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Cancers that are histologically defined as the same type of cancer often need a distinct
therapy based on underlying heterogeneity; likewise, histologically disparate cancers can
require similar treatment approaches due to intrinsic similarities. A comprehensive analysis
integrated with drug response data and molecular alterations, particularly to reveal
therapeutic concordance mechanisms across histologically disparate tumor subtypes,
has not yet been fully exploited. In this study, we integrated pharmacological, genomic,
and transcriptomic profiling data provided from the Cancer Genome Project (CGP) in a
systematic in silico investigation of the pharmacological subtypes of cancers and the
intrinsic concordance of molecular mechanisms leading to similar therapeutic responses
across histologically disparate tumor subtypes. We further developed a novel approach to
redefine cell-to-cell similarity and drug-to-drug similarity from the therapeutic
concordance, providing a new point of view to study cancer heterogeneity. This study
demonstrates how pharmacological and omics data can be used to systematically classify
cancers in terms of response to various compounds and provides us with a purely therapy-
oriented perspective to view tumor classifications independent of histology subtypes. The
knowledge of pharmacological subtypes of 367 drugs are available via our website (http://
www.hywanglab.cn/dtdb/), providing the resources for precision medicine in the
perspective of therapeutic response-based re-classification of tumor.
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INTRODUCTION

Traditional tumor classification based on histopathologic diagnosis and the TNM staging system
offers highly practical guidance for surgical resection, regional radiotherapy or chemotherapies.
However, due to complex intertumor and intratumor heterogeneity, cancer patients with such
histological diagnoses often suffer from receiving effective drug treatment and therapeutic resistance
(Bedard et al., 2013; Arozarena and Wellbrock, 2019; Ding et al., 2019). One of the key mechanisms
behind this significant challenge is the fact that cancers from the same tissue of origin often present
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quite different mechanisms of oncogenesis at the molecular level
(Bedard et al., 2013; Arozarena and Wellbrock, 2019). Decades of
studies have focused on finding molecular subtypes within
histopathologically defined tumor types by analyzing large-
scale genomic, transcriptomic, proteomic, and epigenomic
alterations (Ko et al., 2020). As a result, a variety of molecular
signatures have been identified to distinguish intrinsic molecular
subtypes associated with patient survival, prognosis and response
to different therapeutic modalities (Gay et al., 2021). For example,
BRAF mutation in melanoma (Menzer et al., 2019); EGFR-
mutant lung adenocarcinomas (Marcoux et al., 2019); luminal
A, luminal B, HER2-enriched, basal-like and normal-like
subtypes in breast cancer (Prat et al., 2012; Rueda et al., 2019;
Waks and Winer, 2019); and four prominent genetic subtypes in
Diffuse large B-cell lymphoma (DLBCL), termed MCD based on
the co-occurrence of MYD88L265P and CD79B mutations, BN2
based on BCL6 fusions and NOTCH2 mutations, N1 based on
NOTCH1 mutations, and EZB based on EZH2 mutations and
BCL2 translocations are several well-established molecular
subtypes with explicit clinical significance (Schmitz et al., 2018).

With these advances in challenging cancer heterogeneity by
identifying subtypes within the same tissues, emerging studies are
uncovering facts in the other direction that cancers across
disparate tissues of origin can explicitly share common
molecular mechanism of oncogenesis (Hoadley et al., 2014; Lu
et al., 2019; Petralia et al., 2020). For example, one study based on
a large-scale genomic analysis revealed that lung squamous, head
and neck, and a subset of bladder cancers shared highly
concordant signatures typified by TP53 alterations, TP63
amplifications, and high expression of immune and
proliferation pathway genes, implicating that those different
cancers perhaps require similar treatment approaches
(Hoadley et al., 2014). Another study based on large-scale
genomic data found that TP53 and KRAS were mutually
exclusive in COAD, READ, and LUAD, but significantly
coexisted in PAAD. These observations reveal the feasibility of
considering the same treatment strategy in different tumor types
(Drilon et al., 2018). Similarly, HER2-targeted therapy may be
applied to other cancer types analogous to breast cancer because
ERBB2/HER2, which can be amplified in breast cancer, is also
mutated and/or amplified in subsets of glioblastoma and gastric,
serous endometrial, bladder and lung cancers (Cancer Genome
Atlas Research et al., 2013). In recent years, the FDA granted
approval to larotrectinib, which had marked and durable
antitumor activity in a variety of patients with RTK fusion-
positive cancer, regardless of age or tumor tissue type (Drilon
et al., 2018). Such examples explicitly illuminate a distinct avenue
for reclassifying multiple tumor types independent of
histopathologic diagnosis, highlighting that treatment
approaches specifically discovered in one disease can be
applied to another due to their intrinsic concordance of
molecular patterns.

Currently, emerging efforts, such as pan-cancer analysis
projects, are being conducted to comprehensively define
commonalities and differences across cancer types and tissues
of origin (Cancer Genome Atlas Research et al., 2013).
Nonetheless, integrative analysis, particularly towards revealing

intrinsic therapeutic concordance across histologically disparate
tumor subtypes, has not yet been fully exploited. Currently, a
large-scale pharmacogenomics study, the Cancer Genome Project
(CGP), provides high-throughput genomic, expression
information and pharmacological profiling of anticancer drugs
across hundreds of cell lines that represent explicit molecular
subtypes of histologically defined tumors (Garnett et al., 2012).
Hence, we integrated drug response information to
pharmacological reclassify tumor subtypes regardless of their
tissues of origin. Tumor cells in the same class present similar
drug responses, and those in different classes show varied drug
responses. Furthermore, by integrating genomic alteration and
expression information, we unravelled the intrinsic concordant
molecular mechanism associated with the common drug
response across histologically disparate cancers. Importantly,
this research provides us with a purely therapy-oriented
perspective to re-examine tumor classifications independent of
histology subtypes.

MATERIALS AND METHODS

Data from a large-scale pharmacogenomics study, the Cancer
Genome Project (CGP), was accessible from its website: http://
www.cancerrxgene.org. Gene expression, mutation and drug
sensitivity data were downloaded. The CGP dataset includes 987
cell lines, genome-wide analysis of mutations, copy number
variations and expression profiling, as well as the presence of
commonly rearranged cancer genes, and 367 pharmacological
profiles (dataset version 2020) (Garnett et al., 2012). For
pharmacological assays, the dose range of drugs varied greatly for
the different drugs. Generally, about 96% drugs used the minimal
tested concentration below 0.07820 uM and the maximal tested
concentrated below 20 uM. In these data, the natural logarithm of
the Half maximal inhibitory concentration (IC50) value represents
the drug sensitivity value. IC50 is the half maximal inhibitory
concentration of an anticancer drug, and a lower value means
higher sensitivity. Cell lines cannot be classified according to
histological subtypes provided by TCGA, labelled as
“UNCLASSIFIED”, were excluded from our study.

Generating the Pharmacological Subtypes
Tree
The cell lines, IC50 of which are smaller than maximal tested
concentrations, are defined as sensitive, otherwise resistant. Our
method iteratively splits the cancer cells into two groups in a way
that gains the best separation of drug sensitivity between two
groups until reaching two terminal conditions: The p value of the
difference of two groups’ drug sensitivity values is smaller than
0.05 or all cancer cells in a node are sensitive or resistant.

Suppose the set of all cells is Stotal, and each cell has its drug
sensitivity value. The procedure to grow a pharmacological
subtype tree is as follows:

1) Define the root node. Set S as the set of cancer cells in this
node, and assign Stotal to S.
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2) Define the root node as the current node.
3) N denotes the number of cells in the current node. If N is

smaller than 6 or all cells in such node are sensitive or
resistant, finish the procedure of growing the tree.
Otherwise, a heuristic algorithm splits S into two child
nodes, the left node and the right node, which achieves the
greatest drug sensitivity difference.

4) If no way can be found to split the current node (p < 0.05),
finish the procedure of growing the tree. Otherwise, the
current node is split into two child nodes.

5) Define the left node and right node. Suppose the set of cells in
the left node is Sl and the set in the right node is Sr. Sl and Sr
are the subsets of S.

6) Define the left node as the current node. Set S as the set of cells
in this node, and assign Sl to S. Repeat steps 3–5.

7) Define the right node as the current node. Set S as the set of
cells in this node, and assign Sr to S. Repeat steps 3–5.

Algorithm for Splitting the Node
We used a heuristic algorithm to search for a reasonable number
of divisions to split S into Sl and Sr. Suppose the number of the
cells set is ns. We first sorted the cells by IC50 ascending and
divided the cells with higher drug sensitivity into the Sl group
and the cells with lower drug sensitivity into the Sr group. Since
each node at least 6 cells, a total of ns − 5 divisions were
considered.

For each division, the Mann-Whitney U test was applied to
calculate the p value of drug sensitivity between Sl and Sr. The
division with the smallest p value was selected as the optimized
one to split the cancer cells in the current node.

The Cell Similarity and the Drug Similarity
The similarity of cells is calculated based on their response to the
different drugs. For each drug k, a pharmacological subtypes tree
Sk is generated, consisting of n subtypes:

Sk � (Sk1, Sk2, . . . , Skn) � (Skt )t�1→ n

Based on this tree, a matrix that defines a similarity of cancer
cells, regarding whether they are in the same subtype and their
drug response to drug k, is calculated. We assume there arem cell
lines tested for drug k. The cell lines are labelled as sensitive,
resistant, or NA (not available). A sensitive cell line has its IC50
value smaller than maximum tested concentration; a resistant cell
line has its IC50 value greater than maximal tested concentration.
For two given cell lines i and j, their similarity matrix (Dk

ij) is
defined as:

Dk
ij �

⎧⎪⎨
⎪⎩

1, if(i, j) ∈ Skt and both are labelled as sensitive ones;
−1, if(i, j) ∈ Skt and both are labelled as resistant ones;
0, otherwise.

If two cell lines i and j are in the same subtype and both are
sensitive to drug k, their score is 1, and −1 for both cell lines with a
resistant response, while if they are not in the same subtype or
show opposite response to the drug, their score is 0. A m ×m
similarity matrix of cell lines is then generated.

Then, the similarity of cell lines i and j can be further
calculated as:

Cellsim � ∑q
k�1

∣∣∣∣∣Dk
ij

∣∣∣∣∣
q

, i≠ j

Wherein i and j denote the cell lines tested for q drugs.
Furthermore, for two given drugs a and b, their similarity is

calculated as the summarized similarity across the same cell lines
which are tested for both drugs.

Drugsim � ∑m
i�1∑m

j�1D
a
ij ·Db

ij

∑m
i�1∑m

j�1D
a
ij ·Da

ij +∑m
i�1∑m

j�1D
b
ij ·Db

ij − ∑m
i�1∑m

j�1D
a
ij ·Db

ij

,

i≠ j

Wherein i and j denote the cell lines tested for both drugs, andm
is the total number of the same cell lines.

Connecting Pharmacological Subtypes
With Genomic Alterations
The maximum concentration of the drug was used to distinguish
between the resistant pharmacological subtypes and sensitive
pharmacological subtypes. The chi-squared test was used to calculate
the connection between genomic alterations, including mutation and
translocation, and pharmacological subtypes. Genomic alterations were
determined with p values corrected with the Benjamini-Hochberg
method for controlling the false discovery rate (Benjamini and
Hochberg, 1995). Here we used the corrected p value <0.1 as the
threshold. We defined two types of connections: sensitive and resistant.
If pharmacological subtypes with higher drug sensitivity had more
frequent alteration occurrences, we defined this connection as sensitive.
If the opposite was true, we defined the connection as resistant.

The connection betweenmRNA expression and pharmacological
subtypes was determined with p values from the student t test
corrected with the Benjamini-Hochberg method. If pharmacological
subtypes with higher drug sensitivity had higher expression, we
defined this connection as sensitive. If the opposite was true, we
defined the connection as resistant. Here we used the corrected p
value <0.1 as the threshold. To obtain more confident connections,
the Pearson correlation coefficient (PCC) was used to measure the
correlation between drug sensitivity (IC50) and gene expression in
the sensitive subtypes, and only genes with PCC greater than 0.3
were considered. The individual subtypes with sensitive and resistant
cells mixed were excluded in the above analyses.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) (Subramanian et al., 2005)
was employed to determine the 333 gene sets from KEGG,
enriched by a pre-ranked list of all genes, which were sorted
by the statistical significance of differential expression defined by
DESeq2 analysis (Love et al., 2014). Gene sets with FDR <0.05
were statistically significant.

Statistical Analysis
The Fisher’s exact test was used to respectively determine whether there
is a significant association between pathways and clusters of drugs
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determined by the number of drug pharmacological subtypes across 6
cancer types or not, whether any difference of phenotypes (cancers/
pathways) in clusters of cell lines/drugs derived from the similarity
matrix was significant, and whether cancer censor genes are enriched in
a list of geneswith themost connections to pharmacological subtypes. A
hypothesis test based on hypergeometric distribution was used to
determine whether a histological cancer is enriched in the most
sensitive pharmacological subtype of a drug. The p value <0.05 was
regarded as statistically significant. Kolmogorov-Smirnov test (K-S test)
was employed to compare cumulative distribution function (CDF) of
the number of pharmacological subtypes across the drugs between two
histological cancers.

RESULTS

We analysed 367 drugs in the CGP dataset and established their
pharmacological subtype trees. The leaf node in each tree

represents a pharmacological subtype of cancers, which is
composed of cells from the histological disparate tumor
subtypes. We further employed the mRNA expression profile
and mutation/fusion profile to connect the molecular alterations
with pharmacological subtypes, delineating a novel perspective to
re-classify the tumor according to therapeutic response
dependent of the intrinsic concordant molecular mechanism,
by regardless of tissues of origin. The cell similarity and the drug
similarity were also redefined based on the pharmacological
subtypes.

Pharmacological Subtypes of Cancers
We built a pharmacological tree for each drug based on the
divisibility of the drug sensitivity of cancer cells. Taking the tree of
the MEK1/2 inhibitor Refametinib as an example (Figure 1A), all
cells in the root node were first divided into left and right child
nodes with relatively high and low sensitivity, respectively, and
further cells in these two nodes were capable of being divided into

FIGURE 1 | Re-classifying cancers to generate pharmacological subtypes and drug sensitivity profiles. (A) Pharmacological subtype tree of the drug Refametinib.
Cancer cells were classified into five pharmacological subtypes based on their drug sensitivity to MEK inhibitor Refametinib. (B) The boxplot shows the drug sensitivities
of five subtypes (leaf nodes): C1, C2, C3, C4, and C5, indicating a gradually increasing degree of resistance to the drug Refametinib. Blue points refer to cell lines sensitive
to the drug, while red points resistant. (C) The barplot shows the number of cell lines in each subtype. (D) The pie chart shows the distribution of histological
subtypes across pharmacological subtypes. (E) The pie chart illustrates the numerical proportion of different degrees of the furthest divisible pharmacological subtypes.
Cancer cells could be maximally classified into up to 9 subtypes for different drugs. Among them, 7–9 subtypes accounted for more than half of drugs. (F) The density of
the number of pharmacological subtypes indicates the varied treatment heterogeneity across six histological cancers, in which the average number of cell lines among all
drugs are over 35. (G) The empirical cumulative distribution function visualizes the density of drug subtypes in LUAD vs. HNSC. p value was calculated by using the
Kolmogorov-Smirnov test (K-S test). (H) Hierarchical clustering of the number of pharmacological subtypes across six cancers. Each row in the heatmap represents a
drug, and each cell in the heatmap represents the number of subtypes of the cancer in the drug. The red color indicates more subtypes, and the blue color less subtypes.
There are more pharmacological subtypes of EGFR inhibitors (green drugs) in LUAD and HNSC, and more subtypes of inhibitors targeting in ERK/MAPK signalling (red
drugs) in SKCM.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7731014

Xu et al. Reclassify Tumors by Therapeutic Response

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


five final subgroups, C1, C2, C3, C4, and C5. Each subgroup had
varied drug sensitivity and reached maximum divisibility, thus
representing distinct pharmacological subtypes. C1 denotes the
most sensitive and C5 the most resistant subtype to the drug
Refametinib. Except for C3 where both sensitive and resistant
cells were mixed, the other subgroups contained the homologous
sensitive or resistant cells (Figure 1B). There were much more
sensitive cells in C1 and C2 than resistant cells in C4 and C5
(Figure 1C). We then investigated how histological subtypes were
distributed in the pharmacological subtypes (Figure 1D). C1 was
composed of 25 histological subtypes, with top 2 cancers, SKCM
(19.7%) and COREAD (12.4%). C5 was composed of 22
histological subtypes, with leading cancers including SCLC
(31.8%) and BRCA (17.0%).

Our analysis established 367 pharmacological trees. The
number of pharmacological subtypes with distinct drug
sensitivities varied from 2 to 9 across 367 trees (Figure 1E).
This suggested that heterogeneity of treatment effects across
histological subtypes existed widely, and one pharmacological
subtype presenting concordant drug response indeed comprised
histological disparate cells to some extent. A high degree of
treatment heterogeneity, meaning more than seven
pharmacological subtypes, was observed for 54.0% (16.9% of
the drugs had 7; 15.8% of the drugs had 8; and 21.3% of the
drugs had 9 pharmacological subtypes) of the drugs. These drugs
included Dabrafenib (BRAF inhibitor), Selumetinib (MEK1/2
inhibitor), Erlotinib (EGFR inhibitor), and Alectinib (ALK
inhibitor). 44.1% of the drugs had 5 or 6 subtypes, showing a
moderate degree of treatment heterogeneity, while 1.9% of the
drugs had subtypes lower than 4, showing a low degree of
heterogeneity related to drug therapy (Figure 1E).

We also particularly examined how pharmacological subtypes
were constituted within the same histological tumor subtypes,
including LUAD, BRCA, SKCM, SCLC, COREAD, and HNSC, in
which the average number of cell lines per drug was more than 35
(Figures 1F–H). We built approximately 310 pharmacological
trees for each type of the above cancers. The density distribution
of the number of pharmacological subtypes indicated the varied
treatment heterogeneity across 6 histological subtypes
(Figure 1F). The shape of the distribution curve in LUAD was
characterized by double kurtosis and significantly positively
biased, and oppositely the curve in HNSC was negatively
biased, suggesting the highest treatment heterogeneity in
LUAD and lowest treatment heterogeneity in HNSC.
Furthermore, K-S test was applied to evaluate if two different
histological subtypes had the same level of treatment
heterogeneity by comparing their cumulative distributions.
The results showed the cumulative distribution curve of
LUAD is significantly different from that of HNSC (p � 1.11e-
16, K-S test) (Figure 1G). The pairwise comparisons between the
curves of any two histological subtypes showed BRCA, SCLC, and
SKCM had the statistically similar distributions (p > 0.05, K-S
test), and other cancers had not (p < 0.05, K-S test)
(Supplementary Figure S1).

To observe the varied treatment heterogeneity of the different
histological subtypes in detail, the number of pharmacological
subtypes of drugs across 6 histological cancers were shown in the

heatmap (Figure 1H). Six histological tumors were arranged in
columns according to their treatment heterogeneity, from high to
low. Interestingly we observed that EGFR inhibitors (Afatinib,
Cetuximab, and Gefitinib) targeting in EGFR signalling pathway
(green drugs in Figure 1H) were clustered together (p < 0.001,
Fisher’s exact test). And in LUAD and HNSC there were more
pharmacological subtypes of EGFR inhibitors than other drugs,
suggesting high treatment heterogeneity for EGFR inhibitors in
LUAD and HNSC. In addition, drugs targeting ERK/MAPK
signalling (red drugs in Figure 1H) were clustered together
(p < 0.001, Fisher’s exact test). There was high treatment
heterogeneity for these drugs in SKCM.

Genomic Alterations Associated With
Pharmacological Subtypes
To identify the molecular alterations associated with varied drug
sensitivity, we examined whether the genomic alterations,
including mutations and translocations, significantly changed
across the pharmacological subtypes. The statistical
significance was determined by p values calculated with the
Chi-squared test and corrected with the Benjamini-Hochberg
method for controlling the false discovery rate. If the
pharmacological subtypes with higher drug sensitivity had
more frequent mutation or translocation events, we defined
their association as a sensitive connection. If the opposite was
true, we defined their association as resistant. Consequently,
genes with specific genomic alterations were associated with
the respective drugs. Since one gene could have multiple
connected drugs and one drug could have multiple connected
genes, these gene-drug connections ultimately composed a
network that allowed us to investigate the contribution of
either a drug or gene to the holistic understanding of how
altered genes connect to drug responses (Figure 2A). The hub
genes with the most connections to the drugs, including known
cancer genes KRAS, RB1, BRAF, TP53, NOTCH2, and other
genes LTB, TNFRSF9, DERA et al. were highlighted in the
network.

We first investigated the distribution of genes on their
connected drugs (Figure 2B). Our analysis identified 624
genes whose genomic alterations were connected with at least
two drugs’ pharmacological subtypes. Most of the genes (70.67%)
had fewer than 3 connections with drugs, but 40 (6.41%) genes
whose genomic alterations were associated with more than 5
drugs. By ranking genes by their number of connections to drugs,
we found that the top ranked genes were enriched in cancer genes
(Figure 2C; Supplementary Figure S2), a catalogue of genes with
mutations or fusions that are causally implicated in cancer
provided by the COSMIC database (Tate et al., 2019). The top
10 genes connected to more than 12 drugs, 30% of which were
remarkably annotated as cancer genes (Figure 2C). These
cancerous percentages for the top 10 (p � 3.62e-03, Fisher’s
exact test), top 20 (p � 1.27e-07, Fisher’s exact test), and top
30 genes (p � 1.62e-09, Fisher’s exact test) were significantly
higher than the background when using genome-wide 21,972
genes as a reference (Figure 2C). Among the top ranked
oncogenes, ABL1_BCR ranked first with connections to 28
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drugs, followed by BCR_ABL1 and KRAS with 20 and 12 drugs
(Figure 2D), implying that the highly drug-connected genes that
are not currently identified as cancer genes could actually be
causally implicated in cancer therapy, such as KCTD1_PCAT18
fusion, TNFRSF9, LTB, and NFATC4, which showed connections
to over 18 drugs and ranked as the top five genes (Supplementary
Figure S2).

We then investigated the distribution of drugs on their
connected genes. In this analysis, we focused only on cancer
censor genes. For the majority of drugs (86.36%), the number of
connected genes ranged from 2 to 5 (Figure 2E). Among the
pharmacological subtypes, genes whose alteration was
sensitively connected with drug resistance were significantly
more abundant than those that were connected in a resistant
manner (p � 0.0102, student t test). (Figure 2F). We ranked the

drugs with more than 5 genes’ connection with their
pharmacological subtypes (Figure 2G). Drugs with gene
connections greater than 5 included GSK690693, affecting
the PI3K/MTOR signaling pathway, TAK−715, affecting the
JNK and p38 signaling pathway, VX−11e, affecting the ERK
MAPK signaling pathway, and IGFR_3801, affecting the IGF1R
signaling pathway.

Next, we observed how the mutation rate of genes associated
with the variability of drug sensitivity changed among drug-
sensitive and drug-resistant subtypes. Taking the MEK1/2
inhibitor Refametinib as an example, three genomic alterations
were found to connect to the drug and be associated with
pharmacological subtypes. As shown in Figure 2H, BRAF
mutations and KRAS mutations occurred significantly more
frequently (over 25%) in the sensitive subtype C1 and then

FIGURE 2 | Genomic alterations determine the various drug sensitivities across pharmacological subtypes. (A) A gene with its genomic alteration significantly
changed across the pharmacological subtypes of a drug is linked with the drug, generating a gene-drug network. A sensitive connection means that subtypes with high
drug sensitivity have amore frequent occurrence of genomic alterations. Conversely, those that are less frequent are defined as resistant connections. The 15 hub genes
withmost connections to drugs are shown. (B) 6.41% genes havemore than 5 connected drugs. In addition, 70.67% of genes have fewer than 3 connected drugs.
(C) The percentage of cancer genes in the top 10, 20, and 30 genes, and the genome-wide 21,972 genes are referred to as background. (D) The top cancer censor
genes defined by COSMIC and the corresponding number of drug connections. (E)When considering the drugs connected to the genes, 13.64% of drugs have more
than 5 connected cancer genes. In addition, 50% of drugs have fewer than 3 connected cancer genes. (F) The number of genes with sensitive connections is significantly
greater than the number of genes with resistant connections. (G) Drugs with cancer gene connections greater than 5 were ranked. (H) BRAF mutation, RB1 mutation
and KRAS mutation are associated with the five pharmacological subtypes of Refametinib. Histograms show the mutation ratio of the three genes in the five
pharmacological subtypes of Refametinib.
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decreased gradually in the subtypes C2, C3, C4, and C5. Here one
subtype C3 with sensitive and resistant cells mixed was excluded
in the analysis. Conversely, RB1 mutation, occurred more
frequently in the resistant subtypes. Therefore, C1 group,
consisting mainly of SKCM (19.7%) and COREAD (12.4%)
(Figure 1D), was significantly sensitive to Refametinib due to
its high occurrence of BRAF and KRAS mutations and low
occurrence of RB1 mutations (Figure 2H). Other types of
MEK inhibitors, including PD0325901, Trametinib,
Selumetinib, and CI-1040, further confirmed that BRAF,
KRAS, and RB1 mutations were robustly connected to
pharmacological subtypes, contributing to the drug sensitivity
of MEK inhibitors (Supplementary Figure S3). Our analysis
revealed that the varied distribution of genomic alterations across

pharmacological subtypes could lead to their differences in
response to anticancer therapies.

Expression Alterations Associated With
Pharmacological Subtypes
We also associated mRNA expression with the pharmacological
subtypes. The connection between gene expression and
pharmacological subtypes was determined by p values
calculated with the student t test and corrected with the
Benjamini-Hochberg method for controlling the false
discovery rate. If the subtypes with higher drug sensitivity had
higher gene expression, we defined this connection as sensitive. If
the opposite was true, we defined the connection as resistant. The

FIGURE 3 | Tissue-specific gene expression determines the various drug sensitivities across pharmacological subtypes. (A) A gene with its expression significantly
changed across the pharmacological subtypes of a drug is linked with this drug, generating a gene-drug network. A sensitive connection means that subtypes with high
drug sensitivity have higher gene expression. Conversely, those with low expression are defined as resistant connections. The 15 hub genes with the most connections
to drugs are shown. (B) Pie chart illustrates the numerical proportion of the number of connected drugs with genes whose expression is associated with the
pharmacological subtypes. A total of 4.97% of genes have more than 20 connected drugs. In addition, 56.14% of genes have less than 5 connected drugs. (C) The
percentage of cancer genes in the top 10, 20, and 30 genes, and the genome-wide 21,972 genes are referred to as background. (D) The top cancer censor genes
defined by COSMIC and the corresponding number of drug connections. (E) Distribution of the genes functioning in the core cancer pathways whose expression is
connected with pharmacological subtypes. A total of 4.65% of drugs have more than 100 connected genes. (F) The number of genes with sensitive connections is
significantly greater than the number of genes with resistant connections. (G) Top 20 drugs with the most connections to genes. (H) Seven subtypes, C1, C2, C3, C4,
C5, C6, and C7, have varied drug sensitivity tomethotrexate, with C1 being themost sensitive to the drug and C7 being themost resistant to the drug. The boxplot below
shows the drug sensitivities of the three subtypes (leaf nodes) C1, C2, C3, C4, C5, C6, and C7, indicating a gradually increasing degree of resistance to the drug. (I) A
total of 38 genes are highly expressed in sensitive group (C1, C2, and C3) and lowly expressed in resistant group (C5, C6, and C7). (J) Pathways enriched by the 38 highly
expressed genes in sensitive group (C1, C2, and C3).
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connections between genes and drugs constituted a network
(Figure 3A). To narrow down the genes whose expression
levels were directly associated with drug sensitivity, we only
kept genes which act in core cancer pathways (Supplementary
Table S1), and whose Pearson correlation between drug
sensitivity and gene expression were greater than 0.3 in the
sensitive subtypes. The hub genes with the most connections
to the drugs, including known cancer genes WWTR1, JUN,
BCL9L and other genes NQO1, CAPN2, and PERP et al., were
highlighted in the network.

We first investigated the distribution of genes on their
connected drugs (Figure 3B). Our analysis identified 684
genes whose expression was connected to at least two drugs’
pharmacological subtype. Among them, 4.97%, 14.04%, and
24.85% of genes respectively had connections with greater
than 20, 10, and 5 drugs. The top 30 genes connected to more
than 20 drugs, 25% of which were annotated as cancer genes
(Figure 3C; Supplementary Figure S4). These cancerous
percentages for the top 20 (p � 4.37e-06, Fisher’s exact test),
and top 30 genes (p � 5.84e-52, Fisher’s exact test) were
significantly higher than the background. The top genes with
their expression alterations associated with subtypes were
different from those with genomic alterations associated with
subtypes (Figures 2D, 3D). Among them, WWTR1, BCL9L, and
JUN ranked the top three with connections to 26 drugs and 25
drugs (Figure 3D).

We then investigated the distribution of drugs on their
connected genes. The number of genes whose expression was
associated with the subtypes varied from 0 to 223 across the
drugs, with 4.65% drugs had more than 100 gene connections
(Figure 3E). Comparing with genomic alterations, there were
more genes whose expression was connected to the drugs.
Moreover, genes whose expression was sensitively connected
with drug resistance across pharmacological subtypes were
significantly more abundant than genes that were resistant
connected (p � 0.0462, student t test) (Figure 3F). The top 20
drugs with the most connections to genes included Nilotinib,
affecting the ABL signaling, PHA−793887 and NPK76−II−72−1,
affecting cell cycle, Lapatinib and KIN001−236, affecting RTK
signaling pathway, Navitoclax, affecting Apoptosis regulation,
and some compounds such as Ara−G, XMD14−99 et al., affecting
multiple or unknown pathways (Figure 3G).

Methotrexate, as an example, is a chemotherapy that
specifically acts during DNA and RNA synthesis, and cancer
cells were classified into seven subtypes (Figure 3H) in terms of
drug sensitivity to methotrexate. The first subtype, C1, was most
sensitive to the drug, and the seventh subtype, C7, was the most
resistant to the drug (Figure 3H). C1 included 12 histological
subtypes, with the top 2 shown in the bottom of Figure 3H, ALL
and DLBC. C2 and C3 were composed of 18 and 19 histological
subtypes, respectively, with SCLC both included in the top 2
(Figure 3H). A total of 38 genes with high expression in sensitive
group (C1, C2, and C3) and low expression in resistant group
(C5, C6, and C7), which had sensitive connections to
pharmacological subtypes of methotrexate, were selected
(Figure 3I). Pathway enrichment analysis showed that these
genes were enriched in pathways including cell cycle and

DNA replication et al. (Figure 3J), suggesting that the ectopic
activation of cell cycle led to the sensitive response of ALL, DLBC,
LAML, and SLCL to Methotrexate.

Redefining the Similarity of Cells Based on
Pharmacological Subtypes
Pharmacological subtypes provide us a new point of view to
redefine the similarity of cells purely from therapeutic
concordance. Thus, we calculated the similarity of pairwise
cells based on pharmacological subtypes of drugs. If there are
quite a few cases that two cells are in the same sensitive or
resistant pharmacological subtypes of drugs, these cells gain a
high similarity. Otherwise, they gain a low similarity. The
similarity of cells defined a hierarchical cluster as shown in
Figure 4A. We further applied the Fisher’s exact test to
observe if the cells in the same clusters were from the same
histological subtypes (Figures 4B–D). The points with black
border in the figure represent statistical significance (p < 0.05),
with the smaller p values shown in red.

The results showed that the cancer cell lines were respectively
divided into 2, 4, and 15 clusters at the different hierarchical
cluster levels (Figure 4A). Two clusters at the high level were
reflected by two distinct patterns of similarity (Figure 4A). One
cluster (Cluster H1) was significantly correlated with solid tumors
including BRCA, COREAD, LUAD, MESO, OV, and PAAD, and
the other (Cluster H2) hematological tumors including ALL,
DLBC, LAML, LCML, and MM (Figure 4B). Here, the point
with black border represents statistical significance (p < 0.05,
Fisher’s exact test) of the association between the cluster and
cancer type. So in a holistic view, the different types of
hematological tumors shared a similar drug sensitivity profile,
which was quite different from the profile of solid tumors.
However, for a given cancer type (the right panel of
Figure 4B), such as ACC, BLCA, CESC, CLL, or ESCA et al.,
its cells were unbiasedly distributed in two clusters (p > 0.05,
Fisher’s exact test), showing the treatment heterogeneity for the
cells from the same tissue origin. At the median hierarchical
levels, 4 clusters were identified (Figure 4C). Among them,
Cluster M3 was specifically associated with haematological
tumors (p < 0.001, Fisher’s exact test) including ALL, DLBC,
LAML, LCML, and MM. The treatment heterogeneity was still
observed in cancers.

When cell lines were divided into 15 clusters at the lower
hierarchical level (Figure 4D), we observed that the cells from
ACC, CLL, STAD, or UCEC were unbiasedly distributed in the
different clusters, still showing their treatment heterogeneity.
Interestingly, the cells from some cancers such as HNSC,
KIRC, and SCLC were enriched in more than 2 clusters with
distinctly different drug response. For instance, HNSC cells were
enriched in Clusters L12, L4 and L5; KIRC cells were enriched in
Clusters L15 and L4; SCLC cells were enriched in Clusters L13,
L3, and L7. Interestingly, the SCLC cells in Cluster L13 shared a
more similar profile with hematological tumors including DLBC,
LAML, and LCML. To investigate the underlying mechanism of
such treatment heterogeneity in SCLC, we applied DESeq2
analysis to call the differentially expressed genes between
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Cluster L13 and Cluster L3, and further identified the differential
functions via gene set enrichment analysis (GSEA) (Subramanian
et al., 2005). The results showed that the functions like DNA
replication, RNA transport et al. were significantly upregulated in
Cluster L13 cells, while in Cluster L3 cells the functions like
immune response, antigen processing and presentation et al. were
mainly upregulated (Supplementary Figure S5A). Moreover,

MYC, as an oncogenic transcription factor of cell growth and
proliferation via enhancing the cell cycle regulated genes (Oster
et al., 2002), was significantly upregulated in Cluster L13 than in
L3, with a log2-fold change of 4.28 (Supplementary Figure S5B).
These suggested that SCLC cell lines in Cluster L13 were higher
Myc-dependent than those in Cluster L3, characterized with
increased cell proliferation and evasion of immune response.

FIGURE 4 | Cell similarity and drug similarity based on pharmacological subtypes. (A) Hierarchical clustering of a cell similarity matrix which was generated based
on drug response of cells to drugs, with the red color indicating high similarity, and the blue color indicating low similarity between two cell lines. Clusters were formed by
partitioning of the dendrogram at a high, median and low height respectively, which indicates the distance between the clusters. (B) Two clusters (H1, H2) were formed
by cutting the dendrogram at a height of 30. Points with black border represent statistical significance (p < 0.05) determined by Fisher’s exact test. Almost all
histological subtypes of blood cancer were grouped together. (C) Four clusters (M1, M2, M3 and M4) were formed by cutting the dendrogram at a height of 15. (D)
Fifteen clusters (L1-15) were formed by cutting the dendrogram at a height of 5. Cancers with the same tissue of origin and organ did not cluster together. (E)Hierarchical
clustering of the drug similarity profiles with the red color indicating a high similarity and the blue color indicating a low similarity. Clusters were formed by partitioning of the
dendrogram at a high and low height respectively. (F) Two clusters (H1, H2) were formed by cutting the dendrogram at a height of 30. Points with black border represents
statistical significance (p < 0.05) determined by Fisher’s exact test. Chemotherapy related drugs were grouped together. (G) Four clusters (L1, L2, L3, and L4) were
formed by cutting the dendrogram at a height of 5. Cytoskeleton, EGFR signalling, Hormone-related and WNT signalling pathways cluster together.
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Redefining the Similarity of Drugs Based on
Pharmacological Subtypes
The similarity of pairwise drugs was also defined as the
summarized similarity of drug response across the same cells
which were tested for both drugs. For two drugs, if there are
quite a few of cell pairs which are in the sensitive (or resistant)
pharmacological subtypes of one drug are also in the sensitive
(or resistant) subtypes of the other drug, they gain a high
similarity. Otherwise, they gain a low similarity. We then
generated a drug similarity profile across 367 drugs, and
similarly, a hierarchical clustering algorithm was used to
group drugs based on drug similarity (Figure 4E). The
results showed that at the high level, drugs were divided into
two clusters, demonstrating two different similarity patterns.
The first cluster (Cluster H1) mostly included chemotherapy
drugs such as those effecting in DNA replication and mitosis,
and the second cluster was mixed with target and
chemotherapy drugs, specifically enriched by the drugs on
RTK signaling, other kinases, and cytoskeleton (Figure 4F).
When the drugs were divided into 4 clusters (Figures 4E,G), we
observed that the drugs enriched in L2 included chemotherapy
drugs effecting in cell cycle, chromatin histone accelylation,
and DNA replication, the drugs enriched in L3 were
functioning in PI3K/mTOR signaling pathway, and the
drugs enriched in L4 were hormone related ones. Moreover,
L4, accounting for a massive part of drugs, also included the
drugs targeting the different types of signaling pathways such as
ABL, EGFR, Jak, and P38, RTK, and WNT signalling. These
drugs did not reach the significant level but provided the
obvious association.

An Access to Pharmacological Subtypes of
Drugs
To enable knowledge sharing and reuse, we developed a database
(http://www.hywanglab.cn/dtdb/, Supplementary Figure S6),
which provided the comprehensive knowledge of
pharmacological subtypes of drugs in this study, for
supporting the further exploration of therapeutic response-
based classification of tumors. The web interface of the
database is user-friendly and allows users to search, browse
and download data. A record of the database includes the
following information: the pharmacological subtypes of a drug,
the drug sensitivity values of each subtype, the distribution of
histological subtypes in each pharmacological subtype, genomic
and expression alterations connected to subtypes. In addition, the
users can acquire the other information of a drug, a gene, or a
specific cancer type in terms of our analysis. For example, given a
drug, the other drugs with the most similar drug response across
cancer cells are provided. Similarly, given a cancer cell line, the
other cell lines with the most similar drug response across drugs
are provided. Given a histological cancer type, such as SCLC, the
pharmacological subtypes with the distinct treatment response
were depicted, as well as the underlying mechanism of such
treatment heterogeneity. The resources are expected to support
the researches of precision medicine from a purely therapy-
oriented perspective.

DISCUSSION

In this study, we integrated drug response information to
pharmacologically reclassify tumor subtypes, as well as identify
intrinsic concordant molecular mechanisms. Unlike the many
studies that have aimed to unravel cancer heterogeneity by
defining subtypes within the same tissues, our study aimed to
systematically uncover that cancers across disparate tissues of
origin can belong to one pharmacological subtype, benefiting
from similar anticancer therapies, because they share a common
molecular mechanism of oncogenesis. Besides, we also developed
the new measures to redefine cell similarity and drug similarity
from the therapeutic concordance, which provided a new point of
view to study cancer heterogeneity. The similarity of cells further
depicted that cells from the different origin of tissue could share
the similar responses of drugs; likewise, that cells from the same
origin of tissue could have distinct drug responses, thus indicating
the new subtypes.

Our analysis identified, for instance, that although SKCM and
COREAD are histologically different, both belonged to one
pharmacological subtype, the MEK1/2 inhibitor C1 subtype,
and were similarly sensitive to MEK1/2 inhibitors (Figures
1A–D). By connecting genomic alterations with
pharmacological subtypes, mutations in the oncogene BRAF or
KRAS were found to be overwhelmingly more frequent in the C1
group (Figure 2H). BRAF and KRAS are the kinases upstream of
MEK1/2 that transmits the signals down through MEK1/2
without other major signalling branches (McCubrey et al.,
2007; Simanshu et al., 2017). Our results illustrated that MEK
inhibitors were able to effectively block aberrantly activated signals
from BRAF or KRAS mutations. Further investigation by
cBioportal (https://www.cbioportal.org/) of TCGA patients also
revealed that approximately 60% of THCA (thyroid carcinomas)
and 50% of SKCM (melanomas) harboured BRAF mutations, and
65% of PAAD (pancreas) and 40% COREAD (colorectal
carcinomas) possessed KRAS mutations, a rate that was
strikingly higher than that of other cancers (Supplementary
Figures S7A,B). Given the high mutant frequency of BRAF in
THCA and SKCM, and KRAS in PAAD and COREAD, such 4
cancer types were significantly enriched in C1 pharmacological
subtype of MEK1/2 inhibitor Refametinib (THCA, p � 1.90e-2;
SKCM, p � 1.23e-14; PAAD, p � 3.01e-4; COREAD, p � 3.84e-5;
Hypergeometric Distribution Test) (Supplementary Table S2). In
contrast, mutations in the oncogenes RB1 was found to be less
frequent in the C1 group than in other groups. RB1 is a negative
regulator of the cell cycle, with its active hypophosphorylated form
binding the transcription factor E2F1 (Chen et al., 2009). RB1
mutations lead to the ectopic activation of the cell cycle, which
cannot be controlled using MEK inhibitors. This may be because
RB1, located downstream of MEK1/2, gain ectopic activation
independent of upstream stimulation. In another instance,
therapeutic concordance was identified across histologically
disparate blood cancers in regard to methotrexate, a
chemotherapy drug specially acting during DNA and RNA
synthesis (Figure 3H). This is well known that Methotrexate is
used in haematological malignancies but less so in solid cancers
(Koźmiński et al., 2020). Functional analysis of the sensitively
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correlated genes showed that haematological tumors were
ectopically activated in cell cycle than solid tumors (Figures
3I,J). The molecular basis of such extraordinary activation of
the cell cycle in haematological tumors could explain their good
response to chemotherapy drugs, which workmainly by inhibiting
mitosis and cell division. This demonstrates pharmacological
subtypes benefiting from similar anticancer therapies can be
due to common molecular mechanisms related to tissue-
specific gene expression and pathways.

We also investigated the treatment heterogeneity for six types of
histological cancers, including LUAD, BRCA, SKCM, SCLC,
COREAD, and HNSC. High treatment heterogeneity in LUAD
was observed compared with other types of cancers, suggesting
that anticancer therapies for LUAD should be more complicated
than those for other types of cancers (Figures 1F–H). Moreover, the
increased number of subtypes of EGFR inhibitors in LUAD, and of
drugs targeting in ERK/MAPK signalling in SKCM, indicated there
was high treatment heterogeneitywhenEGFR inhibitorswere applied
into the therapies of LUADpatients andwhenERK/MAPK signalling
targeting drugs were applied into SKCM patients (Figure 1H). We
also observed the low treatment heterogeneity for HNSC (Figures
1F,G). However, our findings were only based on the current
information provided by the CGP dataset. The low treatment
heterogeneity could be due to the fact that active drugs in this
histological cancer are potentially still missing. Drug development in
future may increase the treatment heterogeneity as well.

Our analysis showed that genes whose genomic/expression
alterations frequently connect to anticancer drugs had a higher
likelihood of being cancer genes. At genomic level, the top 10
genes were connected to more than 10 drugs, 30% of which were
annotated as cancer censor genes. At expression level, each of
genes connected to more drugs and the top genes had higher
cancerous percentages. This indicated that some genes currently
not identified as cancer genes could be causally implicated in
cancer. In our analysis, KCTD1_PCAT18, TNFRSF9, and LTB, as
the top three most connected genes, were worth for further
investigation. KCTD1 (potassium channel tetramerization
domain containing 1) was reported to regulate the Wnt/
β-catenin pathway (Li et al., 2014; Hu et al., 2020), and
PCAT18 (prostate cancer-associated transcript 18, lncRNA),
was found to promote the progression of colorectal or gastric
cancer through miR-759 or miR-135b (Hu et al., 2020; Zhang
et al., 2020), thus KCTD1_PCAT18 fusion may resulting in the
development of cancer. TNFRSF9 (tumor necrosis factor receptor
superfamily member 9), also known as 4-1BB and CD137, is an
immune co-stimulatory receptor. TNFRSF9 is expressed on
activated immune cells including natural killer (NK) cells,
effector T cells and antigen presenting cells, among them
dendritic cells, macrophages, and B cells (Fröhlich et al.,
2020). LTB (Lymphotoxin Beta) is a type II membrane protein
of the TNF family. Giuseppina et al. found that a decrease in
lymphotoxin-β production by tumor cells was associated with a
loss of follicular dendritic cell phenotype and diffuse growth of
follicular lymphomas (Pepe et al., 2018). Recently, the gene was
found to be associated with immune infiltration of breast and
endometrial cancer tumors (Ding et al., 2020; Terkelsen et al.,
2020). The analysis using the TCGA dataset showed that

TNFRSF9 was altered in approximately 5% of cases of
Cholangiocarcinoma, adrenocortical carcinoma (ACC) and
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
with deep deletion being the dominant alteration
(Supplementary Figure S8A). In addition, more than 14% of
DLBC patients had altered LTB genes, with mutation and
deletion being the major alterations (Supplementary Figure
S8B). Therefore, the importance of the roles of these genes in
cancers could be underappreciated.

Our analysis also showed that some drugs connected to many
known cancer genes (Figure 2G). This suggested that these drugs
are unspecific or the genes are important for many different
pathways. So these drugs may not be ideal from a therapeutic
perspective. Moreover, genes whose alterations were sensitively
connected with drug resistance were significantly more frequent
than those resistant connected (Figures 2F, 3F). A sensitive
connection meant that genomic alterations or high expression
indicated increased drug sensitivity. In this way, genes with a
sensitive connection could be indicators of therapeutic efficiency
for connected drugs. Genes with resistant connections could be
potential biomarkers for developing new therapies to overcome the
resistance of connected drugs. Our analysis suggests that most of
the genes whose expressions are altered during cancer initiation
and development (driver genes or not) are located in ectopically
activated pathways that could be controlled by anticancer drugs.
Only a proportion of altered genes are outside of the cellular
pathways targeted by anticancer drugs, and their alterations may
maintain the growth signals of cancer cells when anticancer drugs
are used. Therefore, these genes may be potential therapeutic
biomarkers for overcoming drug resistance to the connected drugs.

Based on pharmacological subtypes, the cell similarity and the
drug similarity could be re-defined (Figure 4). The cells from the
same origin of tissue can be dispersed in the different
pharmacological subtypes, showing the completely different
response to the same drug, because of their intrinsically
molecular heterogeneity. For instance, HNSC, KIRC, and SLCL
cells were separated into more than two clusters with distinct drug
response (Figure 4D). Specifically, the SCLC cells with more
malignant signatures, in particular, higher expression levels of
MYC, upregulated pathways involving DNA replication and cell
cycle and downregulated pathways on immune response, were far
away from the other SCLC cells and close to hematological tumors,
instead. Interestingly, by connecting to expression alterations, our
analysis further confirmed that SCLC cells more like hematological
tumors had the characteristic of the ectopic activation of cell cycle,
which led to their sensitive to a chemotherapy Methotrexate
(Figures 3H–J). Our pharmacological analysis has recognized a
new subtype of SCLC cells, with the high expression of an oncogenic
transcription factor MYC as a marker, can benefit from
chemotherapy than other SCLC subtypes. This finding was
consistent with the latest studies (Bian et al., 2020; Ireland et al.,
2020). Therefore, the subtypes identified by re-classifying the same
origin of tissue using pharmacological data are worth to be further
investigated. In addition, our analysis of the drug similarity
unraveled that the drugs were categorized into two major
groups, wherein the chemotherapeutic drugs tended to share the
similar pattern (Figures 4E,F).
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There are several limitations to this study. We measured the
similarity of cells/drugs on the scale of all drugs/cells, so the
similarity at the local space might be underestimated. Moreover,
there is lack of experimental validation for our findings. To
overcome these limitations, further proof of concept studies
that reclassifying tumors based on therapeutic responses
independent of histology subtypes is warranted.

In summary, this study demonstrates how pharmacogenomic
data can be used to systematically classify cancers in terms of
response to various compounds and provides us with a purely
therapy-oriented perspective to view tumor classifications
independent of histology subtypes. Moreover, the knowledge of
pharmacological subtypes of 367 drugs are available via our website,
providing the resources for precision medicine in the perspective of
therapeutic response-based re-classification of tumors.
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GLOSSARY

ACC Adrenocortical carcinoma

ALL Acute lymphoblastic leukemia

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CLL Chronic lymphocytic leukemia

COREAD Colon adenocarcinoma and rectum adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KIRC Kidney renal clear cell carcinoma

LAML Acute myeloid leukemia

LCML Chronic myelogenous leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MB Medulloblastoma

MESO Mlistdefinitionesothelioma

MM Multiple myeloma

NB Neuroblastoma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PRAD Prostate adenocarcinoma

SCLC Small cell lung cancer

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

THCA Thyroid carcinoma

UCEC Uterine corpus endometrial carcinoma

CGP The Cancer Genome Project

IC50 Half maximal inhibitory concentration

TCGA The Cancer Genome Atlas Program

FDA U.S. Food and Drug Administration

RTK Receptor tyrosine kinase

MEK Mitogen-activated protein kinase kinase.
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