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SUMMARY

Long non-coding RNA (lncRNA) play critical roles in the occurrence and development of various dis-

eases. The determination of the lncRNA-disease associations thus would contribute to provide new

insights into the pathogenesis of the disease, the diagnosis, and the gene treatments. Considering

that traditional experimental approaches are difficult to detect potential human lncRNA-disease

associations from the vast amount of biological data, developing computational method could be

of significant value. In this paper, we proposed a novel computational method named LDASR to iden-

tify associations between lncRNA and disease by analyzing known lncRNA-disease associations. First,

the feature vectors of the lncRNA-disease pairs were obtained by integrating lncRNA Gaussian inter-

action profile kernel similarity, disease semantic similarity, and Gaussian interaction profile kernel

similarity. Second, autoencoder neural network was employed to reduce the feature dimension and

get the optimal feature subspace from the original feature set. Finally, Rotating Forest was used to

carry out prediction of lncRNA-disease association. The proposed method achieves an excellent

preference with 0.9502 AUC in leave-one-out cross-validations (LOOCV) and 0.9428 AUC in 5-fold

cross-validation, which significantly outperformed previous methods. Moreover, two kinds of case

studies on identifying lncRNAs associated with colorectal cancer and glioma further proves the capa-

bility of LDASR in identifying novel lncRNA-disease associations. The promising experimental results

show that the LDASR can be an excellent addition to the biomedical research in the future.

INTRODUCTION

Long non-coding RNAs (lncRNAs) are an important class of transcripts, with the length longer than 200 nt,

which participates in various physiological processes, such as immune surveillance, post-translational regu-

lation, cell differentiation, proliferation, apoptosis, and epigenetic regulation. Especially, accumulating

studies have indicated that a large number of lncRNAs are involved in numerous complex human diseases,

such as various cancers (Chung et al., 2011; Zhang et al., 2012), blood diseases (Congrains et al., 2012;

Alvarez-Dominguez and Lodish, 2017; Sallam et al., 2018), and neurodegeneration diseases (Johnson,

2012). Therefore, inferring the potential association between lncRNA and disease is helpful to understand

the pathogenesis of complex diseases at the molecular level and provide new insights into the diagnosis,

treatment, and prognosis of diseases.

Profit from the development of high-throughput experimental techniques, such as Microarray, Northern

blots and qPCR, Fluorescence in situ hybridization, RNA interference, and RNA immunoprecipitation

(Yan et al., 2012), a large amount of data about lncRNAs-disease associations have been determined

and distributed in different public databases, such as lncRNAdb (Amaral et al., 2010), NRED (Dinger

et al., 2008), and NONCODE (Xie et al., 2013). However, although experimentally validated lncRNA-disease

associations drive research and development of medical molecular biology, they often have high false pos-

itives and false negatives. Moreover, many experimental methods are expensive and time-consuming.

Consequently, it is essential to develop a computational prediction approach based on the accumulated

biological data to accurately and rapidly find potential lncRNAs-disease associations. Computational

method can quantitatively describe the associations between lncRNAs and diseases and efficiently screen

out the most promising lncRNA-disease association pairs for further biological experimental validation.

The proposed computational method for predicting lncRNA-disease association can be roughly divided

into three categories. Methods in the first category uncover ncRNA-disease associations based on the

idea of network or link prediction. The underlying assumption is that lncRNAs associated with the same
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or similar diseases are more likely to have similar functions. Liao et al. constructed a coding-non-coding

gene co-expression network based on public microarray expression profiles to discover the potential func-

tions of lncRNA (Liao et al., 2011). Yang et al. applied a propagation algorithm to predict lncRNA-disease

associations by constructing a coding-non-coding gene-disease bipartite network based on known asso-

ciations between diseases and disease-causing genes (Yang et al., 2014). Chen et al. came up with the

model called IRWRLDA to identify potential associations by integrating known lncRNA-disease associa-

tions, disease semantic similarity, and various lncRNA similarity measures (Chen et al., 2016). Huang

et al. proposed a model called PBMDA to predict microRNA (miRNA)-disease associations by integrating

known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and

Gaussian interaction profile kernel similarity (You et al., 2017). Methods in the second category utilize

matrix factorization to identify potential lncRNA-disease associations. The basic assumption is that

unknown association information can be derived from other known association information. Fu et al. pre-

dicted lncRNA-disease associations by decomposing data matrices of heterogeneous data sources

into low-rank matrices (Fu et al., 2017). Lu et al. developed a method called SIMCLDA for potential

lncRNA-disease association prediction based on inductive matrix completion (Lu et al., 2018). These two

types of methods are based on specific assumptions, but these assumptions are not unanimously

accepted. Relevant studies have shown that in many cases bio macromolecules with similar structures or

ligands do not have the same functions. Matrix factorization approaches will experience dramatic perfor-

mance degradation when the known associated information is insufficient. In addition, these methods both

cannot mine the similarity feature of lncRNA and disease, and consider the inherent logic of the association

between lncRNA and disease from the perspective of data-driven. Machine learningmodels are used in the

third category to discover the unknown lncRNA-disease associations. Lan et al. proposed a method called

LDAP to identify latent associations between lncRNAs and diseases by using a bagging support vector

machine (SVM) classifier based on lncRNA similarity and disease similarity (Lan et al., 2016). Since these

methods are the beginning of machine learning application for lncRNA-disease association prediction,

there is still much room for improvement in the prediction performance, prediction accuracy of such

methods can be still greatly improved by increasing training samples and using more appropriate and

advanced learning algorithms. Recently, the accumulation of association data between lncRNA and dis-

ease and the development of machine learning technology provide a better opportunity for predicting

the association between lncRNA and disease using supervised learning model.

Instead of using network-based and matrix factorization-based methods to compute association scores

directly, we explored to extract association features from lncRNA-disease pairs by multiple similarity

matrices and trained machine learning models in a supervised manner to predict their association. In

this study, we proposed a novel supervised computational method named (LDASR) for large-scale

lncRNA-disease association prediction based on collaborative filtering andmachine learning technologies.

First, the feature vectors of the lncRNA-disease pairs were obtained by integrating lncRNA functional sim-

ilarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. Second, autoencoder

neural network was employed to low the feature dimension and get the optimal feature subspace from the

original feature set. Finally, considering the size of training samples and the possible non-linear relation-

ship in input, we trained rotating forest to carry out prediction of LncRNA-Disease Association. The flow

of LDASR is represented in Figure 1. In leave-one-out cross-validation (LOOCV) and five cross-validation

to evaluate test data, the proposed LDASR model achieved better results than some previous methods,

with AUC of 0.9502 and 0.9428, respectively. The test results show that supervised learning model can

achieve better performance.
RESULTS

Leave-One-Out Cross-Validation

For LOOCV, each sample in the dataset is selected for testing in turn, and the remaining samples are used

as the training set to construct the prediction model. As we have mentioned, 1,765 lncRNA-disease asso-

ciations, which have been experimental verified, were regarded as positive samples. Then we randomly

picked 1,765 lncRNA-disease associations in the remaining associations as negative samples. The total

number of datasets was 3,530, so we trained and tested 3,530 times according to the LOOCV method to

get the final experimental result. At the same time, we drew ROC (receiver operating characteristic curve)

and calculated AUC (area under curve) under LOOCV as shown in Figure 2 to quantify the prediction results

and facilitate comparison with other methods. For LOOCV, LDASR obtained AUCs of 0.9502, indicating
iScience 19, 786–795, September 27, 2019 787



Figure 1. Flowchart of LDASR

Step 1: Building three similaritymatrices for disease by combining semantic information andGaussian kernel information. Step

2: Building 1 similarity matrix for lncRNA. Step 3: Extraction of similarity feature vectors for disease and lncRNA from disease

similarity matrix and lncRNA similarity matrix. Step 4: Extracting the same number of positive and negative samples from the

adjacencymatrix to construct the dataset used in this paper. Step 5: Selecting themost valuable features and reducing feature

noise by using autoencoder. Step 6: more discriminant feature vectors were put into Rotation Forest ensemble classifier for

training, verification, and prediction. The construction of disease semantic matrix can see also Figure S1.
that the model combining various similarities and rotation forest had a strong ability to distinguish the dif-

ference between positive and negative samples.
Five-fold Cross-Validation

For 5-fold cross-validation, the entire dataset is randomly divided into five mutually exclusive subsets of

roughly equal size, each of which is used in turn as a test set for evaluation, and the remaining four subsets

served as training sets to build the model. To better verify the performance of our method and save

computing resources, LDASR was further evaluated by 5-fold cross-validation. For 5-fold cross-validation,

LDASR obtained mean AUC of 0.9428 in the end as shown in Figure 3.

To more comprehensively evaluate our model, we used a broader range of evaluation criteria, including

accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), and MCC. The prediction
788 iScience 19, 786–795, September 27, 2019



Figure 2. The ROC and AUC of LDASR in LOOCV Based on the v2017 Dataset (3,530 lncRNA-Disease Associations)
performance is listed in Table 1. The results of average Acc., Sen., Spec., Prec., MCC, and AUC were

85.72%, 90.14%, 81.31%, 82.86%, 71.74%, and 94.28% when using the proposed method to predict

lncRNA-disease associations. The standard deviations of these values were 1.59%, 0.77%, 2.69%, 2.11%,

3.05%, and 0.94%, respectively. For 5-fold cross-validation shown in Figure 5, LDASR obtained high

mean AUC of 0.9428. The high AUCs showed that LDASR combining multiple similarities and rotation for-

est was feasible and effective to predict lncRNA disease associations. At the same time, the lower standard

deviation of these standards implied that the proposed model was robust and stable.

Compared with Other Classifiers

To assess the performance of Rotation Forest: In this section, we compared Rotation Forest with several

common classifiers in 5-fold cross-validation, including Random Forest, Logistic Regression, Naive Bayes,

and SVM. To be fair, all settings except classifiers are default and the same dataset is used. The ROC curves
Figure 3. The ROCs and AUCs of LDASR in 5-Fold Cross-validation Based on the v2017 Dataset (3,530

lncRNA-Disease Associations)
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Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

0 83.85 90.08 77.62 80.10 68.24 93.11

1 85.27 88.95 81.59 82.85 70.73 93.19

2 84.42 89.80 79.04 81.07 69.24 94.78

3 88.10 91.22 84.99 85.87 76.35 95.27

4 86.97 90.65 83.29 84.43 74.14 95.08

Average 85.72 G 1.59 90.14 G 0.77 81.31 G 2.69 82.86 G 2.11 71.74 G 3.05 94.28 G 0.94

Table 1. Five-fold Cross-validation Results Performed by LDASR on the v2017 Dataset (3,530 lncRNA-Disease

Associations)
implemented by five classifiers are summarized in Figure 4. As seen in Figure 4, it is obvious that the Rotation

Forest achieves the best results. The effectiveness mainly has the following factors: (1) Based on the idea of

collaborative filtering, there might be cases of non-independence between feature attributes generated by

the similarity between lncRNA and disease. This affects the predictive capability of Naive Bayes. (2) The per-

formance of the SVM classifier is more sensitive to data. Proper selection of the parameters and the correct

choice of the kernel function will result in a large training cost. (3) The prediction performance of the logistic

regression is limited by the assumption that the feature and the target must be linearly separable, so the

lower AUC was obtained. (4) Tree-based assemble algorithms such as Random Forest and Rotating Forest

are not affected by the nonlinear relationships in the data, so they have achieved excellent results in the five-

fold cross-validation. Compared with the Random Forest, Rotating forest randomly combines the sample

attribute sets before each subsample is extracted, and Principal Component Analysis (PCA) is utilized to

transform the data between the divided sets of sub-attributes. This operation not only makes each sub-sam-

ple different, but also plays a certain role in data pre-processing, thereby improving the accuracy and differ-

ence of each base classifier to obtain excellent assemble effect.

Compared with Other Methods

The LDASR was further tested by comparing it with other three state-of-the-art methods involving LRLSLDA

(Chen and Yan, 2013), LRLSLDA-LNCSIM1 (Chen et al., 2015), and LRLSLDA-LNCSIM2 (Chen et al., 2015).
Figure 4. Comparison with Random Forest, Logistic Regression, Naive Bayes, and SVM in 5-Fold Cross-validation

Based on the v2017 Dataset (3,530 lncRNA-Disease Associations)
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Figure 5. Under the v2012 Dataset (586 lncRNA-Disease Associations), LDASR and LRLSLDA, LRLSLDA-

LNCSIM1, LRLSLDA-LNCSIM2 Were Compared between the AUCs Obtained under LOOCV
The comparison of the obtained AUC between LDASR and previous methods in LOOCV is shown in Fig-

ure 5. The results on 2012v dataset showed obviously that our proposed method made some progress.

As a result, the proposed method achieved 0.1013, 0.0643, and 0.0575 improvements in terms of AUC

compared with other three approaches in terms of AUC under LOOCV. Because the Leave-one-out

cross-validation uses one observation as the validation set and the remaining observations as the training

set, the model under LOOCV will always be a very stable solution. Therefore, it was difficult to add error

bars to Figure 5. Compared with traditional computational methods for the prediction of lncRNAs-diseases

associations, machine learning can consider similarity information from the perspectives of probability, sta-

tistics, approximation, and convex analysis and iteratively and optimally grasp the essential associations

rule between RNA and disease. And this data-driven approach will show a stronger advantage as data

are accumulated. The improved prediction performance produced by this method further validates the

potential of machine learning algorithms on such problems. Although 5% does not seem to be a consider-

able improvement, we hope to draw the attention of relevant researchers and open a novel perspective on

solving problems by machine learning strategies.

Case Study

To evaluate the capability of the model in practical application, we applied LDASR to predict Colorectal

Cancer, Glioma, and Prostate cancer as two kinds of case studies. For the purpose of simulating the real

environment and ensuring the fairness of case studies, the associations of LncRNADisease database

(v2017) were used to train the model and the remaining four additional databases, including Lnc2Cancer

(Ning et al., 2015), MNDR (Cui et al., 2017), CRlncRNA (Wang et al., 2018), and LncRNAWiki (Ma et al.,

2014), were used to verify the results.

For the first kind of case study, Colorectal Cancer was chosen as the research subject. In this case study, all

1,765 associations in LncRNADisease database (v2017) were used as positive samples. The negative sam-

ples of the same size as positive samples are generated by random selection in the rest. Therefore, the test

set was constructed by connecting colorectal cancer diseases to all lncRNAs in the other three databases,

respectively. As a result, a total of 881 lncRNA-colorectal cancer pairs were verified as test samples. Finally,

samples with a predicted probability greater than 0.5 are screened out and sorted according to the prob-

ability values from large to small. Recent results in biological experiments confirmed that Colorectal Cancer

was related to gene XIST (Lassmann et al., 2007), AB073614 (Xue et al., 2018; Wang et al., 2017), and SNHG3

(Huang et al., 2017). They were all in the top of the list, but they were not included in the LncRNADisease

database. Then, we ranked all the 881 lncRNAs based on their predicted association scores and validated

the top 10 lncRNAs in LncRNADisease, CRlncRNA,MNDR 2.0, and Lnc2Cancer. The results are shown in the

Table 2.
iScience 19, 786–795, September 27, 2019 791



Num lncRNA Confirmed Database

1 snhg3 LncRNAWiki

2 linc00237 Unconfirmed

3 kcna2 Unconfirmed

4 xist LncRNADisease/MNDR 2.0

5 cahm LncRNADisease/CRlncRNA

6 bx649059 LncRNADisease/CRlncRNA/MNDR 2.0

7 ab073614 Lnc2Cancer

8 bx648207 LncRNADisease/CRlncRNA/MNDR 2.0

9 ak123657 LncRNADisease/CRlncRNA/MNDR 2.0

10 fas-as1 Unconfirmed

Table 2. Top 10 Colorectal Cancer-Associated lncRNAs Predicted by LDASR
In the second kind of case study, Glioma and Prostate Cancer were the subjects of the study. A glioma is a

tumor that begins with glial cells in the brain or spine (Mamelak and Jacoby, 2007). The experimental

design for case study 2 is as follows: For positive sample set, we removed all Glioma-related associations

in the positive sample set. There were 42 positive samples related to Glioma here, so the number of pos-

itive samples was 1,723. Like case study 1, we used the same method to select 1,723 negative samples and

881 test samples. The test sample set was put into the classifier after training with positive and negative

samples. In the end, we found that XIST and CYTOR were both at the top of the list, but they were not

included in the LncRNADisease database. Recent results in biological experiments confirmed that Glioma

was related to XIST (Yao et al., 2015) and CYTOR (Yu et al., 2017). Then, we ranked all the 881 lncRNAs based

on their predicted association scores and validated the top 10 lncRNAs in LncRNADisease, CRlncRNA,

MNDR 2.0, and Lnc2Cancer. The results can be seen in Table 3.

For Prostate Cancer, all the experimental steps are the same as Glioma. For the positive sample set, we

removed all Prostate Cancer-related associations in the positive sample set. There were 55 positive

samples related to Glioma here, so the number of positive samples was 1,710. Like case study Glioma,

we used the same method to select 1,710 negative samples and 881 test samples. The list of the validated

top 10 lncRNAs are listed in Table 4.
DISCUSSION

Accumulating evidences have highlighted the positive role of developing a powerful machine-learning-

based method to predict potential associations between lncRNAs and diseases, which could significantly

help people to understand the pathogenesis of complex diseases at the molecular level and provide new

insights into the diagnosis, treatment, and prognosis of diseases. In this paper, we proposed a novel

computational method, LDASR, to predict the unknown lncRNA-disease associations by integrating mul-

tiple similarity information. Compared with previous methods, we embed this task into a machine learning

framework to better understand the essential law of the association between lncRNA and diseases. First,

we extracted feature vectors for lncRNA and disease from multiple similarity matrices and constructed

the feature vector of RNA-disease pairs by connecting features of lncRNA to that of disease. Then, autoen-

coder neural network was employed to reduce the feature dimension and improve the efficiency and ac-

curacy of classifier. Finally, we applied rotation forest to carry out prediction. LDASR first shows its good

performance by LOOCV and 5-fold cross-validation experiments. Furthermore, the comparison test shows

that LDASR has a powerful prediction ability to distinguish positive and negative samples, which is obvi-

ously better than the other state-of-the-art methods. Finally, the analyses of case studies further prove

that LDASR holds significant value in inferring potential lncRNA-disease associations in practice. As a novel

computational method, it is anticipated that LDASR has potential value in biomedical research for compre-

hending the pathogenesis of diseases, which can further advance the quality of disease diagnostics, ther-

apy, prognosis, and prevention. As a novel computational approach, LDASR could not only play a positive
792 iScience 19, 786–795, September 27, 2019



Num lncRNA Confirmed Database

1 zfat-as1 Unconfirmed

2 xist CRlncRNA/MNDR 2.0

3 spry4-it1 LncRNADisease/CRlncRNA/MNDR 2.0

4 cytor MNDR 2.0

5 neat1 LncRNADisease/CRlncRNA

6 meg3 LncRNADisease/CRlncRNA

7 malat1 LncRNADisease/CRlncRNA/MNDR 2.0

8 cdkn2b-as1 LncRNADisease

9 h19 LncRNADisease/CRlncRNA

10 hotair LncRNADisease/CRlncRNA/MNDR 2.0

Table 3. Top 10 Glioma-Associated lncRNAs Predicted by LDASR
role in rapidly understanding the pathogenesis of disease and improving the quality of disease diagnosis,

treatment, prognosis, and prevention but also confirms the great potential of machine learning in

predicting the relationship between RNA and disease.
Limitations of the Study

There are several limitations in the current model. First, in the stage of characterizing lncRNA, we hope to

fully combine and utilize a variety of information such as the sequence of lncRNA in the future instead of

using only the Gaussian Interaction Profile Kernel Similarity. Second, Gaussian Interaction Profile Kernel

Similarity is a traditional network representation learning method widely used in the embedding of

bipartite graph nodes. With the rise of deep learning, novel network representation learning methods

emerge in an endless stream, which can more effectively characterize the behavior of nodes and the struc-

ture of the entire network. We hope to take advantage of deep learning to improve prediction ability in the

future. Third, all parameters are default in the process of constructing the model, and we believe that the

performance of models can achieve a visible progress through the adjustment of the parameters.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
Num lncRNA Confirmed Database

1 pcat29 LncRNADisease/CRlncRNA/MNDR 2.0

2 tug1 Unconfirmed

3 malat1 LncRNADisease/CRlncRNA/MNDR 2.0

4 hif1a-as2 Unconfirmed

5 h19 LncRNADisease/CRlncRNA

6 dleu1 LncRNADisease/MNDR 2.0

7 dgcr5 Unconfirmed

8 cytor Unconfirmed

9 cdkn2b-as3 Unconfirmed

10 cdkn2b-as11 LncRNADisease/CRlncRNA/MNDR 2.0/Lnc2Cancer

Table 4. Top 10 Prostate Cancer-Associated lncRNAs Predicted by LDASR
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Supplemental Figures 

 

Figure S1. Construction of a disease’s DAG. Related to Figure 1. 

Transparent Methods 

Data Collection 

Known lncRNA-disease associations were downloaded from the LncRNADisease database 

(v2017) (Geng Chen et al., 2012). which contained 2947 experimentally validated lncRNA–

disease associations between 914 lncRNAs and 329 diseases. After deleting duplicate data 

caused by multiple experiment validations, we selected 1765 associations involving 881 

lncRNAs and 328 diseases. The lncRNA–disease associations can be visualized as a network, 

the nodes represent specific lncRNA or disease, the edges connect a lncRNA to a disease. To 

extract positive and negative samples from this network, all experimentally validated lncRNA-

disease pairs (i.e. 1765 lncRNA-disease pairs) constitute the golden standard positive dataset. 

The remaining edges of this network can be considered as nonassociation, and the 

corresponding lncRNA and disease can be collected as negative samples. In this paper, we 

followed previous method collect negative samples with the same size as positive samples 

using random selection (Ben-Hur and Noble, 2005). Although false negative samples may be 

included in the negative dataset, considering that the size of data collected only accounts for a 

small part of the whole network, the impact can be neglected. This can be treated as an issue 

with unbalanced data set processing, i.e. the process of down-sampling from negative sample 

(unlabeled sample). The picked negative samples are a very small percentage which only 

accounts for 0.61% (1765/ (881*328)-1765) and then a total of 3530 lncRNA–disease pairs 

were collected.  

LncRNADisease v2017 and LncRNADisease v2012 are 2 different versions of the same 

database, of which v2012 is a true subset of v2017. The previous proposed by Chen et al. is to 

train and test based on lncRNADisease v2012, in order to ensure the fairness of the experiment, 

the 293 lncRNA–disease associations in version 2012 involving 118 lncRNAs and 167 diseases 

were also collected to constitute positive set. The negative set was constituted by the method 

mentioned above. As a result, the entire dataset consists of 586 lncRNA–disease pairs, of 

which half is from the positive samples and the other is from the negative samples. 

Disease MeSH Descriptors And Directed Acyclic Graph 

Medical Subject Headings (MeSH) is an authoritative subject vocabulary compiled by the National 

Library of Medicine, which provide a hierarchically-organized terminology for indexing and 

cataloging of various diseases. Each disease can be represented as a Directed Acyclic Graph 

(DAG) by the information provided by MeSH, which is described as follows: DAG(D)= (D, 𝑁𝐷, 

𝐸𝐷). Here, D represents specific diseases, 𝑁𝐷 is node set that contains all disease in D’s DAG. 

𝐸𝐷 represents the relationship between the nodes in D’s DAG. Specific examples are shown in 

Figure S1. 



Disease Semantic Similarity Matrix 1 

We computed disease semantic similarity based on DAG. the contribution of disease t to the 

semantic value of disease D is defined as: 

{
𝐷1𝐷(𝑡) = 1                                                                      𝑖𝑓 𝑡 = 𝐷

𝐷1𝐷(𝑡) = max{∆ ∗ 𝐷1𝐷(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}  𝑖𝑓 𝑡 ≠ 𝐷
             (1) 

Where ∆ denotes the semantic contribution decay factor and equals to 0.5. In the DAG on 

disease D, disease D is at the top, and its contribution to its semantic value is defined as 1. The 

semantic contribution of the next layer to disease D is equal to the contribution of the layer 

disease to itself multiplied by the semantic contribution attenuation factor. Therefore, the 

semantic value of disease A can be defined as follows: 

𝐷1(𝐷) = 𝛴𝑡∈𝑁𝐷
𝐷1𝐷(𝑡)                                (2) 

The measure of disease similarity can be derived from set theory. The similarity between two 

diseases is calculated by the following： 

𝐷𝑆1(𝑖, 𝑗) =
∑ (𝐷1𝑖(𝑡)+𝐷1𝑗(𝑡))𝑡∈𝑁𝑖∩𝑁𝑗

𝐷𝑉1(𝑖)+𝐷𝑉1(𝑗)
                            (3)  

Disease Semantic Similarity Matrix 2 

The above disease similarity measure only considers local information and the intersection 

between two sets. Some scholars considered that it was one-sided and incomplete. Another 

semantic similarity measure method is used to complement the previous one. Inspired by 

information theory, the method suggests that diseases that often occur in DAGs should have a 

higher status and contribute more to other diseases (Xing Chen et al., 2015, Xuan et al., 2013). 

The new disease contribution values are measured as follows: 

𝐷2𝐷(𝑡) = −log (
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐴𝐺𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
)                        (4) 

The sum of the contributions of all nodes in the DAG of disease D is as follows: 

𝐷𝑉2(D) = 𝛴𝑡∈𝑁𝐷
𝐷2𝐷(𝑡)                                  (5) 

The semantic similarity value could be calculated just like DS1: 

𝐷𝑆2(𝑖, 𝑗) =
∑ (𝐷2𝑖(𝑡)+𝐷2𝑗(𝑡))𝑡∈𝑁𝑖∩𝑁𝑗

𝐷𝑉2(𝑖)+𝐷𝑉2(𝑗)
                              (6) 

Gaussian Interaction Profile Kernel Similarity For Diseases And LncRNA 

In order to overcome the gap caused by the lack of MeSH information, the idea of collaborative 

filtering is employed to construct the third similarity matrix. In this paper, we first construct an 

adjacency matrix using the association data of lncRNA and disease. The columns of the matrix 

represent lncRNA and the rows represent diseases. Then, the Radial Basis Function (RBF) 

Gaussian kernel function was applied to adjacency matrix to obtain similarity matrix of disease 

(van Laarhoven,Nabuurs and Marchiori, 2011, Xing Chen et al., 2018). The similarity defined 

by the Gaussian interaction profile kernel is as follows: 

𝐷𝐺(𝑖, 𝑗) = 𝑒𝑥𝑝 (−𝛼𝑑‖𝑑𝑖 − 𝑑𝑗‖
2

)                           (7) 

Where 𝑑𝑖 and 𝑑𝑗 are i-th row and the j-th row of the adjacency matrix, respectively. 𝛼𝑑 that is 

the weight factor used to regulate the kernel bandwidth, can be defined as follows: 

𝛼𝑑 = 𝛼𝑑
′ (

1

𝑛𝑑
∑ ‖𝑑𝑖‖

2𝑛𝑑
𝑖=1 )                                  (8) 



Here, nd is the number of the diseases, the parameter 𝛼𝑑
′  is set to 0.5 empirically. 

Analogous to the Gaussian similarity calculation method of disease, the Gaussian similarity of 

RNA is calculated by the same method. Formula 7 is replaced by Formula 9: 

𝑅𝑆(𝑖, 𝑗) = 𝑅𝐺(𝑖, 𝑗) = 𝑒𝑥𝑝 (−𝛼𝑟‖𝑟𝑖 − 𝑟𝑗‖
2

)                        (9) 

Where 𝑟𝑖 and 𝑟𝑗 are i-th column and the j-th column of the adjacency matrix, respectively. 𝛼𝑟 

is the weight factor used to regulate the kernel bandwidth, defined by Formula (10): 

𝛼𝑟 = 𝛼𝑟
′ (

1

𝑛𝑟
∑ ‖𝑟𝑖‖

2𝑛𝑟
𝑖=1 )                                 (10) 

Here, nr is the number of the diseases, the parameter 𝛼𝑟
′  is set to 0.5 empirically. After 

constructing the similarity matrix based on adjacency matric A, the representation vector of 

each lncRNA or disease will not change with cross-validation. The impact of this on the results 

will be discussed in a follow-up work. 

Construction of Feature Vectors for Disease and lncRNA 

Disease Semantic Similarity Matrix and Disease Gaussian Interaction Profile Kernel Similarity 

are two different types of information so neither is redundant. One of the above is often 

imperfect, to get a complete disease similarity matrix DS, we integrated disease semantic 

similarity matrix 1, disease semantic similarity matrix 2 and disease Gaussian interaction profile 

kernel similarity matrix by formula 11.  

𝐷𝑆(𝑖, 𝑗) = {
𝐷𝑆1(𝑖,𝑗)+𝐷𝑆2(𝑖,𝑗)

2
       𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

𝐷𝐺(𝑖, 𝑗)                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
            (11) 

The row or column of matrix DS is regarded as the feature vectors of disease. Similarly, the 

row or column of matrix 𝑅𝑆 is regarded as the feature vectors of lncRNA. It's remarkable that 

all similarity matrices are symmetric matrices. 

The i-th disease can be represented by the i-th row of the matrix DS: 

𝐷𝑆𝑖∗ = (𝐷𝑆𝑖1, 𝐷𝑆𝑖2, … , 𝐷𝑆𝑖328)                          (12) 

The j-th disease can be represented by the j-th row of the similarity matrix 𝑅𝑆: 

𝑅𝑆𝑗∗ = (𝐷𝑆𝑗1, 𝐷𝑆𝑗2, … , 𝐷𝑆𝑗881)                          (13) 

The association consists of the i-th disease and the j-th lncRNA can be represented by the 

following vector: 

𝑃𝑎𝑖𝑟𝑖𝑗 = (𝐷𝑆𝑖∗, 𝑅𝑆𝑗∗) = (𝐷𝑆𝑖1, 𝐷𝑆𝑖2, … , 𝐷𝑆𝑖328, 𝑅𝑆𝑗1, 𝑅𝑆𝑗2, … , 𝑅𝑆𝑗881)        (14) 

Each positive sample is given a label 1 and each negative sample is given a label 0.  

AutoEncoder 

Each association can be abstracted into a 1209-dimensional vector through the above step. 

Training set and test set consisting of thousands of such vectors take up a lot of storage space, 

which is not conducive to the training of classifiers. In order to reduce noise and improve feature 

quality, the autoencoder was used to obtain the optimal feature space from the original feature 

(Yi et al., 2018). The autoencoder consists of an encoder and decoder. The coding part is 

responsible for compressing input data and the decoding part is responsible for restoring initial 

input. The main steps are as follows: 

𝑓(𝑥) is the activation function of the encoder, 𝑔(ℎ) is the activation function of the decoder. It 

will generally do this using a sigmoid function: 

ℎ = 𝑓(𝑥) ≔ 𝑆𝑓(𝑊𝑥 + 𝑝)                              (15) 

𝑦 = 𝑔(ℎ) ≔ 𝑆𝑔(𝑊′𝑥 + 𝑞)                             (16) 



Here, we choose the sigmoid function as the activation function: 

𝑆𝑓(𝑡) = 𝑆𝑔(𝑡) =
1

1+𝑒−𝑡
                                 (17) 

The difference between x and y can be described by a reconstruction error function which is 

defined as follows: 

𝐿(𝑥, 𝑦) = − ∑ [𝑥𝑖 𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑥𝑖)𝑙𝑜𝑔 (1 − 𝑦𝑖)]𝑛
𝑖=1                    (18) 

Through the above the loss function can be defined as follows: 

𝐿𝑜𝑠𝑠 = ∑ 𝐿(𝑥𝑖 , 𝑔(𝑓(𝑥𝑖)))𝑛
𝑖=1                             (19) 

Therefore, the most suitable argument was obtained by minimizing the loss function. We can 

use h instead of x to represent the original vector. In this study, we used the keras library to 

implement the autoencoder and set the parameters batch size and epoch to 128 and 100, 

respectively. 

RotationForest 

Building an integrated learning algorithm by merging multiple models helps to achieve better 

prediction effects (Wang et al., 2017, Li et al., 2017). The idea of ensemble learning is to solve 

the defects and limitations inherent in the model of a single model by integrating more models. 

In 1990, Schapire analyzed and proved the equivalence between the weak learning algorithm 

and the strong learning algorithm based on the PAC (Probably Approximately Correct) learning 

model (Schapire, 1990). Since then, it has gradually attracted the focus of a wide range of 

scholars and shown outstanding effects on many classification or regression tasks. Assemble 

learning classifiers have stronger generalization capabilities and simpler parameter 

adjustments than traditional single models. Rotation Forest here was chosen to carry out the 

prediction. The Rotation Forest algorithm is based on the idea of feature transformation and 

focuses on improving the variability and accuracy of the base classifier (Rodriguez,Kuncheva 

and Alonso, 2006). Suppose 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇  represents the sample with n features. A 

matrix X of N*n to represent a training sample set with N data records. 𝑦 = [𝑦1 , 𝑦2, … , 𝑦𝑛]𝑇 

represents the corresponding sample class label in the training sample set X. F represents the 

attribute set, and D1, D2, …, DL represent L base classifiers. The main steps are as follows: 

(1) The attribute set F is randomly divided into K sub-attribute sets, and each sub-attribute set 

contains about M = n/K attributes. 

(2) Denote by 𝐹𝑖,𝑗 the j-th subset of features for the training set of classifier Di. Then a bootstrap 

subset of objects is drawn with the size of 75% of the dataset to form a new training set, which 

is denoted by 𝑋𝑖𝑗
′ . Using the selected subset of samples to transform the sub-attribute set in 

𝐹𝑖,𝑗 , the principal component analysis (PCA) is used to obtain Mj principal components: 

𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 , … , 𝑎𝑖𝑗

𝑀𝑗. 

(3) Repeat step 2 to store the obtained K principal component coefficients into a coefficient 

matrix Ri. According to the order of the original data attribute set, rearrange the matrix Ri to 

obtain 𝑅𝑖
′, then the training set will be transformed into 𝑋𝑅𝑖

′. The base classifier Di will be 

trained on the new training set. 

𝑅𝑖 = [

[𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀1]                             [0]                    …              [0]              

                [0]                           [𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀2]        …              [0]                

 
                ⋮                                             ⋮                         ⋮                ⋮                  

             [0]                                        [0]                      … [𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀𝐾]

]                       (20) 

(4) After the above steps, L base classifiers can be obtained. The final prediction category is 

determined with maximum confidence.  

Supplemental References 



Ben-Hur, A. and Noble, W.S. (2005) 'Kernel methods for predicting protein–protein interactions'. 

Bioinformatics, 21 (suppl_1), pp. i38-i46. 

Chen, G. et al. (2012) 'LncRNADisease: a database for long-non-coding RNA-associated 

diseases'. Nucleic acids research, 41 (D1), pp. D983-D986. 

Chen, X. et al. (2018) 'Novel Human miRNA-Disease Association Inference Based on Random 

Forest'. Molecular Therapy-Nucleic Acids, 13 568-579. 

Chen, X. et al. (2015) 'Constructing lncRNA functional similarity network based on lncRNA-

disease associations and disease semantic similarity'. Scientific reports, 5 11338. 

Li, J.-Q. et al. (2017) 'PSPEL: in silico prediction of self-interacting proteins from amino acids 

sequences using ensemble learning'. IEEE/ACM Transactions on Computational 

Biology and Bioinformatics (TCBB), 14 (5), pp. 1165-1172. 

Rodriguez, J.J., Kuncheva, L.I. and Alonso, C.J. (2006) 'Rotation forest: A new classifier 

ensemble method'. IEEE transactions on pattern analysis and machine intelligence, 28 

(10), pp. 1619-1630. 

Schapire, R.E. (1990) 'The strength of weak learnability'. Machine learning, 5 (2), pp. 197-227. 

van Laarhoven, T., Nabuurs, S.B. and Marchiori, E. (2011) 'Gaussian interaction profile kernels 

for predicting drug–target interaction'. Bioinformatics, 27 (21), pp. 3036-3043. 

Wang, L. et al. (2017) 'An ensemble approach for large-scale identification of protein-protein 

interactions using the alignments of multiple sequences'. Oncotarget, 8 (3), pp. 5149. 

Xuan, P. et al. (2013) 'Prediction of microRNAs associated with human diseases based on 

weighted k most similar neighbors'. PloS one, 8 (8), pp. e70204. 

Yi, H.-C. et al. (2018) 'A deep learning framework for robust and accurate prediction of ncRNA-

protein interactions using evolutionary information'. Molecular Therapy-Nucleic Acids, 

11 337-344. 

 


	A Learning-Based Method for LncRNA-Disease Association Identification Combing Similarity Information and Rotation Forest
	Introduction
	Results
	Leave-One-Out Cross-Validation
	Five-fold Cross-Validation
	Compared with Other Classifiers
	Compared with Other Methods
	Case Study

	Discussion
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


