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Abstract
Literature review Cystoscopy is the gold standard for initial macroscopic assessments of the human urinary bladder to rule 
out (or diagnose) bladder cancer (BCa). Despite having guidelines, cystoscopic findings are diverse and often challenging to 
classify.  The extent of the false negatives and false positives in cystoscopic diagnosis is currently unknown. We suspect that 
there is a certain degree of under-diagnosis (like the failure to detect malignant tumours) and over-diagnosis (e.g. sending 
the patient for unnecessary transurethral resection of bladder tumors with anesthesia) that put the patient at risk.
Conclusions  XAI robot-assisted cystoscopes would help to overcome the risks/flaws of conventional cystoscopy. Cystos-
copy is considered a less life-threatening starting point for automation than open surgical procedures. Semi-autonomous 
cystoscopy requires standards and cystoscopy is a good procedure to establish a model that can then be exported/copied to 
other procedures of endoscopy and surgery. Standards also define the automation levels—an issue for medical product law. 
These cystoscopy skills do not give full autonomy to the machine, and represent a surgical parallel to ‘Autonomous Driving’ 
(where a standard requires a human supervisor to remain in the ‘vehicle’). Here in robotic cystoscopy, a human supervisor 
remains bedside in the ‘operating room’ as a ‘human‐in‐the‐loop’ in order to safeguard patients. The urologists will be able to 
delegate personal- and time-consuming cystoscopy to a specialised nurse. The result of automated diagnostic cystoscopy is a 
short video (with pre-processed photos from the video), which are then reviewed by the urologists at a more convenient time.

Keywords Cystoscopy · Bladder cancer detection · Bladder cancer diagnosis · Robotic endoscopy · Autonomous surgery · 
Autonomous endoscopy

Introduction

AI robotics has enormous potential to assist health profes-
sionals in many daily tasks [1]. Especially, AI methods from 
the domain of the so-called deep learning [2]. These are 

deep neural networks that are very successful and can practi-
cally exceed human performance [3]. Unfortunately, these 
most successful models have a serious drawback. They are 
high dimensional, very non-linear, and therefore, very com-
plex that they are no longer interpretable by human experts 
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[4]. However, in medicine, transparency, re-traceability and 
explainability are essential criteria and even mandatory, both 
for legal reasons [5] and for ethical reasons [6–10]. It is often 
that the question of why is even more important than the 
actual AI result. The area of computer science that addresses 
the implementation of transparency, re-traceability and 
comprehensibility of such so-called black-box approaches 
is called explainable artificial intelligence (XAI). Currently, 
this is becoming more and more important, because the 
quality requirements of medical AI solutions are increasing 
accordingly and the human expert must be able to explain 
and understand why a machine decision has been made, and 
must not rely on the usual parameters such as accuracy and 
precision alone [11].

Translated to urology, one field of action would be an 
invasive diagnostic procedure such as cystoscopy. Cystos-
copy is the Gold Standard for initial macroscopic assess-
ments of the human urinary bladder to rule out (or diagnose) 
bladder cancer (BCa). Around 7% of all newly diagnosed 
cancers are BCa in the United States of America (USA), 
making it the fourth most common malignancy and among 
the top ten lethal cancers in men [12]. Only 4.7% of all 
newly diagnosed cancers are BCa in Germany, accounting 
for 3.2% of all cancer-related deaths [13].

Bladder cancer is the 10th most common form of can-
cer worldwide, with an estimated 549,000 new cases and 
200,000 deaths in 2018 [14]. Bladder cancer is more com-
mon in men than in women, with respective incidence and 
mortality rates of 9.6 and 3.2 per 100,000 in men: about 
4 times that of women globally. The disease ranks higher 
among men, in whom it is the 6th most common cancer and 
9th leading cause of cancer death. For the Age-Standardised 
Rate per 100,000 population in 2018, Germany had a blad-
der cancer rate of 26.4 in men and a 6.3 in women [14].

Bladder cancer has two entities: non-muscle-invasive 
bladder cancer (NMIBC) and muscle-invasive bladder can-
cer (MIBC) (see Fig. 1). Its notably high recurrence rates 
range from 50 to 70% at 20 years, and put patients at risk for 
MIBC [15]. Periodic cystoscopic examinations thus remain 
the cornerstone for patients’ follow-ups to detect early recur-
rences and lower the risk of progression.

NMIBC represents 75% of primary diagnoses and is 
characterized by frequent recurrence [16]. Bladder cancer 
remains a heterogeneous disease with varying pathology, 
molecular background, diagnostic options, and subsequent 
therapies for the individual patient. The improvement of 
bladder cancer outcomes remains the goal of future research.

Although it is such an invasive procedure, cystoscopy of 
the urinary bladder plays a critical role in the diagnosis and 
follow-up of patients with bladder cancer. Non-invasive bio-
markers like nuclear matrix protein 22 (NMP22) or human 
complement factor H-related protein (BTA TRAK) from 
urine (or others from blood samples) have failed to replace 

cystoscopy in early detection and follow-up [EAU guidelines 
on non-muscle-invasive bladder cancer (NMIBC)] [17]. In 
fact, they may only enhance the Gold Standard cystoscopy 
[18].

Molecular diagnostics are making rapid progress. Com-
petition to AI could come in the form of non-invasive bio-
markers such as Oncoprotein Keratin 17 (K17) [19]. K17 is 
highly sensitive and specific for detecting urogenital cancer 
recurrence in the urogenital tract during treatment follow 
up. However, new biomarkers like K17 still do not rule out 
cystoscopy, or rule in TURBT, overall.

However, conventional cystoscopy still has several short-
comings, as it is especially difficult to detect flat or small 
lesions like carcinomas in situ (Cis) via standard white light 
cystoscopy (WLC) [20]. The latest data suggest that early 
and higher recurrence rates after transurethral resection 
(TUR) for BCa may be due to lesions going undetected dur-
ing initial cystoscopy [21, 22].

Several methods to enhance optical techniques were 
introduced in the last few decades, and most have proven to 
improve initial detection rates and operative outcomes after 
therapy [transurethral resection of bladder tumours (TUR-
BT)] of BCa (see Fig. 2). For example, hexaminolevulinate 
(HAL) TUR-B [photodynamic diagnosis (PDD)], an adjunct 
to WLC which involves fluorescence to localise abnormal 
tissue. This method proved to achieve higher detection and 
better resection rates due to the enhanced visualisation of 
malignant lesions during TURBT than cystoscopy and white 
light resection alone [23].

In some countries, the vast majority of cystoscopies 
(e.g. over 90% in Germany) are performed with white light 

Fig. 1  Diagram of ‘bladder cancer staging’, starting with carcinoma 
in situ (CIS), then Ta, T1, T2, T3 and T4. Source: [16]
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cystoscopy (WLC) which can make it difficult to view cer-
tain lesions. Different technical improvements also include 
blue-light cystoscopy (BLC) and narrow-band imaging 
(NBI) [24, 25] (see Fig. 3).

The aforementioned technical improvements require a 
human professional to do the navigating and interpreting of 
what the cystoscopy reveals. The interpretation of such opti-
cal information would be one field for AI methods that could 
rely on convolutional neural networks (CNNs), machine 
learning (ML), or deep learning (DL) [26]. At present, the 
RaVeNNA-4p1 consortium is developing a digital platform 
with 4PI Endo-imaging for 3D-reconstruction, semantic seg-
mentation and visualisation of the bladder for BCa.

The consortium focusses on the multi-class segmen-
tation of cystoscopic images using DL. This enables the 
precise segmentation of classes of interest such as bladder 
tumours [26]. In addition, the RaVeNNA-4p1 consortium 
trained CNNs with confirmed images of bladder cancers 
vs. healthy urothelium. Their output revealed up to 93.0% 
sensitivity and up to 83.7% specificity differentiating 

between tumourous/malignant and healthy urothelium; 
the neural network was pre-trained by feeding it 1.2 mil-
lion images from the ImageNet Dataset [27] (Imagenet: 
a large-scale hierarchical image database). Several CNN 
models were evaluated by Eminaga et al. who found that 
the Xception-based model achieved the highest accuracy 
score (99.52%) [28].

Besides optical and imaged-based advancements, all 
these introduced methods assume that the cystoscopy itself 
was a thorough scan. They also assume that every millim-
eter of urothelium in the bladder was recorded. At present, 
cystoscopic navigation is limited, especially for flexible 
cystoscopy. We are convinced that better navigation will 
lead to automation, and that automation will ensure more 
reproducibility—essential during follow-up for non-mus-
cle-invasive bladder cancer patients.

Methods

The literature search was performed on the following 
databases: PubMed/MEDLINE, Scopus, dblp, SSRN, 
Academia.edu, ResearchGate, and eur-lex.europa.eu. The 
review focused on articles that were published between 
the years of 2007 and 2021. All available publications 
were analyzed and summarized herein after an interdis-
ciplinary collaborative review process. The search used 
the following keywords: cystoscopy, blue-light cystoscopy, 
narrow-band imaging, endoscopic documentation, endo-
imaging, semantic segmentation, instance segmentation, 
visualization, non-invasive biomarkers, bladder cancer 
detection, bladder cancer diagnosis, explainable artificial 
intelligence, black box, robotic endoscopy, autonomous 
endoscopy, autonomous surgery, human rights, high-risk 
AI systems, fundamental rights, provider, user, conform-
ity, compliance, accountability, responsibility, liability, 
human control.

Fig. 2  Kaplan–Meier estimates of 12-month recurrence-free survival 
stratified by treatment. WL TUR-B, n = 77, or HAL TUR-B (PDD), 
n = 68; P = 0.02. Source: [21]

Fig. 3  Comparison of WLC with BLC and NBI. A Bladder cancer 
tumour viewed with WLC. B Same bladder cancer tumour as in A, 
but viewed with BLC  (Cysview™), which reveals a lesion in pink 

against the BL (Source: [24]). C Ta cancer growth viewed with WLC. 
D Same Ta cancer growth as in C, but viewed with NBI (Source: 
[25])
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Urethrocystoscopy for diagnosis and follow‑up 
of bladder diseases

Since the German urologist Maximilian Nitze introduced 
cystoscopy to urology, it has improved continuously, driven 
by the need to enhance patient comfort and increase diag-
nostic accuracy (see Fig. 4). Urethrocystoscopy is one of the 
cornerstones for diagnosis and the follow-up of patients with 
urinary bladder disorders [15, 17]. Cytoscopic findings sig-
nificantly help us explain the cause of symptoms and draw 
correlations with different bladder illnesses or systematic 
diseases. These patients may have visited the urologist after 
they noticed haematuria (i.e., blood in the urine).

Being so essential to detecting and identifying bladder 
tumours, guidelines have been made available outlining how 
a cystoscopy is performed and documented [15, 17]. These 
guidelines help avoid the severe consequences of failing to 
identify malignant lesions. Indeed, in follow-up, patients 
must undergo frequent cystoscopies (e.g. every 3 months 
for a 2-year period in high-risk tumour cases). About a mil-
lion cystoscopies are performed every year in the USA alone 
[29].

In the surveillance setting, the enhanced flexible cys-
toscope [Federal Drug Administration (FDA) approved 
in 2018] revealed improved detection rates. However, it 
remains an invasive and sometimes painful procedure [30]. 
Several distraction methods have been studied (e.g. hand-
holding, playing music, speaking, etc.) in an attempt to mini-
mise patient discomfort and ultimately increase acceptance 
rates, especially for follow-up examinations of non-muscle 
invasive bladder cancer (NMIBC) [31]. This also illustrates 
the need for a more comfortable procedure, as this procedure 

must be repeated frequently with regard to NMIBC, to detect 
recurrence and progression [32].

Cystoscopy’s technical situation

Despite having guidelines [15, 17], cystoscopic findings 
are diverse and often challenging to classify [28]. Arriv-
ing at an accurate diagnosis is still largely dependent on the 
examiner’s experience, and the inter-observer variability is 
therefore wide [33]. Often in training, some spots on the 
bladder wall go undetected because of improper manipula-
tion, especially during flexible cystoscopy. Since cystoscopy 
began, the difficulty of training junior urologists on how to 
use a cystoscope is a major point, as visually identifying a 
tumour within the bladder is so challenging and often impre-
cise because of various patient–surgeon- or cancer-specific 
factors [34]. Cystoscopy is usually performed as an outpa-
tient procedure with the patient awake during the procedure. 
Patients often exhibit low tolerance for this procedure, and 
their tolerance correlates with the urologist’s conduct during 
the cystoscopy, be the cystoscope flexible or rigid. The cys-
toscope is rotated slowly to inspect the bladder sidewalls and 
bladder dome. The urologist can also apply manual pressure 
to the lower abdominal wall, just superior to the pubic bone, 
to visualize the anterior bladder neck and dome.

After lubrication, a rigid or flexible endoscope of 16–25 
Fr is inserted via the female or male urethra into the bladder. 
Rigid telescopes with different angles (from 0° to 30° to 70°) 
can be used. Rigid cystoscopy is an often painful proce-
dure, especially for male patients (as they have a longer ure-
thra and/or enlarged prostate gland), which is why flexible 

Fig. 4  Timeline for the R&D of MIBC and NMIBC. Source: [16]. 
Diagram abbreviations: TNM stands for Tumour, Node, and Metas-
tasis. BCG stands for Bacillus Calmette–Guèrin (a type of immuno-

therapy drug). FGFR3 stands for fibroblast growth factor receptor 3 
(a protein coding gene). TUR-BT stands for transurethral resection of 
bladder tumours
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cystoscopy (first introduced by Tsuchida and Sugaware in 
1973) [35] is recommended for males [36].

Since the introduction of flexible cystoscopy, comparable 
to flexible scopes in endoscopy, the complexity of handling 
this instrument has increased. The flexible cystoscope ena-
bles the urologist to navigate throughout the entire bladder. 
Its orientation inside the bladder during the procedure is 
made harder and more complex because of the limited opti-
cal information provided. That in turn means the procedure 
lasts longer, leading to more discomfort for the patient. The 
American Cancer Society states that the average cystoscopic 
procedure itself takes 5–10 min; however, it can often take 
as long as 10–20 min depending on the patient’s history 
[37]. In addition to being complex and time-consuming, the 
procedure can be more mental and physical workload for the 
urologist. It is therefore important to feel confident with the 
instrument in order to minimise the diagnostic procedure’s 
duration without risking the failure to detect bladder lesions 
requiring surgical treatment.

The learning curve of flexible cystoscopy is quite long 
(i.e. an average of 122 flexible cystoscopies must have been 
done to attain an acceptable expertise level for a novice urol-
ogist) [38]. Flexible cystoscopies done by an inadequately 
trained trainee are usually considerably longer than rigid 
cystoscopies. First, the technical handling of a flexible cys-
toscope must be learned. Second, the urologist’s orientation, 
once inside the bladder, is somewhat difficult to maintain in 
some situations. Losing one’s orientation means pulling the 
cystoscope back and having to re-insert it, making this one 
of the most painful moments, especially for male patients; 
retraction can also lead to bleeding in the bladder neck, thus 
impeding an accurate visualisation of the bladder mucosa.

Finally, this procedure is usually carried out in an out-
patient setting with the patient fully awake. Nevertheless, 
this intervention is crucial in the follow-up and primary 
diagnosis of bladder cancer, especially in the early stages, 
making it vital for the patient to receive a thorough, accurate 
diagnosis. Even with the recent advantages in local anaes-
thesia and enhanced visualisation using visual chips instead 
of fiber optics, the procedure is still uncomfortable for many 
patients—a major concern in light of patients’ reluctance, 
especially in cancer follow-up investigations [35, 39].

Simulators for urological procedures have been intro-
duced to overcome the limited teaching/training time and 
practical operating room experience of residents/fellows 
[40], as well as increasing healthcare demands, fiscal con-
straints, and medico-legal considerations. Several types of 
simulators have been assessed. Their capability to enhance 
the training of residents/fellows has been widely successful 
[41, 42]. However, many of these simulators are still not 
employed during training. Some complain that they are too 
expensive/pricey. Also, novices have reported that they had 
trouble successfully relating the computer display to actual 

conditions encountered during cystoscopy—a factor raising 
the risk of error and longer learning curves [43].

Solution: dedicated diagnostic robots in Urology

A combination of robotic cystoscopy and XAI-enhanced 
imaging would overcome the manoeuvring and visual diag-
nostic issues encountered with flexible cystoscopy. Here 
the visualization component is important because it is here 
that precise human-AI interaction is sought, and for this, the 
international research community in the domain of visuali-
zation has developed a number of methods to improve the 
interactive processes, especially for tight interaction [44]. 
Such a combination would raise the standards of bladder 
cancer diagnosis and increase patient comfort. It would not 
require much experience to operate (i.e., a urologist is not 
required to operate it), and it could shorten the duration (e.g. 
2–5 min instead of 10–20 min) of the procedure and improve 
diagnostic accuracy.

However, some patients have expressed worry about an 
invasive robotic procedure. Since the introduction of the 
 DaVinci® tele-manipulator to urology, the term “robot” is 
commonly used in the literature and urology practice [45]. In 
everyday practice, it is sometimes hard to make the patient 
understand that it is not an autonomous robot alone perform-
ing the surgical procedure, but instead actually the urologist 
who steers the  DaVinci® tele-manipulator. Most patients are 
relieved to learn that the “robot” is actually steered by a 
human and that it cannot make a single movement on its 
own. Acceptance and confidence in such a system must be 
established during the consultation before the patient gives 
informed-consent to this procedure.

In summary, an XAI robot-assisted flexible cystoscope 
could be inserted via the urethra into a patient’s bladder 
like a soft transurethral catheter (an 8–12 Fr flexible scope 
instead of a 16–25 Fr rigid scope). A trained nurse could 
insert it following the prescribed standard procedure for 
transurethral catheterisation. The urethra is anaesthetised 
by a local lubricant gel, which is already standard care. The 
nurse could stay bedside during the entire robotic procedure, 
and take out the cystoscope when the scan is complete.

Once inserted, a flexible XAI robot-assisted cystoscope 
would be able to semi-autonomously perform a quicker, 
more comfortable and standardised diagnostic scan of the 
entire urinary bladder. The major anatomic landmarks can 
be identified. The cystoscope can fill (to a specific amount) 
and empty the bladder to maintain a perfectly clear view. If 
the patients feel any discomfort, they could also interrupt the 
procedure by pressing an emergency button (patient-in-the-
loop) or simply tell the nurse to stop the procedure. After 
the entire bladder is scanned in a standardised mode, the 
nurse retracts/pulls out the cystoscope, and the patient is 
discharged. The collected data (scans) can then be processed 
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by AI and presented in a highly standardised mode to the 
urologist for the definitive diagnosis.

Urologists working in an outpatient setting would ben-
efit from a quick and thorough performed diagnostic scan. 
Automated cystoscopy has the potential to increase the inter-
observer and intra-observational comparability and lead to 
more efficient diagnostics, which would ultimately improve 
patient safety. An XAI system that provides interpretable-
explanations would also subsequently increase trust among 
urologists, nurses, and patients. Cystoscopy is considered a 
less life-threatening starting point for automation than open 
surgical procedures. Moreover, by not having to perform a 
diagnostic cystoscopy, urologists would reduce their mental 
and physical workload, thereby lowering the risk of adverse 
events/incidents when carrying out actual life-threatening 
surgeries. Insurance providers are also interested in new AI 
solutions that lower costs (i.e., the cost of having a nurse/
technician attend a procedure is lower than paying a urolo-
gist to attend). The expected outcome would also be enabled 
by the AI-enhanced cystoscopy’s professional second “opin-
ion” that more accurately predicts a bladder cancer’s recur-
rence, and would thus avoid the unnecessary transurethral 
resection of bladder tumors (TUR-BT) as well as increase 
patient safety [46–48]. AI should be at least as accurate as 
an experienced urologist in recognizing and differentiating 
bladder lesions, thereby improving the reproducibility of 
cystoscopy. AI can also play an important role in education 
for residency training.

One central problem in cystoscopy is the lack of a stand-
ardized documentation [49] and descriptions for the lesions 
found inside the bladder (e.g. EAU Guidelines [15, 17] are 
limited). Waldbillig et al. found that in surveys of German 
and international urologists, only 1 in 5 rate their cystos-
copy as complete (missing about 10% of bladder tissue 
during cystoscopy in outpatient setting) and a significant 
gap in information transfer from outpatient to clinic due to 
documentation that is only analog and descriptive, i.e., no 
standardized video or picture-based documentation in 52% 
of the cases [50]. For the first time, AI will offer a structured 
reporting system and solution for risk profiling of BCa.

Considerations for the practical use of AI solutions 
as medical products

AI medical devices are challenging from a regulatory per-
spective. We are experiencing a situation where algorithms 
that are still learning in the treatment process are not legally 
permitted. Before approval, the methodology must, there-
fore, be presented as a design freeze.

There are fundamental differences between medical 
technology markets in the USA and Europe. The FDA has 
already approved a significant number of AI applications 
in the medical field. As there were no products appropriate 

for the simplified 510 (k) approval process, many manufac-
turers submitted applications for a de novo procedure [51]. 
This resulted in most products being assigned to the second-
highest Risk Class II. The subsequent path went through the 
so-called “Breakthrough Device” status. All these approvals 
were made with already frozen algorithms.

In the EU Regulation 2017/745, most such applications in 
Europe are assigned to the third-highest Risk Class IIa. For 
the manufacturer, this means that in addition to risk manage-
ment according to ISO 14971, software-specific standards 
IEC 62304 and 82304-1 and their associated standards must 
also be complied with. In this respect, AI-based medical 
devices or medical devices with AI software elements are 
currently requiring significant efforts for granting approval.

The FDA has signalled new directions for future regula-
tory-logical processes in a discussion paper from 2019 [52]. 
Here, approvals for continuously learning solutions were 
held out in prospect. They would only be associated with a 
comprehensive quality management system. The problem 
here, however, is that the responsibility for the performance 
of such products is transferred to the manufacturers, even in 
light of the future’s unpredictability. This in turn can lead 
to scepticism and caution on industry’s part. For this rea-
son, manufacturers should not only ensure quality manage-
ment on an ongoing basis, they must also ensure continuous 
validation steps based on robust clinical parameters. Simi-
lar political movements are not yet foreseeable in Europe. 
However, we expect them in the near future. In general, AI-
based medical devices are a key technological contribution 
to improving patient care, and they are certain to eventually 
become an integral part of everyday clinical practice.

The importance of XAI for robotic cystoscopy and its 
legal and ethical considerations

The European Union is very active in the field of eth-
ics and in protecting human rights in AI. Its strategy is 
to ensure citizens’ trust in AI. This strategy places the 
principle of explainability at the center of its concerns, 
along with other essential values (auditability, traceabil-
ity, transparency, accountability, etc.). In the 20 October 
2020 [53] resolution on a framework of ethical aspects of 
artificial intelligence, robotics and related technologies, 
the European Parliament aims to enshrine in law the com-
mon ethical principles of AI issues to make them more 
effective (point Y). This resolution mentions explainabil-
ity in paragraph 23. First, it asserts that the adoption of 
these principles helps to ensure citizens’ trust in those 
technologies. Second, it recognizes, however, that the 
degree of explainability is relative to the complexity of 
the concerned technologies and admits that it is not always 
possible to explain why a model has led to a particular 
result or decision, in particular for black box algorithms. 



1131World Journal of Urology (2022) 40:1125–1134 

1 3

Third, it concludes that abiding by these principles is an 
essential precondition for guaranteeing accountability. 
However, a European resolution has no binding force on 
Member States.

The European Union has gone further by developing its 
first legal framework in its 21 April 2021 [54] proposal for 
a regulation on artificial intelligence (AI Act). Contrary to 
a resolution, a European regulation, once adopted, shall 
apply in all Member States. This future regulation adopts a 
risk-based approach to AI systems, which is also adopted in 
the resolution on a framework of ethical aspects [53]. The 
AI Act is intended to regulate the professional uses of AI. 
When placing AI systems on the market and using them, 
it imposes obligations that are proportional to the level of 
risk. High-risk AI systems for natural persons’ health and 
safety or European fundamental rights are the subject of 
reinforced supervision. The AI Act proposes two classifica-
tion rules for high-risk AI systems (Article 6). Either the 
AI system is listed in Annex III of the AI Act, establishing 
a list of automatically high-risk AI, but it does not include 
AI systems in health, or the AI system meets the conditions 
of Article 6, paragraph 1. In this case, it shall be considered 
high risk if this AI system constitutes a safety component of 
a product or a product covered by Annex II and is required 
to undergo a third-party conformity assessment with a view 
to its placing on the market.

As EU Regulation 2017/745 on medical devices is listed 
in Annex II and an AI robot-assisted cystoscopy requires 
third-party conformity assessment, this AI system should 
therefore be classified as high-risk. Strict obligations are 
placed on the providers of the high-risk AI system, such as 
responsibility for their compliance with the AI Act, drawing-
up the technical documentation, keeping logs automatically 
generated by their systems or affixing the CE marking to 
their high-risk AI systems (Articles 16 to 23).

Even when a high-risk AI system is related to products, 
such as a robot, the robot manufacturer must fulfill the 
same obligations as the provider (Article 24). The future 
regulation is also aimed at high-risk AI systems professional 
users. It therefore concerns the doctor who implements an 
AI robot-assisted flexible cystoscope or the establishment 
the doctor belongs to. The professional user shall comply 
with a series of obligations (Article 29), which are more or 
less difficult to apply in practice. For example, using these 
systems in accordance with the instructions for use accom-
panying the systems, implementing the human oversight 
measures indicated by the provider, exercising control over 
the input data, monitoring the AI system operation, keeping 
the automatically generated logs, or interrupting the use of 
the AI system in the event of doubt as to its conformity. 
Non-compliance of the AI system with these requirements 
or obligations shall be subject to administrative fines of up to 
€20,000,000 or, if the offender is a company, up to 4% of its 

total worldwide annual turnover for the preceding financial 
year, whichever is higher (Article 71, paragraph 4).

The resolution on a framework of ethical aspects [53] 
also calls for important outcomes concerning the expected 
degree of explainability. Indeed, the latter “should depend on 
the context of those technical processes, and on the severity 
of the consequences of an erroneous or inaccurate output, 
and needs to be sufficient for challenging them and for seek-
ing redress” (paragraph 19 of the proposal for a regulation 
contained in this resolution). In terms of AI robot-assisted 
cystoscopy, the doctor should not only need to provide infor-
mation regarding the medical exploration and its risks, but 
also all the explanations concerning AI robotics so that the 
patient understands how the technology works, what the 
advantages and disadvantages are, or even the limits of the 
results obtained by the AI [55].

Consequently, the most relevant driver for XAI research 
is the growing relevance of legal aspects along with AI-
assisted decision-making [6, 56]. Ultimately, it is manda-
tory in these areas that responsibility remain on the medical 
doctors, hence keeping the human-in-control [57]. Human 
control over the AI system is a central principle associ-
ated with responsibility. This is the case with the Montreal 
Declaration for the Responsible Development of Artificial 
Intelligence of 2018, which asserts that “only human beings 
can be held responsible for decisions stemming from recom-
mendations made by AIS (Artificial Intelligence Systems), 
and the actions that proceed therefrom” (paragraph 9.1). The 
European Union has adopted a similar principle in its AI Act 
[54]. This proposal outlines that high-risk AI systems “shall 
be designed and developed in such a way, including with 
appropriate human–machine interface tools, that they can be 
effectively overseen by natural persons during the period in 
which the AI system is in use” (Article 14, paragraph 1). The 
provider shall then identify measures to ensure human con-
trol, build them into the AI systems before they are placed on 
the market when technically feasible, or entrust their imple-
mentation to the user (Article 14, paragraph 3). The doctors, 
or their establishment, therefore have a real role to play in 
the implementation of the human control principle.

It is important to add that the 20 October 2020 European 
Parliament resolution with recommendations to the Com-
mission on a civil liability regime for artificial intelligence 
[58] puts in place a strict liability for high-risk AI systems 
(Article 4).

Future work

This new XAI robot-assisted cystoscopy solution holds 
the potential to not only detect cancer, but to detect benign 
lesions as well. This capability is currently missing in bio-
markers. However, it is still unclear how cost effective the 
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new XAI solution will be. Nevertheless, comparative studies 
using simulation analysis models (e.g. Monte Carlo [59]) 
could be carried out to mathematically build a case for the 
cost effectiveness of this new XAI solution.

Conclusion

Visual diagnostic issues in cystoscopy can occur during live 
operations when the urologist is distracted or over focused 
on wielding and navigating the cystoscope in the bladder 
(i.e., the urologist fails to detect a malignant lesion). The 
development of miniaturised (reduced to 8–12 Fr) XAI 
robot-assisted cystoscopes will improve the performance 
of flexible cystoscopy in terms of technical and diagnostic 
parameters. So far, there are still no biomarkers available 
that can compare to the accuracy of cystoscopy. Never-
theless, non-invasive biomarkers (e.g. K17) could still be 
used to stratify patients on waiting lists, to prioritise cases 
for XAI robot-assisted cystoscopy and avoid unnecessary 
hospital visits for other patients during a pandemic (e.g. 
COVID-19) [60].

The following two points highlight the uniqueness of 
the XAI solution: (i) this novel technology will detect and 
reduce cases of false negatives and false positives in this 
diagnostic procedure; and (ii) it gives the patient (in-the-
loop) more control than ever before during this diagnostic 
procedure. This semi-autonomous procedure will be con-
trolled by the nurse as well. This is the best way to guar-
antee and maximise patient safety. This new solution has 
the potential to dramatically increase patient acceptance and 
adherence, making cystoscopy a much less dreaded proce-
dure. With the introduction of dedicated evaluation robots, 
patients will benefit from a more comfortable, quicker, thor-
ough, and effective diagnostic scan. However, the definitive 
decision to perform another transurethral resection of blad-
der tumors (TURBT) or schedule a follow-up cystoscopy 
will be made by the urologist. But with XAI, that decision 
will rest on a more solid diagnostic foundation.
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