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Abstract
Throughout the open ocean, a minimum in dissolved iron concentration (dFe) overlaps with the deep chlorophyll maximum
(DCM), which marks the lower limit of the euphotic zone. Maximizing light capture in these dim waters is expected to
require upregulation of Fe-bearing photosystems, further depleting dFe and possibly leading to co-limitation by both iron
and light. However, this effect has not been quantified for important phytoplankton groups like Prochlorococcus, which
contributes most of the productivity in the oligotrophic DCM. Here, we present culture experiments with Prochlorococcus
strain MIT1214, a member of the Low Light 1 ecotype isolated from the DCM in the North Pacific subtropical gyre. Under a
matrix of iron and irradiance matching those found at the DCM, the ratio of Fe to carbon in Prochlorococcus MIT1214 cells
ranged from 10–40 × 10−6 mol Fe:mol C and increased with light intensity and growth rate. These results challenge
theoretical models predicting highest Fe:C at lowest light intensity, and are best explained by a large photosynthetic Fe
demand that is not downregulated at higher light. To sustain primary production in the DCM with the rigid Fe requirements
of low-light-adapted Prochlorococcus, dFe must be recycled rapidly and at high efficiency.

Since its emergence several hundred million years ago, the
Prochlorococcus genus has diversified into dozens of dis-
tinct subpopulations, but the main branches of this radiation
(ecotypes) are structured primarily by their growth at dif-
ferent irradiance [1]. Upregulation of the photosynthetic
apparatus in low-light-adapted ecotypes compensates for
dwindling light flux, contributing to the formation of
a DCM layer at the base of the euphotic zone [2].
As photosynthetic proteins represent a large pool of Fe in
these cells, growth at low light is expected to increase

photosynthetic Fe requirements [3], an effect that has been
documented in temperate diatoms and other model phyto-
plankton [4, 5]. The stratification of Prochlorococcus eco-
types therefore implies a stratification of Fe requirements,
such that low light at depth would be coupled to very high
Fe demand.

Large Fe requirements may lead to Fe stress in the DCM,
where dFe can fall below 10−10 mol L−1 (100 pM [6]).
Incubations in the California Current have shown that dia-
toms and other eukaryotic phytoplankton at the DCM
respond to increases in both Fe and light [7], but these taxa
are less abundant in offshore waters. At Station ALOHA—a
site that is broadly representative of the North Pacific
Subtropical Gyre—most primary production in the DCM
(100–125 m depth) is accomplished by low-light-adapted
Prochlorococcus ecotypes [8, 9] whose Fe requirements
have not been characterized.

We quantified the Fe requirements of Prochlorococcus
MIT1214, a member of the LL1 ecotype isolated from Station
ALOHA, under a matrix of Fe and irradiance typical of the
DCM (see Supplementary Materials and Methods), which
follows the 0.5mol photon m−2 day−1 isolume [10] and
overlaps with peak abundance of LL1 Prochlorococcus
(0.1–1mol photon m−2 day−1 [9]). Under Fe-replete condi-
tions (>150 pM Fe′), specific growth rates (μ) of
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Prochlorococcus MIT1214 were dependent on irradiance
(Fig. 1a), indicating that LL1 Prochlorococcus at the DCM
are in a light-limited regime. At 1.7mol photon m−2 day−1,
growth became Fe-limited at a bioavailable iron
concentration (Fe′) of 73 pM, which intensified at 33 pM Fe′
(Fig. 1b). These concentrations also limited growth at
0.86mol photon m−2 day−1 but not at 0.22mol photon m−2

day−1. Fe limitation at 0.22mol photon m−2 day−1 was only
observed below 20 pM Fe′. In all treatments, the Fe:C

composition of harvested cells primarily reflected Fe′
(Fig. 1c), but greater Fe:C was needed for faster growth rates
at greater irradiance. At saturating light (1.7mol photon m−2

day−1), cells bearing an Fe:C ratio of 36 ± 6 × 10−6 were still
Fe-limited while cells growing at low light (0.22 mol photon
m−2 day−1) reached peak growth rate with an Fe:C ratio of
20 ± 2 × 10−6 (Table S1).

Smaller Fe requirements at lower irradiance is counter to
models of Fe-light co-limitation, which is predicted from
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Fig. 1 Growth of
Prochlorococcus MIT1214
under low iron and low light.
Specific growth rates as a
function of a irradiance under
Fe-replete conditions and
b bioavailable Fe concentrations
(Fe′). c The Fe:C ratio and
d chlorophyll a:C ratio in
harvested cells as a function of
Fe′. Error bars reflect the range
of triplicate measurements.
Shading highlights typical
irradiance [10] and dFe [6] at the
DCM of Station ALOHA in the
North Pacific Subtropical Gyre,
where Prochlorococcus
MIT1214 was originally
isolated.
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Fig. 2 An empirical test of Fe-light co-limitation. Predicted rela-
tionships between Fe:C and growth rate under a a state of Fe-light co-
limitation, or b independent states of light limitation and Fe limitation.
The slope between growth rate and Fe:C corresponds to the iron use
efficiency (IUE). c Observed relationships between growth rate and

cellular Fe:C ratios for Prochlorococcus MIT1214 at 0.22 (dark green
circles), 0.86 (light green), and 1.7 mol photon m−2 day−1 (white).
Experimental data are consistent with predictions for independent
states of Fe and light limitation, following an IUE of 1.2 × 104 mol C
mol Fe−1 day−1 (dotted black line).
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theory [3] and has been observed in model diatoms [4] and
cyanobacteria [5]. In this state, either increased light or
increased Fe can lead to higher growth rate: greater Fe
supply will enable the construction of more photosynthetic
units (PSU), allowing more light to be absorbed, increasing
growth. Alternatively, an increase in irradiance will increase
photon absorption with a fixed number of PSU. Fe-light co-
limitation should manifest in the iron use efficiency (IUE)
of growth, which describes the rate that cells accumulate
biomass C per catalytic Fe atom. The IUE can be identified
empirically as the slope between cellular Fe:C and μ under
Fe-limiting conditions (Fig. 2). Fe-light co-limitation will
cause the IUE to vary under different light regimes
(Fig. 2a), with values proportional to the difference in
photon flux [3]. In contrast, if Fe limitation and light lim-
itation are independent physiological states (i.e. if low light
does not increase Fe requirements), then a single IUE would
apply for multiple light levels (Fig. 2b). Our observations of
Prochlorococcus MIT1214 most closely reflect the latter
scenario (Fig. 2c), which follow an IUE of 1.2 × 104 mol C
mol Fe−1 day−1. Thus, Prochlorococcus MIT1214 does not
appear to be subject to Fe-light co-limitation under condi-
tions relevant to the DCM.

The magnitude of IUE in Prochlorococcus MIT1214
is similar to both the theoretical IUE of a generic
photoautotrophic cell (1.15 × 104 mol C mol Fe−1 day−1 at
0.5 mol photon m−2 day−1 [3]) and the empirical IUE
of temperate eukaryotic phytoplankton under light limita-
tion (0.97 × 104 mol C mol Fe−1 day−1 [4]). Convergence
between these estimates suggests that theoretical IUE cal-
culations apply to Prochlorococcus MIT1214 but, unlike
classical descriptions of Fe-light co-limitation, the number
of PSUs (and therefore the Fe requirement) is not down-
regulated in response to increases in light. This interpreta-
tion is supported by the <15% difference in chlorophyll a:C
ratios of Fe-replete Prochlorococcus MIT1214 grown at
0.22 and 1.7 mol photon m−2 day−1 (Fig. 1d; Fe′ >150 pM;
ANOVA with post-hoc Tukey test, p > 0.05), and by the
much higher IUE achieved by the high-light adapted strain
Prochlorococcus MIT9215 (1.5 × 105 mol C mol Fe−1 day−1)
when grown at greater irradiance [11].

The absence of Fe-light co-limitation has also been
observed in Southern Ocean phytoplankton capable of
producing large photosynthetic antennae (~2000 chlor-
ophyll molecules per PSU) that enable very high IUE and
Fe:C ratios below 3 × 10−6 [12]. Low-light-adapted Pro-
chlorococcus construct considerably smaller antennae (272
chlorophyll per PSU; Table S2), perhaps due to photo-
chemical inefficiencies at the very low irradiance and war-
mer temperatures found in the DCM of subtropical gyres
[12]. Based on the size of these antennae (300 and 360 nm2

for PSII and PSI, respectively [13]), an estimated 4.5 μm2

of photosynthetic membrane in a low-light-adapted

Prochlorococcus cell can be populated with a maximum
of 6700 PSU containing 134,000 Fe atoms (assuming a 1:1
ratio of PSI:PSII and 20 Fe atoms per PSU, see Supple-
mentary Information for full calculation). Thus, a cell with
4 fmol C (2.41 × 109 atoms) and maximally upregulated
PSU would be expected to have an Fe:C ratio of 56 × 10−6,
which is similar to our measurements (although the latter
also includes a small Fe requirement associated with
respiration [3]). Under DCM conditions, it may not be
possible for other ecotypes to achieve substantially lower
Fe:C without first developing larger antennae, which has not
been demonstrated. The genomes of Prochlorococcus
MIT1214 and other LL1 isolates already contain seven
copies of the pcb gene, encoding the chlorophyll binding
proteins that compose the antennae to PSI and PSII, which
is comparable to the eight copies in extremely low-light-
adapted SS120 strain [13, 14]. Furthermore, the absence of
two putative ferredoxins in LL1 genomes (Table S3), a
feature shared by the ‘HNLC’ ecotypes [15], suggests that
LL1 Prochlorococcus have undergone some level of
adaptation to low Fe in the lower euphotic zone.

In the North Pacific subtropical gyre, the abundance of
LL1 Prochlorococcus peaks at 105 ± 18 m depth [9], where
primary production is 0.17 ± 0.09 μM C day−1 (mean at
100m at Station ALOHA). To avoid Fe limitation, our results
indicate Prochlorococcus must maintain an Fe:C ratio above
30 × 10−6, requiring uptake of at least 5.1 ± 2.7 pM Fe day−1

from a small dFe inventory (64 ± 20 pM for 90–120m [6]).
Although this estimate can be further refined by characteriz-
ing co-occurring Prochlorococcus ecotypes and other phyto-
plankton found in the DCM, it implies that Fe in the lower
euphotic zone turns over on the order of 13 ± 8 days (or less),
substantially shorter than the 6–12 month residence time of
dFe inferred at Station ALOHA [16]. Therefore, severe iron
limitation could develop at the DCM if dFe is not recycled
over a dozen of times before being scavenged or exported to
depth. The need for high-efficiency Fe recycling likens the
DCM to the Equatorial Pacific and other Fe-limited regions
[17, 18], and may motivate the synthesis of siderophores in
the lower euphotic zone [19].
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