby increasing the diagnostic yield. Deep learning
models demonstrate above 90% of accuracy rates for es-
timating diabetic condition from RNA expression patterns
of large patient data sets.148

Autoencoders are the type of generative models that
arise in the unsupervised learning context where the input
data is used to generate a feature vector of inputs and the
reconstruction of the features.149 In RNA-based diabetes
diagnostics, they can minimize the dimensionality of RNA-
seq data, selecting only the features that are to be used in
disease risk prediction. For instance, they have been used to
reduce high dimensional RNA expression data of thou-
sands of genes to a small set of dimensions while still
capturing diagnostic presentations of diabetes
biomarkers.150,151

Reinforcement learning, where an algorithm is trained
to make decisions and is later rewarded when it produces a
correct decision and punished when it produces an in-
correct decision is becoming popular in RNA-based dia-
betes diagnostics.152 This technique has been employed to
improve RNA probe selection in diagnostic tests and refine
diagnostic algorithms in use for maximal effectiveness.

Applications of AI can assist in analyzing large data
from RNA sequencing to discover new diabetes bio-
markers, while ML can select the most suitable set of RNA
biomarkers for disease diagnosis and prediction.153 AI can
also be useful in determining the likelihood of disease
occurrence, its development, and the outcome of treatment
based on RNA biomarkers. This integration improves
diagnostic accuracy and patient classification.154 ML has
shown great promise in the early diagnosis of diabetes and
its accompanying complications.155 For example, Shu-
kla156 achieved an accuracy rate of 82.92% by applying a
logistic regression algorithm to predict diabetes risk in
Indian individuals using clinical and demographic factors.
This suggests that the established model could detect those
who are at risk of developing diabetes and possibly even
stop it. Similar to this, Islam et al.157 predicted the risk of
diabetes in 520 people with 99% accuracy using a variety
of machine learning techniques, such as Naive Bayes,
Logistic Regression, and Random Forest. Some of the most
recent techniques for RNA sequencing include deep
learning via neural networks, autoencoders for data re-
duction, natural language processing for text mining, an-
notation for functional prediction, reinforcement learning
for learning from new data, and adaptive learning algo-
rithms for better diagnostic models through feedback from
new data.158 Continuous research and technological ad-
vancements are gradually creating a path towards the ef-
fective application of AI-based RNA diagnostics in the
clinical setting. We anticipate that these integrative de-
velopments will transform diabetes care in the future,

thereby improving the quality of life for patients
worldwide.

Challenges and future directions

RNA-based diagnostic tools are an untapped goldmine in
the battle against diabetes, with specific and sensitive
biomarkers related to the disease. However, there are
several conditions that bar the application of such tech-
nologies in clinical cases, despite all the developments.

Some of the technical factors that impact RNA-based
diagnostics include the stability of the RNA, the sensitivity
of detection, sample processing, standardisation and re-
producibility, data analysis and interpretation, patents, and
commercialization barriers.159 Since RNA molecules are
relatively unstable, they are easily degraded by enzymes
called ribonucleases; therefore, their detection is slightly
complicated. We need stable RNA procedures and various
chemical modifications to overcome these challenges.
Sample preparation is also another time-consuming stage;
therefore, there is an essential need to develop automated
extraction kits.160 Standard and good working practices
have to be used to enable punctual execution, consistency,
and reproducibility. Clinical validation is required as most
of the RNA biomarkers have not been through the vali-
dation processes. Data collection and analysis are crucial
and can only be done through the use of sophisticated
bioinformatics programmes and skills. Approval is typi-
cally stringent because the authorities demand validation
and documentation of the intended solution.19 Another
challenge they face is the cost and availability of these
solutions, as many are expensive and therefore not easily
accessible to most people.140 Examples of solutions in-
clude extending efforts to rationally design cost-efficient
diagnostic platforms and identifying potential reimburse-
ment models to make RNA-based diagnostics more
accessible.

The future of RNA-based diagnostics will witness ad-
vancements through the integration of nanotechnology,
microfluidics, CRISPR-cas systems, and cross-disciplinary
approaches.161 New approaches in nanotechnology help to
increase the sensitivity and specificity of RNA detection,
while microfluidics helps to reduce the cost of various
diagnostic tools, making them more affordable.162

CRISPR-Cas systems include precision detection and
versatile platforms. Personalised medicine includes indi-
vidual treatment, prognosis, and long-term surveillance
with the help of wearable technology.163 Real-time data can
help make real-time changes to treatment regimens. There
is a need for interdisciplinary collaboration mechanisms
that can include research consortia, public-private part-
nerships, open source solutions, and social networking.
These improvements will not only revolutionize the di-
agnostics field, but they will also accelerate the progression
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of RNA-based diagnostic commercialization. By investing
in more research, RNA-based diagnostics can make dia-
betes care more effective and prompt, thus resulting in
better healthcare for individuals with the disease.

The way forward

As indicated in Figure 1, the roadmap for enhancing RNA-
based diagnostic tools in diabetes management is as
follows:

1. Augmenting RNA Stability: RNA molecules are
often susceptible to cleavage by ribonucleases,
hence complicating detection. To address this is-
sue, stable RNA methodologies must be devel-
oped, using various chemical modifications to
enhance RNA stability.

2. Enhancing Detection Sensitivity: RNA-based
biomarkers, often found in low quantities in
blood, can be more accurately identified using
advanced nanoscale technologies.

3. Automating Sample Processing: Sample prepara-
tion is one of the most time-consuming stages in
RNA diagnostics. It would be prudent to develop
automated extraction kits for sample extraction,
hence minimising labour and time expenditure.

4. Standardisation and repeatability: It is advanta-
geous to continually underscore that adherence to
standard and exemplary laboratory methods en-
hances repeatability. This is essential, especially

for the appropriate clinical use of RNA
biomarkers.

5. Clinical Validation: Certain RNA biomarkers have
not undergone consistent clinical verification. For
RNA-based diagnostic assays to transition to
clinical practice, validation stages will likely be
necessary.

6. Data Collection and Analysis: Large-scale RNA
data analysis need sophisticated bioinformatics
tools and procedures to effectively interpret the
data. Enhanced data management and the use of
advanced software and machine learning algo-
rithms will be utilised to improve data analysis and
comprehension.

7. Mitigating Regulatory and Financial Obstacles:
Regulators need extensive validation and docu-
mentation. Facilitating engagement with regulatory
agencies to optimise approval processes and assess
cost-effective diagnostic frameworks may improve
the accessibility of RNA-based diagnostics.

8. Incorporating Emerging Technologies: The crea-
tion of tiny RNA-based diagnostic tools should
integrate advanced technologies such as nano-
technology, microfluidics, and CRISPR-Cas sys-
tems. These developments will improve detection
accuracy and simultaneously lower costs, with the
development of multipurpose diagnostic tools.

9. PersonalisedMedicine and Real-TimeMonitoring:
The use of RNA in diagnostics facilitates the
development of tailored medical treatments that

Figure 1. Flowchart/tiered roadmap diagram structure in enhancing RNA-based diagnostics in diabetes management.
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align precisely with an individual’s genetic profile.
Wearable technology allows for real-time data
provision to facilitate the dynamic adjustment of
treatment regimens based on individual factors.

10. Interdisciplinary Collaboration and Commercialisa-
tion: Commercialisation obstacles may be mitigated
by multidisciplinary involvement, including robust
public-private partnerships and consistent open-
source initiatives. Securing financing for future
research endeavours and collaboration with spe-
cialists in related disciplines will augment the use of
RNA diagnostics in diabetes.

Conclusion

Diagnostics based on RNA are a major breakthrough in the
diagnosis and monitoring of diabetes mellitus; they may
shape the future development of diabetes care. These di-
agnostic tools would help to diagnose diabetes and its
progression at an early stage and set specific treatment
plans based on the molecular profiles of every patient due
to the specificity and sensitivity of RNA biomarkers.

There are, however, some barriers to the use of RNA-
based diagnostics in clinical practice. These include, but
are not limited to, high RNA biomarker validation, es-
tablishing a proper method for diagnosing, and dealing
with issues such as cost, availability, and implementation in
current healthcare systems. However, RNA-based diag-
nostics have enormous potential for delivering more ef-
fective and efficient care to patients by enabling more
accurate diagnoses. Further research to evaluate and val-
idate the use of RNA based diagnostics in standard clinical
practice is needed. Clinical and non-clinical collaboration,
as well as that between industry partners, will be critical in
overcoming the barriers to the use of RNA-based diag-
nostics and realizing its full potential. Therefore, enhancing
these effective tools from the laboratory to the clinic
through future research and technological advancements
would improve diabetes treatment and patient care.
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Appendix
Abbreviations

RNA Ribonucleic acid
RNAi RNA interference

mRNA messenger RNA
VIGS Virus-induced gene silencing
DCLs Dicer-like enzymes

dsRNA Double-stranded RNA
siRNAs Small interfering RNAs
RISC RNA-induced silencing complex

T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
HbA1c Glycated hemoglobin.
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