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Tuberculous meningitis (TBM) is the most severe form of extrapulmonary tuberculosis

(TB) that arises when a caseating meningeal granuloma discharges its contents into

the subarachnoid space. It accounts for ∼1% of all disease caused by Mycobacterium

tuberculosis and the age of peak incidence is from 2–4 years. The exact pathogenesis of

TBM is still not fully understood and the mechanism(s) by which the bacilli initially invade

the blood-brain-barrier are still to be elucidated. This study investigated the involvement

of the host genome in TBM susceptibility, by considering common variants (minor allele

frequency (MAF) >5%) using microarray genotyping and rare variants (MAF<1%) via

exome sequencing. A total of 123 TBM cases, 400 pulmonary TB (pTB) cases and 477

healthy controls were genotyped on the MEGA array. A genome-wide association study

(GWAS) comparing 114 TBM cases to 395 healthy controls showed no association with

TBM susceptibility. A second analysis comparing 114 TBM cases to 382 pTB cases

was conducted to investigate variants associated with different TB phenotypes. No

significant associations were found with progression from pTB to TBM. Ten TBM cases

and 10 healthy controls were exome sequenced. Gene set association tests SKAT-O

and SKAT Common Rare were used to assess the association of rare SNPs and the

cumulative effect of both common and rare SNPs with susceptibility to TBM, respectively.

Ingenuity Pathway Analysis (IPA) of the top-hits of the SKAT-O analysis showed that

NOD2 and CYP4F2 are both important in TBM pathogenesis and highlighted these

as targets for future study. For the SKAT Common Rare analysis Centriolar Coiled-Coil

Protein 110 (CCP110)was nominally associated (p= 5.89x10−6) with TBM susceptibility.

In addition, several top-hit genes ascribed to the development of the central nervous

system (CNS) and innate immune system regulation were identified. Exome sequencing

and GWAS of our TBM cohort has identified a single previously undescribed association

of CCP110 with TBM susceptibility. These results advance our understanding of TBM

in terms of both variants and genes that influence susceptibility. In addition, several

candidate genes involved in innate immunity have been identified for further genotypic

and functional investigation.
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INTRODUCTION

Tuberculous meningitis (TBM) is the most severe form of
extrapulmonary tuberculosis (TB) that arises when a caseating
meningeal granuloma (Rich focus) discharges its contents into
the subarachnoid space. It occurs most often in young children
between the ages of 2 and 4 years (1, 2). This devastating form of
TB generally occurs within a few of months following primary
infection (3). Although the infectious agent, Mycobacterium
tuberculosis (M.tb), is the same for TBM and pulmonary
TB (pTB), the exact pathogenesis of TBM is still not fully
understood (2). The dissemination is likely haematogenous
from blood vessels of the sub-arachnoid space, leading to
detrimental inflammation of the surrounding meningeal tissues.
TBM represents only 1% of the total TB burden worldwide, but
is the TB phenotype with the highest morbidity and mortality–an
estimated 50% of patients do not survive or suffer neurological
sequelae and complications (4). In the Western Cape of South
Africa, the incidence rate was 31.5/100 000 in 1992, measured
in children under 1 year old (5). The high number of South
Africans living with HIV, 7.8 million in 2020 (6), has a major
influence on the high prevalence of both TBM and TB in
general. The mortality rate of HIV and TBM coinfection has
been reported to be at 60% in a Vietnamese population (7). HIV
coinfection was not found to alter the clinical presentation of
the disease although it increased the likelihood for presentation
with additional forms of extrapulmonary TB and decreased the
survival rate of patients (8).

Host genetic susceptibility is another known risk factor
for active TB, as is evident from the results of twin studies–
monozygotic twins have higher concordance for the disease
than dizygotic twins (9–11). Human genetic susceptibility to
active TB has since been investigated in multiple genome-wide
association studies (GWAS) and candidate gene associations
studies in cohorts of various ethnic backgrounds (12–26).
While results are rarely concordant between populations,
GWAS have identified significantly associated variants and
meta-analysis of toll-like receptor (TLR) candidate gene
associations have identified significantly associated variants
across multiple populations (27–29). The feasibility of using
next generation sequencing technologies was demonstrated
by an exome sequencing study of five participants (three with
a history of active TB and two with a positive TB skin test
indicative of latent M.tb infection) (30). This small-scale pilot
study presented several potential candidate genes for further
investigation. An association study making use of exome
sequencing data from 119 pulmonary Indian TB cases and
household controls reported novel associations with variants
in the Sialic Acid Binding Ig Like Lectin 15 (SIGLEC15) and
Major Histocompatibility Complex, Class II, DR Alpha (HLA-
DRA) genes (31). Exome sequencing data also allowed the
identification of a missense tyrosine kinase 2 (TYK2) gene
variant, P1104A, which selectively disrupts the induction of
interferon-γ by interleukin-23 and is a common monogenic
etiology of tuberculosis in non-European countries where TB is
endemic (32). This same variant may account for ∼1% of TB in
Europeans (33).

Genetic susceptibility to TBM has been researched less
intensively and with older genotyping technologies, but these
studies using TBM cohorts have identified associations with
specific candidate genes and variants first associated with pTB.
The C allele of g.597T>C in the toll-like receptor 2 (TLR2)
gene was associated with increased susceptibility to TBM
in a Vietnamese cohort when TBM, miliary TB and severe
neurological symptoms were concurrent [p= 0.0002 (OR= 5.70,
95% CI: 1.81–18.0)] (34). Polymorphisms in TLR2 may alter
the heterodimerisation capability of TLR2 with either TLR1 or
TLR6 and thus affect the capacity for ligand recognition. Further
studies have linked SNPs in genes such as interferon-γ (IFN-
γ ), interleukin-4 (IL-4) and toll-interleukin 1 receptor domain
containing adaptor protein (TIRAP) with increased susceptibility
to TBM (35–38). While this extrapolated approach based on
pTB susceptibility provides valuable information, it is likely
to miss TBM-specific associations, such as that of leukotriene
A4 hydrolase (LTA4H) which regulates the balance between
pro- and anti-inflammatory cytokines (39). The homozygous
CC genotype of the LTA4H promoter rs17525495 variant
leads to an anti-inflammatory phenotype which lowers tumor
necrosis factor alpha (TNF-α) to detrimental levels. Conversely
TT genotypes lead to a hyper-inflammatory phenotype and
high TNF-α concentrations. Heterozygous genotypes maintain
the delicate balance between the pro- and anti-inflammatory
responses and protects against pTB and TBM in a Vietnamese
population (40, 41). Heterozygote advantage is uncommon and
suggests that dysregulation of the inflammatory response is
linked to TBM susceptibility (42). The rs17525496 variant was
also associated with survival from TBM in Vietnam, but not in
Indonesia (43–45).

The present study made use of a genome-wide approach and
exome sequencing in a South African population to determine
if single nucleotide polymorphisms (SNPs) are associated with
increased susceptibility to TBM at a genome-wide significant
level. Here we report on GWAS between TBM cases and healthy
controls and between TBM cases and pTB, using pTB cases and
controls from our previous GWAS (19). This study represents the
first GWAS using a TBM cohort from South Africa and includes
exome sequencing data generated for this extreme TB phenotype.

MATERIALS AND METHODS

Setting
The Western Cape Province has one of the highest TB incidence
rates in the world, 681 per 100 000, as reported in 2015 (46).
This province also has one of the highest TBM incidence rates
in the world, 31.5 per 100 000 in children younger than 1 year
(47). Population genetics analyses have revealed a complex five-
way admixture in individuals from the Western Cape (SAC)
which includes contributions from European, East Asian, South
Asian, Bantu-speaking African and Khoe-San populations (48).
To account for the possible effects of multiple contributing
ancestral populations, it is necessary to correct for population
stratification in our genetic analyses (49).
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Study Participants
TBM Study Participants
HIV-negative TBM patient samples were collected and stored as
part of ongoing recruitment at Tygerberg Children’s Hospital,
Cape Town, South Africa since 1991. Approximately 3 TBM cases
are diagnosed per month. Diagnosis is classified into two sub-
categories “Definite TBM” and “Probable TBM. Definite TBM
was diagnosed in cases where AFB were seen on CSFmicroscopy,
positive CSF Mycobacterium tuberculosis culture or GeneXpert.
Probable TBM was diagnosed when a score of 12 or more was
achieved using the uniform TBM research case definition (50).
Population and language information was collected for each
individual recruited for the study. The TBM participants self-
identified as SAC (n= 96) or Xhosa (n= 30) individuals. Sample
characteristics, including sex, age and ancestry proportions, are
shown in Table 1.

Pulmonary TB Patients
Pulmonary TB patients (n = 382) included in the study self-
identified as part of the SAC population and were recruited from
two metropolitan areas of Cape Town. These areas were selected
due to the high TB incidence (1 340 per 100 000) and low HIV
prevalence (∼2% of the population) at the time of sampling
(51, 52). All study participants were HIV negative, unrelated, and
over 18 years of age. Diagnosis of pTB was determined through
bacteriological confirmation using either smear and/or culture
methods for positivity, as described previously (53).

Healthy Control Individuals
Control samples (n = 395) were collected from the same
metropolitan areas as the pTB cases and therefore share the same
environmental and socio-economic circumstances. Controls
were over the age of 18, HIV-negative and unrelated to one
another and to the cases (19, 53). Additionally, control samples
were defined as individuals who had never had a case of active
TB in their lifetime, but are assumed to be latently infected, based
on the fact that over 80% of individuals in the area over the age of
15 are tuberculin skin test (TST) positive, indicating significant
exposure of control individuals toM.tb (54).

Genotyping
DNA samples were submitted for genotyping at the Hussman
Institute for Human Genomics (HIHG) (University of Miami,
Florida, USA) using the Illumina Multi-Ethnic Genotyping
Array (MEGA) platform (Illumina San Diego, CA, USA) (19).
Considering the available sample size, we had 82% power at an
alpha level of 0.05 to detect an association (additive model) with
an odds ratio of 5, a minor allele frequency (MAF) of 0.01, and a
disease prevalence of 1% as per the CaTS power calculator (55).

Array Data Quality Control
PLINK v1.07 (56) was used for quality control (QC) of the array
data. First duplicated and improperly mapped (chromosome
0) SNPs were removed from the data. Next variant QC was
performed by filtering for HardyWeinberg equilibrium (controls
only, p < 0.05), genotype missingness (>10%) and MAF
(<5%). Following this sample QC was conducted by filtering

for individual missingness (>10%), cryptic relatedness (cut-off=

>0.185) and sex concordance. Finally, the sex chromosomes were
removed as only autosomal regions were of interest for this study.

Exome Sequencing
The input genomic DNA was sonicated to fragment the
DNA to a size of 150 bp and quality and size assessment
performed using the Agilent Bioanalyser 2100 and DNA 1000
chip and reagent kit (Agilent Technologies Santa Clara, CA,
USA). Targeted enrichment for exonic sites was done using
the Nextera XT enrichment kit (Illumina San Diego, CA,
USA) which targeted >20 000 genes between 40 and 60 x
read depth. A total of 6 µg of DNA was used for library
preparation for the Illumina Nextera XT library (Illumina
San Diego, CA, USA). Paired-end sequencing was performed
on the Illumina HiSeq 2500 (San Diego, CA, USA) at the
Christian-Albrechts University of Kiel (CAU sequencing Kiel,
Germany). Sequencing data was received in.fastq format and
data quality was analyzed using FastQC v0.11.5. Burrows-
Wheeler Aligner (BWA)-MEM (version 0.7.17), with default
parameters, was used to align all sequencing reads to the human
reference genome GRCh37p13 (https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.13/). The quality of the aligned reads
was assessed using SAMtools (version 1.9). Duplicate reads
were removed using Picard v2.2.1 (http://picard.sourceforge.
net/). Variants were called using HaplotypeCaller producing
a single variant called format (VCF) file for all samples.
Variant annotation was done using wANNOVAR software. The
annotated VCF file was filtered to prioritize rare SNPs with
a MAF of 0.01 and below in both the 1000 Genomes Project
(57) and Exome Sequencing Project (ESP6500si) (58). Final
MAF filtration was done using frequency information from the
Exome Aggregation Consortium (ExAC) (59). Non-synonymous
variants, frameshift SNPs, SNPs that induced stop codon gains or
losses, splice-site SNPs and insertions and deletions were retained
during filtration. Filtration for the retention of conserved sites
was performed based on PhyloP (60) and GERP++ scores
(61) and SNPs with negative scores from both conservation
annotators were removed.

Admixture Inference
The SAC population is a five-way admixed population
with ancestral contributions from Bantu-speaking African
populations, Khoe-San, Europeans and South and East
Asians, while Xhosa individuals also display admixture. To
avoid confounding during association testing the ancestral
components are included as covariates (53). Admixture was
inferred on the autosomes as described previously (19). Briefly
the ADMIXTURE (v1.3) software was used in combination
with reference genotyping data of the five ancestral populations
(62). The reference populations used to infer ancestry were
European (CEU) and South Asian (Gujarati Indians in Houston,
Texas, and Pathan of Punjab) extracted from the 1000 Genomes
Phase 3 data (63), East Asian (Han Chinese in Beijing, China),
African (Luhya in Webuye, Kenya, Bantu-speaking African,
Yoruba from Nigeria) and San (Nama/Khomani) (64, 65). Four
ancestral components (African, San, European and South Asian)
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TABLE 1 | Sample characteristics including sex, age, and ancestry proportions per study arm.

Study

Exome sequencinga GWAS TBM vs. Controls GWAS TBM vs. pTB

Cases Number of cases 10 114 114

Nr Males (prop) 5 (0.50) 59 (0.52) 59 (0.52)

Age (mean ± SD) 5.1 ± 3.93 5.24 ± 4.86 5.24 ± 4.86

African Khoe-San [IQR] 0.27 [0.24–0.35] 0.29 [0.22–0.38] 0.29 [0.22–0.38]

African non-San [IQR] 0.42 [0.31–0.74] 0.36 [0.24–0.65] 0.36 [0.24–0.65]

European [IQR] 0.09 [1 x 10.5–0.14] 0.04 [1 x 10.5–0.10] 0.04 [1 x 10.5–0.10]

South Asian [IQR] 0.08 [1 x 10.5–0.14] 0.19 [0.05–0.26] 0.19 [0.05–0.26]

Controls Number of controls 10 395 382

Nr Males (prop) 5 (0.50) 118 (0.30) 212 (0.55)

Age (mean ± SD) 49.65 ± 12.79 30.88 ± 13.10 36.32 ± 11.04

African Khoe-San [IQR] 0.31 [0.27–0.45] 0.25 [0.19–0.34] 0.31 [0.20–0.40]

African non-San [IQR] 0.20 [0.15–0.24] 0.27 [0.19–0.38] 0.24 [0.15–0.36]

European [IQR] 0.24 [0.22–0.29] 0.12 [0.05–0.20] 0.17 [0.12–0.22]

South Asian [IQR] 0.11 [0.08–0.15] 0.25 [0.18–0.31] 0.15 [0.10–0.21]

a The exome sequencing was exploratory and limited to 20 participants due to the budget available.

IQR, Interquartile range; SD, Standard deviation; Prop, Proportion; GWAS, Genome-Wide Association Study.

To avoid linear dependency in the data, the East Asian component was not added to the model.

P-values reflect the significance of the association of each factor with TB, adjusted for the other factors.

were included as covariates in the logistic regression association
testing with the smallest component (East Asian) excluded to
avoid complete separation of the data (66).

Statistical Analysis
Genome-Wide Association Analysis
Association testing for both TBM vs. healthy controls and TBM
vs. pTB cases was done using PLINK (v1.07) to implement an
additive logistic regressionmodel (56). Both analyses adjusted for
confounding effects by including sex and the four main ancestral
components as covariates. Age was not included as a covariate
due to the large difference between the ages of TBM cases
compared to both healthy controls and pTB cases. The genome-
wide significance threshold for the GWAS analysis was set to
5.0 x 10−8 (67). The variant effect predictor (VEP) accessible via
the Ensembl genome browser was used determine the genes and
regulatory regions affected by changes to the nucleotide sequence
(68). Additionally, transcription factor binding site annotations
were accessed using the UCSC Table Browser facility (69) and
functional annotation of the GWAS summary statistics was done
using FUMA (70, 71).

FUMA Functional Annotation
To further analyze the GWAS results, summary statistics from
both analyses (TBM vs. healthy control and TBM vs. pTB)
were functionally annotated using the freely available online
tool FUMA (70, 71). GWAS summary statistics were used
for a gene-based and gene set analysis to identify potential
genes of interest. Potential candidate genes were then further
investigated by inferring differential expression (DE) and tissue
specific expression as well as cis eQTLmarkers, based on publicly

available reference databases. A lenient genome-wide significance
threshold of 1e−5 was used for functional enrichment annotation.

SKAT-O and SKAT Common Rare Analysis
SKAT-O analysis was performed to assess the rare-variant burden
across all genes containing rare SNPs identified using exome
sequencing. Using the R free programming environment, with
the SKAT R package, gene set input files (SKAT-specific SSD and
SSD.Info files) were created by grouping SNPs into genes, based
on the SKAT provided gene set reference file (72, 73).

Prior to running SKAT-O, a null model was created to
aid in the determination of p-values in the analysis. The null
model was constructed to incorporate dichotomous phenotypes
of TBM patients and healthy controls regressed against the
study covariates. A single covariate of gender was incorporated
into the model. During the construction of the null model,
only sex was included as a covariate, as including any of the
others in conjunction with sex resulted in complete separation
of the data. The test was conducted under the small-sample size
kurtosis adjustment, implemented by the SKAT package, as the
sample size was under 2 000 individuals. Optimisation of the
test statistics was modulated by the program and tested across
the default distribution of ρ (0, 0.12, 0.22, 0.32, 0.42, 0.52, 0.5,
and 1) to minimize the p-value produced during analysis, which
was then used as the test p-value. P-values were Bonferroni
adjusted for multiple testing and the significance threshold was
set to p ≤ 0.05.

To test the combined effect association of both common and
rare SNPs in the analysis, the common/rare SNP association test
as part of the SKAT R package was used (72, 73). Gene set files
included common variants for this analysis, and the Null model
was created as for the SKAT-O analysis and the common rare
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FIGURE 1 | Overview of the SNP prioritization procedures followed and association analyses used in the exome sequencing arm of the study. SKAT, Sequence Kernel

Association Test.

FIGURE 2 | Gene-based association testing results obtained from the FUMA analysis of the TBM vs. healthy control GWAS summary statistics.
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analysis was implemented using the R package, SKAT, Common
Rare function (72–74). The common and rare variants were
tested in two groups separated based on an adaptiveMAF value as
a function of the total sample size. The p-values of the two groups
were then combined and weights assigned according to MAF on
a per SNP basis. Test results were corrected for multiple testing
at a p-value significance cut-off of 0.05. An outline of the SNP
filtration and prioritization procedures for the two SKAT analysis
is shown in Figure 1.

Ingenuity Pathway Analysis of SKAT Results
Functional assignment and pathway analysis of the association
results was done to prioritize genes of interest from the
SKAT Common-Rare and SKAT-O analyses. Association results
were filtered for the retention of unadjusted p-values below a
threshold of 0.01, allowing for sufficient genes for input. Using
IPA core analysis, the top hits from both SKAT association
tests were assessed independently (75). Analysis included
overrepresentation analysis of pathways assigned to the input
genes, network construction between gene products and genes,
functional assignment, disease associations and assessment of
shared regulatory molecules of the input genes. Analysis filtration
parameters were defined to draw information from the Ingenuity
Knowledge Base (genes only). Network construction was not
constrained as exploration into related genes was desired, thus
direct, and indirect relationships were used. Filtration parameters
for results pertaining only to Homo sapiens were applied to
exclude any gene functions annotated through homology from
other species. Additionally, filtration was applied to include only
experimentally confirmed interactions, thus providingmaximum
confidence in the results.

RESULTS

Genome-Wide Association Studies
Following QC of the MEGA array data 1 465 892 SNPs in 116
TBM cases, 382 pTB cases and 430 healthy controls remained for
downstream analysis.

TBM Cases vs. Healthy Controls
No significant associations with TBM susceptibility were found
(Supplementary Table 1). The lowest p-value was that of
rs77857429 [p = 5.68x10−6 (OR = 4.28; 95% CI: 2.28–8.02)], an
intronic SNP located in the Glucosylceramidase Beta 3 (GBA3)
gene. Four of the SNPs in the top hits are in transcription factor
binding sites (Supplementary Table 2). None of the SNPs were
exonic. The Plexin B2 gene (PLXNB2) encodes several transcripts
and, depending on the transcript, the rs1127000 SNP is either a
splice site variant or a synonymous SNP. However, using VEP,
rs1127000 was predicted to be of low effect when all transcripts
were considered (68). Variants in genes previously associated
with TB and TBM were nominally associated with disease (p
< 0.05), but no associations reached genome wide significance
(Supplementary Table 3).

TBM Cases vs. pTB Cases
No significant associations were identified when comparing
the pTB and TBM cases (Supplementary Table 4, significance
threshold p = 5.0x10−8). The SNP with the lowest p-value
was rs2679308 (p = 5.11 x 10−6), located in an intron in
LOC102724084, an uncharacterised gene. The top hits were
annotated for gene, SNP type and transcription factor binding
site annotations (Supplementary Table 5). The rs2251220 SNP,
in KIAA1549, induces a non-synonymous change from Serine
to Leucine in the protein. VEP analysis of rs2251220 using
SiFT and Polyphen plugins classified the SNP as tolerated
and benign with scores of 0.1 and 0.053, respectively. The
rs4309447 and rs2140779 SNPs are in transcription factor
binding sites. The rs2140779 SNP was located in a transcription
factor binding site upstream of the Glioma-Associated Oncogene
Family Zinc Finger 2 (GLI2) gene and is bound by the Jun
transcription factor. This suggests a possible role in both
the cis- and trans-regulation of several genes. Comparing
these TBM vs. PTB results with previously associated TB and
TBM candidate genes also only identified nominal associations
(Supplementary Table 6).

Functional Annotation of GWAS Results
The FUMA gene-based and gene set analysis revealed significant
associations for the TBM vs. healthy controls following
Bonferroni correction for testing 19 108 genes (Figure 2,
Supplementary Table 7). The long non-coding RNA (lncRNA)
AL022328.1 was significantly associated with disease (p-
value: 2.0554e−6), however its role in TBM susceptibility is
unclear and the functional impact of this lncRNA has not
been fully established. While not reaching the Bonferroni
corrected significance level among the most significant
associations MAPK11 (mitogen-activated protein kinase
11) is in linkage disequilibrium with AL022328.1 and can thus
be considered as a single locus (Supplementary Table 7 and
Supplementary Figure 1). MAPK11, along with the next most
significant association in the same genomic locus, PLXNB2, are
strong candidates for TBM susceptibility as MAPK genes have
previously been implicated in TB susceptibility and PLXNB2 is
involved in immune response regulation (76, 77). The glyoxalase
domain containing 4 gene (GLOD4), was also among the top
hits, but its contribution to TBM susceptibility is not known.
Gene set analysis compares the p-value distribution (from the
gene-based associations) of genes belonging to certain pathways
to each other to determine if any gene sets are significantly
associated with TBM compared to all other gene sets. Genes
involved in ADP ribosylation were significantly associated with
TBM following Bonferroni correction (p-value: 1.26e−4). ADP
ribosylation is a reversable protein post-translational modifier
controlling major cellular and biological processes including
cell proliferation and differentiation and immune responses and
could impact TBM susceptibility (78). FUMA analysis did not
reveal any further significant associations (DE, tissue specific
expression, eQTL or enrichment) for both the TBM vs. healthy
control and TBM vs. pTB analysis.
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Exome Sequencing Results
The depth of the exome sequencing ranged from 35 x to 82
x. The mean depth across all 20 individuals was 52 x. A total
of 107 448 SNPs were called across the 20 study participants.
SNP prioritization for the SKAT-O analysis removed 63 828
SNPs that were above a MAF of 1%. An additional 20 131
SNPs were removed during filtration for the inclusion of non-
synonymous and frameshift inducing SNPs, stop gains/losses,
splice-site SNPs and insertions and deletions. A further 6 761
SNPs were removed because of the conservation score, resulting
in 16 728 SNPs for SKAT-O analysis. The SKAT Common
Rare prioritization removed 35 589 SNPs to prioritize non-
synonymous and frameshift inducing SNPs. A further 18 620
variants were removed based upon conservation score and 53 239
SNPs remained for SKAT Common Rare analysis.

SKAT-O analysis was performed on 8 322 gene-sets containing
16 728 SNPs using a dichotomous phenotype of TBM patients
compared to healthy controls. None of the gene-sets were found
to be associated after correcting for multiple testing using a
Bonferroni significance level of p = 0.05. The gene-set with the
lowest p-value was that of Zinc Finger Homeobox-3 (ZFHX3), p
= 4.63 x 10−4.

SKAT Common Rare analysis was performed on 13 270 gene-
sets and 53 239 SNPs, and a single significant association was
identified by comparing TBM cases and controls after correcting
for multiple testing. The Centriolar Coiled-Coil Protein 110kDa
(CCP110) gene was found to be borderline associated with TBM
(p = 5.89x10−6) after correcting for multiple testing, with the
combined effects of 1 rare SNP and 2 common SNPs contributing
to the association.

IPA Analysis of SKAT-O and SKAT Common Rare

Results
IPA based pathway enrichment of the SKAT-O results
revealed the lowest p-value and largest gene overlap for the
α-tocopherol degradation pathway (p-value, 25% overlap), with
the cytochrome P450 family 4 subfamily F member 2 (CYP4F2)
gene being the main contributor (Supplementary Table 8,
Supplementary Figure 2). Functional annotation of genes
related to immune regulation, apoptosis, and autophagy again
implicated CYP4F2 in several functions, but otherwise yielded
no relevant results (Supplementary Table 9). Finally, when
investigating enrichment for genes involved in physiological
system development the nervous system development had the
lowest p-value, with the FERM, ARH/RhoGEF and Pleckstrin
Domain Protein 2 (FARP2) gene driving this enrichment
(Supplementary Table 10). While FARP2 has been implicated
in CNS development, it is unlikely that FARP2 plays a role in
TBM pathogenesis as neurite remodeling is likely to affect neural
connections and development (79). Additionally the Nucleotide
binding and oligomerisation domain 2 (NOD2/CARD15) gene,
involved in pathogen recognition and immune responses (80)
and previously investigated as a TB candidate gene (81), was
implicated in multiple developmental pathways, but the impact
of this on TBM is unclear.

Pathway enrichment of the SKAT common rare analysis
identified the S-methyl-5’-thioadenosine Degradation II

pathway as the most significant, however as only one
gene, methylthioadenosine phosphorylase (MTAP), was
implicated in this pathway it was not investigated further
(Supplementary Table 11). Enrichment of regulatory factors
and control of the target genes identified several genes found
to be under the control of common regulatory elements
(Supplementary Table 12). CD44 was found to target four genes
in the input dataset, namely DNA (cytosine-5) methyltransferase
1 (DNMT1), interferon induced transmembrane protein 2
(IFITM2), interleukin 1 receptor associated kinase 3 (IRAK3)
and programmed cell death 4 (PDCD4). Both IFITM2 and
IRAK3 play important roles in immune signal transduction
pathways. Enrichment for physiological system development
again highlighted genes involved in neurological development
among the top hits (Supplementary Table 13), with alpha 2
macroglobulin (A2M) being of particular interest. This result
was relevant given that hits for the enrichment of genes involved
in the proper development and functioning of neurological,
embryonic, hematological and humoral immune response
systems were all highlighted. This could point toward defects in
the development and function of several critical physiological
functions forming part of the etiology of TBM.

Network analysis showed that two of the input genes,
receptor tyrosine kinase-like orphan receptor 1 (ROR1)
and DNMT1, both regulate cadherin-1 (CDH1), a critical
tight junction protein in the blood-brain barrier (BBB)
(Supplementary Figure 3). ROR1 was also identified in several
functional enrichments (Supplementary Table 14), including
cell morphology, cellular assembly and organization and cellular
function and maintenance. ROR1 may regulate other critical
tight junction proteins at the BBB through the use of the
transcription factor Snail-1 (SNAI1) (82).

Finally, the top hit genes were analyzed for possible
involvement in pathways that have been previously implicated
in TBM or pTB pathogenesis, for example immune system
regulation and autophagy related processes. An additional 12
genes (Supplementary Table 15) were found that may play
important roles in known TBM pathogenesis pathways but have
yet to be investigated in the context of this disease.

DISCUSSION

GWAS–TBM vs. Healthy Controls
Using logistic regression for SNP testing and correction for
multiple testing and covariates, no significant genome-wide
associations with TBM disease were detected. Three of the top
four SNPs (rs3760495, rs2750007 and rs2273454) were in or
around the Glyoxalase Domain Containing 4 (GLOD4) gene.
In addition to this, all three displayed odds ratios pointing
toward being susceptibility factors. Further investigation into
the biological relevance of SNPs showed that rs3760495 and
rs2750007 were intronic and rs2273454 was located upstream
of GLOD4 (Supplementary Table 2). All 3 of these SNPs were
located in transcription factor binding sites bound by multiple
transcription factors. Of particular interest was rs2273454 which
was found to be in a binding site for RNA polymerase
II. This points to the SNP being located in the GLOD4
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promoter region and may affect gene expression. As a result,
future investigation into possible diminished RNA polymerase
II binding and therefore diminished transcription of GLOD4
as a result of rs2273454 should be investigated. Gene-based
association testing (implemented in FUMA) based on the GWAS
summary statistics revealed a significant association in a lncRNA
with unknown implication in TBM susceptibility. While not
reaching the Bonferroni significance threshold genes among
the top hits are of potential interest for further investigation,
including GLOD4, PLEXNB2 and MAPK11. The function of
GLOD4 is poorly defined but it has been shown to interact
with ADP ribosylation mechanisms, which is of interest here as
the FUMA gene set analysis identified ADP ribosylation related
genes to be significantly enriched for, based on the GWAS
summary statistics (83, 84). As ADP ribosylation is involved
in cell proliferation and differentiation and immune responses
(78), GLOD4 could influence TBM susceptibility by influencing
ADP ribosylation.MAPK11 and PLEXNB2 have immune related
implications and considering the implication of MAPK in pTB
susceptibility these genes are of potential interest for future
investigations (76, 77).

Considering the sample size used in the GWAS, the lack of
genome-wide association is likely attributable to the diminished
study power observed when using a study population of 123
TBM patients and 477 healthy controls. This does not imply
that these SNPs may not be associated with TBM in other
population groups because of allele frequency differences or
when examined in a larger sample size with greater statistical
power to detect associations.

GWAS–TBM Cases vs. pTB Cases
The GWAS of TBM cases compared to pTB cases did not yield
any SNPs that were associated with progression from pTB to
TBM (Supplementary Table 4). A single exonic SNP, rs2251220,
was amongst the top hits. Assessment of the substitution induced
by rs2251220 using the prediction tools SiFT and Polyphen-2
determined that the non-synonymous change from a Serine to
Leucine was benign and tolerated, respectively (85, 86). SNP
selection for the MEGA array was based primarily around
the selection of tag-SNPs therefore the location of the SNP
being investigated is often not the true location of the SNP
that is driving the effects seen in this study. Therefore, one
cannot discount that these SNPs may be associated with TBM
progression in other populations with different allele frequency
spectrums. In that case, the LD structure surrounding each SNP
would require investigation to determine the SNP truly driving
the association and determine its biological relevance.

Exome Sequencing
SKAT-O
Pathway enrichment analysis identified the CYP4F2 gene
(Supplementary Table 8, Supplementary Figure 2) as a
significant part of the α-tocopherol degradation pathway
(penrichment = 1x10−3). Further functional investigation of
CYP4F2 showed involvement in the early stages of leukotriene
B4 (LTB4) degradation (75, 87, 88). This is of interest as the
LTA4H locus has previously been shown to play a role in in

TBM susceptibility due to its effects on TNF-α levels (40, 41).
Specifically, the control of TNF-α concentrations was found
to differ based on genotype. Wild-type homozygotes showed
hyper-inflammation due to an excess of LTB4, which in turn led
to an excessive TNF-α response. The involvement of CYP4F2 in
LTB4 regulation is mediated by degradation of LTB4 through ω-
hydroxylation leading to the attenuation of TNF-α signaling thus
modulating the inflammatory response along with the LTA4H
enzyme (88). In addition, CYP4F2 and CYP4F3 have been shown
to metabolize lipoxin A4 (LXA4) and lipoxin B4 (LXB4), both
known anti-inflammatory lipoxins (89). An excess of LXA4 in
particular has been shown to result in a hypo-inflammatory
phenotype due to its anti-inflammatory actions on TNF-α.
Therefore, a contributing factor to this excessive LTB4 and
LXA4 could be attributed to non-synonymous SNPs in CYP4F2
causing a loss of protein function, with rs3952537 predicted to
be damaging by SiFT, Polyphen-2 and loss-of-function protein
effect predictions as provided by the variant effect predictor
(VEP) accessed through Ensembl (68).

Nucleotide binding and oligomerisation domain (NOD2)
formerly known as CARD15, was found to be important in
the development of three independent physiological systems
including embryonic, hair and skin and renal developmental
processes. NOD2, however, is of greatest interest for its role in
innate immunity and is expressed on the surface of astrocytes
and microglia in the CNS and functions as a recognition
receptor for S. pneumoniae LPS derived muramyl dipeptide
(90). Additionally, it has been implicated in the generation
of IL-6 and TNF-α pro-inflammatory cytokines through the
stimulation of NFκB toward other forms of bacterial meningitis
caused by N. meningitidis and B. bergdorferi (80). Through the
use of two murine models of NOD2+/+ and NOD2−/−, acute
CNS inflammation was demonstrated with increased levels of
CCL3, TNF-α and decreased levels of anti-inflammatory IL-10
in NOD2+/+ mice (90). This demonstrates a plausible role for
NOD2 in the generation of a detrimental inflammatory response
as observed in TBM.

SKAT Common Rare
SKAT Common Rare analysis found a single significant
gene-set (CCP110) after correction for gender and multiple
testing.CCP110 functions in cell-cyclemaintenance, centrosomal
duplication and is a regulator of ciliogenesis (91, 92), but the
impact on TBM is unknown. Interestingly, in pneumococcal
meningitis the loss of ciliary function of the ependyma
contributes to the neuropathology observed (93).

The IPA analysis of the SKAT Common Rare top associations
revealed six genes known to function in the development of
the nervous system. This is critical in TBM pathogenesis as
incomplete or poor development of protection mechanisms in
crucial nervous system barriers such as the BBB, may expose
the nervous system to pathogenic attack. One of the genes
involved in nervous system development, alpha 2 macroglobulin
(A2M), functions as a protease inhibitor for all four classes
of proteases and is also a cytokine transporter for TNF-α,
IL-6 and IL-1β amongst others (94). A2M along with IL-6
and C-Reactive-Protein (CRP) levels in the CSF can indicate
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blood-cerebrospinal fluid barrier (BCB) damage in bacterial
meningitis as part of the acute phase reaction (95). This gene
is also a possible biomarker for disease progression in both
pTB and all forms of EPTB largely due to its role in IL-
6 transport (96, 97). It is therefore a candidate for future
studies as a potential biomarker and for functional studies
in the context of TBM. Given the small sample size of the
exome sequencing data, these findings should be considered
as exploratory.

CONCLUSION

This study contributes significantly to the TB host genetics
field, as it presents the first exome sequencing study and
GWAS of South African children with TBM, giving insight into
manifestations of TBM patients in this setting. The overarching
aim of this study was to assess the contribution of common and
rare SNPs to TBM susceptibility.

GWAS and exome data analysis did not yield any strong
significant results, likely due to the limited sample size
(Table 1), stratification caused by the age difference between the
TBM, healthy controls and pTB samples and the population
stratification introduced by including both SAC and Xhosa
individuals with different ethnic backgrounds and degrees
of admixture. While we corrected for age in our analysis,
future studies could focus on reducing the age stratification
between cases and controls. Exploration of the GWAS and
exome SKAT results led to the identification of numerous
candidate genes (Supplementary Table 16) with implications in
immune response and CNS development that could have a
significant impact on TBM susceptibility and warrant further
investigation. The pathogenic mechanisms leading to infection
of the CNS and development of TBM are poorly understood
and investigation of the proposed candidate genes could
elucidate therapeutic targets to reduce the mortality rate of
TBM patients.

TBM represents an extreme form of TB where the
contribution of host genes and strain type are more likely
to determine disease presentation than environmental factors
(98). Our GWAS results support this hypothesis, since the
TBM cases and pTB patients share similar environmental and
economic circumstances. We also posit that defects during
CNS development may contribute to TBM development
rendering critical barriers such as the BBB or BCB vulnerable to
pathogenic invasion. This is one of the largest TBM collections
in Africa and therefore represents a valuable resource for
TBM research.

DATA AVAILABILITY STATEMENT

The summary statistics from the case-control cohort will be
made available to researchers on request, while access to the raw
data will only be available to researchers who meet the criteria
for access to confidential data after application to the Health
Research Ethics Committee of Stellenbosch University. Requests
can be sent to: MM, marlom@sun.ac.za.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Health Research Ethics Committee
of Stellenbosch University (Approval number 95/072 and
N09/07/085). Written informed consent to participate in
this study was provided by the participants or their legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

RT, RS, and JS contributed to TBM sample collection and
diagnosis. NB, BG, HS, CK, PH, EH, and MM made significant
contributions to the analysis and interpretation of data. The
work presented in the article was carried out in collaboration
between all authors. All authors made substantial contributions
to the conception or design of the work, critically revised the final
manuscript, and read and approved the final manuscript.

FUNDING

This research was partially funded by the South African
Government through the South African Medical Research
Council (SAMRC). Funding was also obtained from the South
African National Research Foundation (Grant No: 91481 toMM)
and Stellenbosch University.

ACKNOWLEDGMENTS

Our gratitude goes to the individuals who participated in the
study. We thank the Central Analytical Facilities of Stellenbosch
University for exome sequencing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2022.820168/full#supplementary-material

REFERENCES

1. van Leeuwen LM, van der Kuip M, Youssef SA, de Bruin A,

Bitter W, van Furth AM, et al. Modeling tuberculous meningitis in

zebrafish using Mycobacterium marinum. Dis Model Mech. (2014)

7:1111–22. doi: 10.1242/dmm.015453

2. Thwaites GE, van Toorn R, Schoeman J. Tuberculous meningitis:

more questions, still too few answers. Lancet Neurol. (2013)

12:999–1010. doi: 10.1016/S1474-4422(13)70168-6

3. Visser DH, Solomons RS, Ronacher K, van Well GT, Heymans MW, Walzl

G, et al. Host immune response to tuberculous meningitis. Clin Infect Dis Off

Publ Infect Dis Soc Am. (2015) 60:177–87. doi: 10.1093/cid/ciu781

4. Manyelo CM, Solomons RS, Walzl G, Chegou NN. Tuberculous meningitis:

pathogenesis, immune responses, diagnostic challenges, and the potential

of biomarker-based approaches. J Clin Microbiol. (2021) 59:e01771–

20. doi: 10.1128/JCM.01771-20

5. Berman S, Kibel MA, Fourie PB, Strebel PM. Childhood

tuberculosis and tuberculous meningitis: high incidence rates

Frontiers in Neurology | www.frontiersin.org 9 March 2022 | Volume 13 | Article 820168

https://www.frontiersin.org/articles/10.3389/fneur.2022.820168/full#supplementary-material
https://doi.org/10.1242/dmm.015453
https://doi.org/10.1016/S1474-4422(13)70168-6
https://doi.org/10.1093/cid/ciu781
https://doi.org/10.1128/JCM.01771-20
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schurz et al. TBM Genetic Susceptibility

in the Western Cape of South Africa. TuberLung Dis. (1992)

73:349–55. doi: 10.1016/0962-8479(92)90039-M

6. UNAIDS. UNAIDS: South Africa. Available online at: http://www.

unaidsrstesa.org/region/countries/south-africa

7. Török ME, Yen NTB, Chau TTH, Mai NTH, Phu NH, Mai PP, et al. Timing of

initiation of antiretroviral therapy in human immunodeficiency virus (HIV)–

associated tuberculous meningitis. Clin Infect Dis Off Publ Infect Dis Soc Am.

(2011) 52:1374–83. doi: 10.1093/cid/cir230

8. Thwaites GE, Bang ND, Dung NH, Quy HT, Oanh DTT, Thoa NTC, et al. The

influence of HIV infection on clinical presentation, response to treatment,

and outcome in adults with tuberculous meningitis. J Infect Dis. (2005)

192:2134–41. doi: 10.1086/498220

9. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey.

AmRevRespirDis. (1978) 117:621–4.

10. Kallmann FJ, Reisner D. Twin studies on the significance of genetic factors in

tuberculosis. AmRevTuberc. (1943) 47:549–547.

11. Simonds B. Tuberculosis in Twins. London, UK: Pitman Medical Publishing

Company (1963).

12. Chimusa ER, Zaitlen N, Daya M, Möller M, van Helden PD, Mulder

NJ, et al. Genome-wide association study of ancestry-specific TB risk in

the South African Coloured population. Hum Mol Genet. (2014) 23:796–

809. doi: 10.1093/hmg/ddt462

13. Consortium TWTCC. Genome-wide association study of 14,000 cases

of seven common diseases and 3,000 shared controls. Nature. (2007)

447:661. doi: 10.1038/nature05911

14. Curtis J, Luo Y, Zenner HL, Cuchet-Lourenço D, Wu C, Lo K, et al.

Susceptibility to tuberculosis is associated with variants in the ASAP1 gene

encoding a regulator of dendritic cell migration. Nat Genet. (2015) 47:523–

7. doi: 10.1038/ng.3248

15. Daya M, van der Merwe L, van Helden PD, Möller M, Hoal EG. The role of

ancestry in TB susceptibility of an admixed South African population. Tuberc

Edinb Scotl. (2014) 94:413–20. doi: 10.1016/j.tube.2014.03.012

16. Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W,

Wattanapokayakit S, Phromjai J, et al. Genome-wide association studies

of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis.

J Hum Genet. (2012) 57:363–7. doi: 10.1038/jhg.2012.35

17. Png E, Alisjahbana B, Sahiratmadja E, Marzuki S, Nelwan R, Balabanova Y, et

al. A genome wide association study of pulmonary tuberculosis susceptibility

in Indonesians. BMCMed Genet. (2012) 13:5. doi: 10.1186/1471-2350-13-5

18. Qi H, Zhang Y-B, Sun L, Chen C, Xu B, Xu F, et al. Discovery of susceptibility

loci associated with tuberculosis in Han Chinese. Hum Mol Genet. (2017)

26:4752–63. doi: 10.1093/hmg/ddx365

19. Schurz H, Kinnear CJ, Gignoux C, Wojcik G, van Helden PD,

Tromp G, et al. A sex-stratified genome-wide association study of

tuberculosis using a multi-ethnic genotyping array. Front Genet. (2018)

9:678. doi: 10.3389/fgene.2018.00678

20. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja

E, et al. Common variants at 11p13 are associated with susceptibility to

tuberculosis. Nat Genet. (2012) 44:257–9. doi: 10.1038/ng.1080

21. Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong

J. et al. Genome-wide association analyses identifies a susceptibility

locus for tuberculosis on chromosome 18q11. Nat Genet. (2010) 42:739–

41. doi: 10.1038/ng.639

22. Quistrebert J, Orlova M, Kerner G, Ton LT, Luong NT, Danh NT, et al.

Genome-wide association study of resistance to Mycobacterium tuberculosis

infection identifies a locus at 10q26.2 in three distinct populations. PLOS

Genet. (2021) 17:e1009392. doi: 10.1371/journal.pgen.1009392

23. Li M, Hu Y, Zhao B, Chen L, Huang H, Huai C, et al. A next

generation sequencing combined genome-wide association study identifies

novel tuberculosis susceptibility loci in Chinese population. Genomics. (2021)

113:2377–84. doi: 10.1016/j.ygeno.2021.05.035

24. Hong EP, Go MJ, Kim H-L, Park JW. Risk prediction

of pulmonary tuberculosis using genetic and conventional

risk factors in adult Korean population. PLoS ONE. (2017)

12:e0174642. doi: 10.1371/journal.pone.0174642

25. Zheng R, Li Z, He F, Liu H, Chen J, Chen J, et al. Genome-wide association

study identifies two risk loci for tuberculosis in Han Chinese. Nat Commun.

(2018) 9:4072. doi: 10.1038/s41467-018-06539-w

26. Naranbhai V. The role of host genetics (and Genomics) in tuberculosis.

Microbiol Spectr. (2016) 4. doi: 10.1128/microbiolspec.TBTB2-0011-2016

27. Schurz H, Daya M, Möller M, Hoal EG, Salie M. TLR1, 2, 4, 6 and 9 variants

associated with tuberculosis susceptibility: a systematic review and meta-

analysis. PLoS ONE. (2015) 10:e0139711. doi: 10.1371/journal.pone.0139711

28. Zhou Y, Zhang M. Associations between genetic polymorphisms of TLRs

and susceptibility to tuberculosis: a meta-analysis. Innate Immun. (2020)

26:75–83. doi: 10.1177/1753425919862354

29. Möller M, Kinnear CJ. Human global and population-specific genetic

susceptibility to Mycobacterium tuberculosis infection and disease. Curr Opin

Pulm Med. (2020) 26:302–10. doi: 10.1097/MCP.0000000000000672

30. Duncan C, Jamieson F, Mehaffy C. Preliminary evaluation of exome

sequencing to identify genetic markers of susceptibility to tuberculosis disease.

BMC Res Notes. (2015) 8:750. doi: 10.1186/s13104-015-1740-5

31. Bhattacharyya C, Majumder PP, Pandit B. An exome wide association study of

pulmonary tuberculosis patients and their asymptomatic household contacts.

Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. (2019) 71:76–

81. doi: 10.1016/j.meegid.2019.03.006

32. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et

al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans

homozygous for a common TYK2 missense variant. Sci Immunol. (2018)

3:eaau8714. doi: 10.1126/sciimmunol.aau8714

33. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, et

al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of

patients in a cohort of European ancestry. Proc Natl Acad Sci U S A. (2019)

116:10430–4. doi: 10.1073/pnas.1903561116

34. Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT,

et al. A polymorphism in human TLR2 is associated with increased

susceptibility to tuberculous meningitis. Genes Immun. (2007) 8:422–

8. doi: 10.1038/sj.gene.6364405

35. Shen C, Jiao W-W, Feng W-X, Wu X-R, Xiao J, Miao Q, et

al. IFNG polymorphisms are associated with tuberculosis in

Han Chinese pediatric female population. Mol Biol Rep. (2013)

40:5477–82. doi: 10.1007/s11033-013-2647-7

36. Qi H, Sun L, Jin Y-Q, Shen C, Chu P, Wang S-F, et al. rs2243268

and rs2243274 of Interleukin-4 (IL-4) gene are associated with reduced

risk for extrapulmonary and severe tuberculosis in Chinese Han children.

Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. (2014) 23:121–

8. doi: 10.1016/j.meegid.2014.01.031

37. Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, Thuong NT, Lan NT, et al.

A polymorphism in Toll-interleukin 1 receptor domain containing adaptor

protein is associated with susceptibility to meningeal tuberculosis. JInfectDis.

(2006) 194:1127–34. doi: 10.1086/507907

38. Dissanayeke SR, Levin S, Pienaar S, Wood K, Eley B, Beatty D, et al.

Polymorphic variation in TIRAP is not associated with susceptibility to

childhood TB but may determine susceptibility to TBM in some ethnic

groups. PLoS ONE. (2009) 4:e6698. doi: 10.1371/journal.pone.0006698

39. El-Kebir M, van der Kuip M, van Furth AM, Kirschner DE.

Computational modeling of tuberculous meningitis reveals an

important role for tumor necrosis factor-α. J Theor Biol. (2013)

328:43–53. doi: 10.1016/j.jtbi.2013.03.008

40. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray

JP, et al. Host genotype-specific therapies can optimize the

inflammatory response to mycobacterial infections. Cell. (2012)

148:434–46. doi: 10.1016/j.cell.2011.12.023

41. Tobin DM, Vary JC, Ray JP, Walsh GS, Dunstan SJ, Bang ND, et al. The

lta4h locus modulates susceptibility to mycobacterial infection in zebrafish

and humans. Cell. (2010) 140:717–30. doi: 10.1016/j.cell.2010.02.013

42. Behr M, Schurr E, Gros P. TB: screening for responses to a vile visitor. Cell.

(2010) 140:615–8. doi: 10.1016/j.cell.2010.02.030

43. Thuong NTT, Heemskerk D, Tram TTB, Thao LTP, Ramakrishnan L, Ha

VTN, et al. Leukotriene A4 hydrolase genotype and HIV infection influence

intracerebral inflammation and survival from tuberculous meningitis. J Infect

Dis. (2017) 215:1020–8. doi: 10.1093/infdis/jix050

44. van Laarhoven A, Dian S, Ruesen C, Hayati E, Damen MSMA, Annisa J, et al.

Clinical Parameters, Routine Inflammatory Markers, and LTA4HGenotype as

Predictors of Mortality Among 608 Patients With Tuberculous Meningitis in

Indonesia. J Infect Dis. (2017) 215:1029–39. doi: 10.1093/infdis/jix051

Frontiers in Neurology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 820168

https://doi.org/10.1016/0962-8479(92)90039-M
http://www.unaidsrstesa.org/region/countries/south-africa
http://www.unaidsrstesa.org/region/countries/south-africa
https://doi.org/10.1093/cid/cir230
https://doi.org/10.1086/498220
https://doi.org/10.1093/hmg/ddt462
https://doi.org/10.1038/nature05911
https://doi.org/10.1038/ng.3248
https://doi.org/10.1016/j.tube.2014.03.012
https://doi.org/10.1038/jhg.2012.35
https://doi.org/10.1186/1471-2350-13-5
https://doi.org/10.1093/hmg/ddx365
https://doi.org/10.3389/fgene.2018.00678
https://doi.org/10.1038/ng.1080
https://doi.org/10.1038/ng.639
https://doi.org/10.1371/journal.pgen.1009392
https://doi.org/10.1016/j.ygeno.2021.05.035
https://doi.org/10.1371/journal.pone.0174642
https://doi.org/10.1038/s41467-018-06539-w
https://doi.org/10.1128/microbiolspec.TBTB2-0011-2016
https://doi.org/10.1371/journal.pone.0139711
https://doi.org/10.1177/1753425919862354
https://doi.org/10.1097/MCP.0000000000000672
https://doi.org/10.1186/s13104-015-1740-5
https://doi.org/10.1016/j.meegid.2019.03.006
https://doi.org/10.1126/sciimmunol.aau8714
https://doi.org/10.1073/pnas.1903561116
https://doi.org/10.1038/sj.gene.6364405
https://doi.org/10.1007/s11033-013-2647-7
https://doi.org/10.1016/j.meegid.2014.01.031
https://doi.org/10.1086/507907
https://doi.org/10.1371/journal.pone.0006698
https://doi.org/10.1016/j.jtbi.2013.03.008
https://doi.org/10.1016/j.cell.2011.12.023
https://doi.org/10.1016/j.cell.2010.02.013
https://doi.org/10.1016/j.cell.2010.02.030
https://doi.org/10.1093/infdis/jix050
https://doi.org/10.1093/infdis/jix051
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schurz et al. TBM Genetic Susceptibility

45. Fava VM, Schurr E. Evaluating the Impact of LTA4H genotype and immune

status on survival from tuberculous meningitis. J Infect Dis. (2017) 215:1011–

3. doi: 10.1093/infdis/jix052

46. TB Statistics for South Africa | National & provincial. TB Facts | TB, Tests,

Drugs, Statistics. Available online at: https://www.tbfacts.org/tb-statistics-

south-africa/ (accessed February 10, 2019).

47. Well GTJ van, Paes BF, Terwee CB, Springer P, Roord JJ, Donald PR,

et al. Twenty years of pediatric tuberculous meningitis: a retrospective

cohort study in the western cape of South Africa. Pediatrics. (2009) 123:e1–

8. doi: 10.1542/peds.2008-1353

48. de Wit E, Delport W, Rugamika CE, Meintjes A, Moller M, van Helden

PD, et al. Genome-wide analysis of the structure of the South African

coloured population in the western cape. HumGenet. (2010) 128:145–

53. doi: 10.1007/s00439-010-0836-1

49. Healy DG. Case-control studies in the genomic era: a clinician’s guide. Lancet

Neurol. (2006) 5:701–7. doi: 10.1016/S1474-4422(06)70524-5

50. Marais S, Thwaites G, Schoeman JF, Török ME, Misra UK, Prasad K, et al.

Tuberculous meningitis: a uniform case definition for use in clinical research.

Lancet Infect Dis. (2010) 10:803–12. doi: 10.1016/S1473-3099(10)70138-9

51. Munch Z, Van Lill SWP, Booysen CN, Zietsman HL, Enarson DA, Beyers N.

Tuberculosis transmission patterns in a high-incidence area: a spatial analysis.

Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. (2003) 7:271–7.

52. Beyers N, Gie RP, Zietsman HL, Kunneke M, Hauman J, Tatley M, et al. The

use of a geographical information system (GIS) to evaluate the distribution of

tuberculosis in a high-incidence community. South Afr Med J Suid-Afr Tydskr

Vir Geneeskd. (1996) 86:40–1, 44.

53. Daya M, van der Merwe L, Gignoux CR, van Helden PD, Möller

M, Hoal EG. Using multi-way admixture mapping to elucidate TB

susceptibility in the South African Coloured population. BMC Genomics.

(2014) 15:1021. doi: 10.1186/1471-2164-15-1021

54. Cobat A, Gallant CJ, Simkin L, Black GF, Stanley K, Hughes J, et al. High

heritability of anti-mycobacterial immunity in a hyper-endemic area for

tuberculosis disease. J Infect Dis. (2010) 201:15–9. doi: 10.1086/648611

55. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient

than replication-based analysis for two-stage genome-wide association

studies. Nat Genet. (2006) 38:209–13. doi: 10.1038/ng1706

56. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet. (2007) 81:559–75. doi: 10.1086/519795

57. Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo

MA, Durbin RM, et al. An integrated map of genetic variation from 1,092

human genomes. Nature. (2012) 491:56–65. doi: 10.1038/nature11632

58. Exome Variant Server. Available online at:http://evs.gs.washington.edu/

EVS/http://evs.gs.washington.edu/EVS/ (accessed March 10, 2016).

59. ExAC Browser. Available online at: http://exac.broadinstitute.org/ (accessed

March 10, 2016)

60. PhastCons HOWTO. Available online at: http://compgen.cshl.

edu/phast/phastCons-HOWTO.html#creditshttp://compgen.cshl.

edu/phast/phastCons-HOWTO.html#credits (accessed March 15, 2016).

61. Sidow Lab – GERP. Available online at: http://mendel.stanford.edu/SidowLab/

downloads/gerp/ (accessed March 15, 2016).

62. Alexander DH, Novembre J, Lange K. Fast model-based estimation

of ancestry in unrelated individuals. Genome Res. (2009) 19:1655–

64. doi: 10.1101/gr.094052.109

63. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston

J, et al. An integrated map of structural variation in 2,504 human genomes.

Nature. (2015) 526:75–81. doi: 10.1038/nature15394

64. Uren C, Kim M, Martin AR, Bobo D, Gignoux CR, van Helden PD, et

al. Fine-Scale Human Population Structure in Southern Africa Reflects

Ecological Boundaries. (2016). Available online at: http://biorxiv.org/lookup/

doi/10.1101/038729http://biorxiv.org/lookup/doi/10.1101/038729 (accessed

February 25, 2016).

65. Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, et

al. An unexpectedly complex architecture for skin pigmentation

in Africans. Cell. (2017) 171:1340–53.e14. doi: 10.1016/j.cell.2017.

11.015

66. Chimusa ER, Daya M, Möller M, Ramesar R, Henn BM, van Helden PD,

et al. Determining ancestry proportions in complex admixture scenarios in

South Africa using a novel proxy ancestry selectionmethod. PLoSONE. (2013)

8:e73971. doi: 10.1371/journal.pone.0073971

67. Panagiotou OA, Ioannidis JPA, for the Genome-Wide Significance Project.

What should the genome-wide significance threshold be? Empirical

replication of borderline genetic associations. Int J Epidemiol. (2012) 41:273–

86. doi: 10.1093/ije/dyr178

68. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham

F. Deriving the consequences of genomic variants with the

Ensembl API and SNP Effect Predictor. Bioinformatics. (2010)

26:2069–70. doi: 10.1093/bioinformatics/btq330

69. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D,

et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. (2004)

32(suppl. 1):D493–6. doi: 10.1093/nar/gkh103
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