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Abstract: Lysine acetylation is a highly conserved mechanism that affects several biological processes
such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene tran-
scription or chromatin structure. This post-translational modification, mainly regulated by lysine
acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone
proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac
dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity,
type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and
mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to
disease development. In this review, we summarize the mechanisms involved in the regulation of
cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of
cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This
review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs
and KDACs as potential therapeutic targets for heart failure.
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1. Introduction

Obesity is a worldwide epidemic associated with several public health challenges
including type 2 diabetes, hypertension, obstructive sleep apnea, dyslipidemia and cardio-
vascular disease, and notably heart failure. The prevalence of these disorders (e.g., obesity,
type 2 diabetes and heart failure) is still increasing and heart failure remains the most
common cause of cardiovascular morbidity and mortality in the world [1]. Interestingly,
although heart failure could provoke systolic or diastolic cardiac dysfunction, obesity
and type 2 diabetes are more often characterized by cardiac hypertrophy and diastolic
dysfunction [2]. Moreover, diastolic heart failure remains one of the more challenging dis-
eases to treat and, thus, a better understanding of the physio(patho)logical mechanisms
involved in metabolic heart disease is necessary to propose new pharmacological ther-
apies. In this context, epigenetic or protein post-translational modifications, including
phosphorylation, methylation, O-GlcNAcylation, ubiquitylation, and acetylation, could rep-
resent interesting targets since they modulate gene or protein expression during metabolic
diseases [3].

Protein acetylation is a highly conserved mechanism that was first described 60 years
ago, in which an acetyl group is covalently attached to the ε-amino group of lysine
residues [4]. This modification induces important changes to the protein structure at
its lysine residue, by altering its charge status and adding an extra structural moiety [5].
These post-translational modifications can regulate protein–protein interactions, stability
and function. Acetylation was first described to regulate chromatin structure and histone

Biomedicines 2022, 10, 1834. https://doi.org/10.3390/biomedicines10081834 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10081834
https://doi.org/10.3390/biomedicines10081834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-9811-617X
https://orcid.org/0000-0001-9088-234X
https://orcid.org/0000-0002-5471-1487
https://orcid.org/0000-0002-2109-4849
https://doi.org/10.3390/biomedicines10081834
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10081834?type=check_update&version=2


Biomedicines 2022, 10, 1834 2 of 14

activity, associated to epigenetic-mediated gene regulation [4]. Since then, several pro-
teomic analyses enabled to identify more than a thousand acetylation sites in both histone
and non-histone proteins [6–8], and, interestingly, revealed that the subcellular distribution
of acetylation is tissue dependent [9]. Focusing on cardiovascular and metabolic diseases,
Table 1 indicates some of the most common proteins modified by cardiac acetylation.

Table 1. Most common proteins modified by cardiac acetylation in cardiovascular and metabolic
diseases.

Class Name KAT KDAC Function of Acetylation in the Heart References

Mitochondrial
proteins

LCAD/SCAD GCN5L1 SIRT3 Increased activity and modulated fatty
acid oxidation [5,10–13]

β-HAD GCN5L1 SIRT3 Increased activity and modulated fatty
acid oxidation [5,12,14]

OPA1 Unknown SIRT3 Decreases its activity [15]
PGC1α Unknown SIRT1 Increases its expression [16]

Cyclophilin D GCN5L1 SIRT3 Induces mPTP opening [17]

Transcription
factors

TBX5 KAT2A, KAT2B HDAC4 HDAC5 Increases transcriptional activity [18,19]

VGLL4 P300 Unknown Negatively regulates its binding to
TEAD1 [20]

GATA4 P300 SIRT7 Activates its DNA binding activity [21,22]

MEF2A P300
KAT2B HDAC5 Increased hypertrophy [23,24]

MEF2C KAT2B HDAC5 Increased hypertrophy [24,25]

Anti-oxidant
proteins

SOD2 Unknown
Decreases SOD2 activity [26]

SIRT3
Increased mitochondrial oxidative

stress and
hypertrophy

[27]

Prx1 Unknown HDAC6 Increased peroxide-reduction activity [28]
Nrf2 Unknown SIRT1 Decreases its activity [29]

eNOS Unknown SIRT1 Inactive form [30]

Contractile
proteins

β-MHC Unknown HDAC6 Impact myosin head positioning [31,32]
Titin Unknown HDAC6 Cardiac contraction [33]

CapZβ1 Unknown HDAC3/6 Cardiac contraction [34]
TnI Unknown HDAC6 Cardiac contraction [35]

Signaling
pathway

LKB1 Unknown SIRT2
SIRT3

Induces its activation by
phosphorylation [36,37]

Akt Unknown SIRT1 Inhibition of Akt phosphorylation and
activation [38]

SMAD2 KAT2B SIRT1 Induced fibrosis [39,40]
SMAD3 Unknown SIRT1 Induced fibrosis [40–42]

KAT: lysine acetyltransferase; KDAC: lysine deacetylase; LCAD: long chain acyl CoA dehydrogenase; SCAD: short
chain acyl CoA dehydrogenase; β-HAD: L-3-hydroxy acyl-CoA dehydrogenase; OPA1: optic atrophic 1; PGC-
1α: peroxisome proliferator-activated receptor-gamma coactivator; TBX5: T-Box transcription factor 5; VGLL4:
vestigial-like 4; TEAD1: TEA Domain Transcription Factor 1; GATA4: GATA-binding factor 4; MEF: myocyte
enhancer factor; SOD2: superoxide dismutase 2; Prx1: peroxiredoxin 1; Nrf2: nuclear factor erythroid-2-related
factor 2; eNOS: endothelial nitric oxide synthase; β-MHC: beta-myosin heavy chain; TnI: troponin I; LKB1: liver
kinase B1; GCN5L1: general control of amino acid synthesis 5 like-1; SIRT: sirtuins; HDAC: histone deacetylase;
mPTP: mitochondrial permeability transition pore.

2. Cardiac Acetylation
2.1. Regulation of Lysine Acetylation

Lysine acetylation is a reversible mechanism that is regulated by the dynamic actions
of lysine acetyltransferase (KATs) and lysine deacetylase (KDACs) enzymes [43]. There
are three categories of KATs: the MYST family, the Gcn-5-related N-acetyltransferases
(GNATs) and the E1A-associated protein of 300 kDa/CREB binding protein (p300/CBP)
family [44]. KDACs are broadly categorized into four classes based on function and
DNA sequence similarity. Class I (reduced potassium dependency 3 family), II (histone
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deacetylase 1 family) and IV (HDAC11) are considered as classical KDACs with zinc-
dependent active sites, whereas class III enzymes are a family of silent information regulator
2-like nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases/mono-ADP-
ribosyl transferases known as sirtuins 1 to 7 [44]. Interestingly, the level of expression of
KATs and KDACs follows a specific tissue distribution, suggesting specific functions in
these different organs [45]. For example, in physiological conditions, KATs are weakly
expressed in vascular tissue, except for the lysine acetyltransferase KAT2B, which is highly
expressed [45]. Conversely, a database mining approach analyzing the expression profile of
164 enzymes in human and murine tissues highlighted heart as tissue in which KATs and
KDACs are in the highest varieties [45]. In addition to tissue-specific expression, both KATs
and KDACs have precise subcellular localizations related to their specific targets (Figure 1)
and can regulate each other. For example, cardiomyocyte overexpression of SIRT6 decreases
P300 levels, where SIRT6 promotes ubiquitination and degradation of P300 [46]. Moreover,
cardiomyocyte overexpression of SIRT3 increases SIRT1 expression [27].
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Figure 1. Subcellular localization of cardiac KATs and KDACs. This figure summarizes the subcellular
localization of the most common lysine acetyltransferases (KATs, blue) and lysine deacetylases
(KDAC, orange) and their cardiac targets. Ac: acetylated form; HDAC: histone deacetylase; SIRT:
sirtuins; β-MHC: beta-myosin heavy chain; TnI: Troponin I; prx1: peroxiredoxin 1; LCAD: long chain
acyl CoA dehydrogenase; SCAD: short chain acyl CoA dehydrogenase; β-HAD: L-3-hydroxy acyl-
CoA dehydrogenase; SOD2: superoxide dismutase 2; CypD: Cyclophilin D; OPA1: optic atrophic 1;
TBX5: T-Box transcription factor 5; VGLL4: vestigial-like 4; GATA4: GATA-binding factor 4; MEF:
myocyte enhancer factor; Nrf2: nuclear factor erythroid-2-related factor 2; GCN5L1: general control
of amino acid synthesis 5 like-1; CBP: CREB binding protein.

In addition, cofactors play an essential role to modulate acetylation. Several short-
chain acyl-CoA products, such as acetyl-coenzyme A (acetyl-CoA), are important metabolite
intermediates generated during catabolism of various energy fuels that modulate cardiac
acetylation. Indeed, acetyl-CoA acts as a substrate for KATs. Moreover, auto-acetylation
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of mitochondrial proteins can occur efficiently at the pH of the matrix (pH ≥ 7.5) in
actively respiring mitochondria [9]. On the other hand, levels of NAD+, an important
cofactor for sirtuins, may impact protein acetylation [5]. Indeed, NAD+ levels, synthesized
from metabolic pathways, connect their enzymatic activity to metabolism and provide a
metabolic link between the sirtuins activity, energy homeostasis and stress responses.

2.2. Physiological Roles of Lysine Acetylation

Lysine acetylation can modulate cell growth, metabolism, protein–protein interactions,
protein stability, subcellular localization, gene transcription, chromatin structure or enzy-
matic activity [6,7]. This post-translational modification plays an essential role in cardiac
physiology (Figure 2).
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2.2.1. Heart Development and Cardiac Ageing

Acetylation can regulate embryonic heart development and cardiac progenitor
fate [47,48]. TBX5, a T-box family transcription factor, is involved in heart and forelimb
development and is acetylated by KAT2A and KAT2B at lysine 339, leading to stimulate its
transcriptional activity [18]. Knockdown of KAT2A and KAT2B in zebrafish severely im-
pairs heart development and induces pericardial oedema by inhibiting TBX5 [18]. Besides
KATs, the lysine deacetylase enzymes HDAC4 and HDAC5 are also able to interact with
TBX5 to exert a repressive role on cardiac genes transcription through deacetylation [19].
Furthermore, TBX1, another T-box family transcription factor expressed in cardiac progen-
itors, represses myocyte enhancer factor 2c (Mef2c) gene expression by reducing histone
3 acetylation on lysine 27 [48]. Moreover, acetylation of vestigial-like 4 (VGLL4) at K225
by P300 negatively regulates its binding to the transcription factor TEA Domain Transcrip-
tion Factor 1 (TEAD1), leading to decreased neonatal cardiomyocytes proliferation and
cardiomyocytes necrosis [20]. Inhibition of HDAC1 was also described to decrease the pro-
liferation cardiomyocyte in zebrafish [49]. Indeed, mutation in HDAC1 gene that induces
protein instability is associated with decreased cardiomyocyte proliferation, suggesting an
important role of HDAC1 during heart growth [49].

In addition, sirtuins are well-described regulators of aging and have been associated
with longevity [50–52]. Indeed, mice deficient for SIRT1 [53,54], SIRT3 [55] or SIRT6 [56]
display a shorter life span with severe cardiac damage, such as hypertrophy and fibrosis.
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SIRT1 is well known to be cardioprotective by decreasing oxidative stress and inflammation,
which promotes cardiomyocyte survival [54]. Moreover, SIRT3 is required for cardiomy-
ocyte survival under several stress conditions such as serum starvation, genotoxic and
oxidative stress [57]. Altogether, these studies demonstrate that KDACs and KATs exert
crucial functions during heart development and cardiac ageing.

2.2.2. Cardiac Contraction

Recently, reversible acetylation of sarcomeric proteins has been described as a mecha-
nism regulating cardiac function. The comparison of lysine acetylation patterns from rats
as well as from human skeletal muscle biopsies revealed that 80% of the proteins involved
in muscle contraction were acetylated [9]. Moreover, proteomic analyses suggested that
HDAC6 is localized in Z-disks and acts as a sarcomeric protein desacetylase [58]. Among
them, acetylation can impact the β-myosin heavy chain (lysine 34, lysine 58, lysine 213,
lysine 429, lysine 951 and lysine 1195) [31], titin [33], CapZβ1 (lysine 199) [34] or cardiac
troponin I [35], directly affecting cardiac contraction.

2.2.3. Role of Lysine Acetylation in Cardiac Energy Metabolism and
Mitochondrial Activity

Proteomic analyses suggested that the subcellular distribution of lysine-acetylated
proteins is tissue dependent [9]. For example, the heart and muscles, both high energy-
demanding organs, are tissues with the largest fraction of mitochondrial protein
acetylation [9]. Calorie restriction or changes in nutrition specifically affect the mito-
chondrial acetylome, but not the cytosol or nucleus [59], suggesting different roles for
lysine acetylation in the mitochondria, nucleus and cytoplasm. Indeed, mitochondrial
lysine acetylation was described to modulate cell metabolism by regulating fatty acid
β-oxidation, the tricarboxylic acid cycle, the urea cycle, and oxidative phosphorylation [60].

In the early newborn period, an important change in myocardial energy substrate
metabolism occurs with an increase in fatty acid β-oxidation [47], associated with an
increase in long chain acyl CoA dehydrogenase (LCAD) and L-3-hydroxy acyl-CoA de-
hydrogenase (β-HAD) acetylation and activation [12]. At the cardiac level, mitochondrial
general control of amino acid synthesis 5 like-1 (GCN5L1) triggers LCAD and β-HAD
acetylation [10,11] whereas SIRT3 deacetylates both LCAD and β-HAD [13,14]. The impli-
cation of GCN5L1 in cardiac metabolism was confirmed by genetic deletion approaches.
Indeed, knockdown of GCN5L1 in H9c2 cardiomyoblasts decreases maximal mitochondrial
respiration and activity of proteins involved in fatty acid oxidation [12].

However, there is no consensus about the effects of lysine acetylation on fatty acid
β-oxidation. Indeed, some studies suggested an inhibitory effect [43] whereas others
suggested a stimulatory effect [13,14]. As an example, it was reported that an impaired
fatty acid β-oxidation was linked to a reduced acetylation and activity of LCAD in the
liver [13] or heart [14] of SIRT3 knockout mice. On the other hand, cardiac mitochondrial
protein hyperacetylation induced by SIRT3 deletion is associated with an increased fatty
acid β-oxidation rates [43]. This discrepancy could be due to organ, physio(patho)logical
status (e.g., diabetes, obesity or newborn period) or acetylated proteins themselves, and are
well described in the following review [43].

The implication of sirtuins in metabolic regulation is well detailed in a recent review [61].
Indeed, SIRT6 was described as a gatekeeper of glucose metabolism in cardiomyocytes.
SIRT6 partial depletion decreased mitochondrial respiration whereas SIRT6 overexpression
enhanced basal oxygen consumption [62]. Conversely, fatty acid uptake increases in SIRT6-
deficient cardiomyocytes and is decreased in SIRT6-overexpressed cardiomyocytes [63]. Of
note, proteins involved in mitochondrial biogenesis can also be acetylated, such as optic
atrophy 1 (OPA1) through SIRT3 which is able to activate OPA1 by deacetylation of the
residues lysine 926 and lysine 931 [15]. Finally, a cross-talk between SIRT1, peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and AMP-activated
protein kinase (AMPK) has been described to regulate cardiac metabolism [54]. Indeed,
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PGC-1α is a transcription factor playing a central role in the regulation of cellular energy
metabolism, mitochondrial biogenesis and oxidative phosphorylation. SIRT1 could interact
with PGC-1α and increase its expression levels [16]. Moreover, AMPK increases cellular
NAD+ levels and subsequently increases SIRT1 activity, resulting in PGC-1α deacetylation
and activation [64].

2.2.4. Mitochondrial Oxidative Stress

It is well described that several mitochondrial proteins involved in oxidative stress are
acetylated in the heart [60]. Oxidative stress is defined by a production of reactive oxygen
species (ROS) higher than anti-oxidant capacities. Indeed, although different molecular
processes may contribute to global oxidative stress, the majority of ROS originates from
the mitochondrial compartment in the heart. Excessive ROS production occurs during
mitochondrial dysfunction and induces irreversible damage to mitochondria, defining
them as significant contributors to the development of cardiovascular disease [65,66]. In
this context, we recently described that SIRT3 deacetylates and activates the mitochondrial
superoxide dismutase 2 (SOD2), but there is a decreased interaction between SIRT3 and
SOD2 induced SOD2 acetylation on lysine 68 and its subsequent inactivation, leading
to mitochondrial oxidative stress and dysfunction in hypertrophied cardiomyocytes [27].
Moreover, SIRT3 inhibition increased oxidative stress in neonatal rat cardiomyocytes [27]
or human aortic endothelial cells [26].

Other anti-oxidant enzymes were described to be acetylated in the heart, such as
peroxiredoxin 1 [28] in the mitochondria or nuclear factor erythroid 2-related factor 2 [29]
in the nucleus.

3. Implication of Cardiac Acetylation in Metabolic Heart Disease

Post-translational acetylation triggers modification of the activity of several proteins
that occurs in obesity, diabetes and early stage of heart failure as detailed below [67,68].
Table 2 summarizes the cardiac modulation of KATs and KDACs expression levels reported
in metabolic heart disease.

Table 2. Modulation of KATs and KDACs expression in heart failure and metabolic diseases.

KATs KDACs

Name Heart Failure Metabolic Diseases Name Heart Failure Metabolic Diseases

P300 Increase [46,69] Unknown SIRT1 Decrease [70,71] Decrease [30,38,72]
KAT2B Increase [23,25,73] Unknown SIRT2 Decrease [37] Decrease [74,75]

GCN5L1 Unknown Increase in pre-diabetes [11,76] SIRT3 Decrease [77] Decrease [17,78,79]
Decrease in diabetes [10] SIRT6 Decrease [46,63] Decrease [63]

SIRT7 Increase [21] Unknown
HDAC3 Increase [80] Increase [81]
HDAC6 Unknown Increase [28]

KATs: lysine acetyltransferases; KDACs: lysine deacetylases; SIRT: sirtuins; HDAC: histone deacetylase; GCN5L1:
general control of amino acid synthesis 5 like-1.

3.1. Cardiac Hypertrophy

Cardiac hypertrophy is a consequence of genetic, mechanic or neurohormonal changes
contributing to heart failure progression. Interestingly, total KAT activity was found to be in-
creased in the hearts of mice subjected to phenylephrine (PE), an hypertrophic stimulus [23].
In this context, the increased expression of P300 and KAT2B acetylases may explain hyper-
trophied cardiomyocytes under PE [23,25,46,69]. In addition, PE-induced hypertrophy also
decreases SIRT6 expression, leading to an increase in histone H3 acetylation on lysine 9
(H3K9) [25,46,69]. Interestingly, PE-induced hypertrophy is decreased by treatment with
polyunsaturated fatty acid [69] or anacardic acid [23] in association with a decreased H3K9
acetylation. In parallel, overexpression of P300 induces an increased size of cardiomyocytes
and a modification of their myofibrillar organization [69], whereas inhibition of P300 by
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siRNA attenuates hypertrophic response in neonatal rat cardiomyocytes [46]. On the other
hand, overexpression of SIRT6 [46] or SIRT3 [27] decreased cardiomyocytes hypertrophy.
As an example, NAD inhibits oxidative stress and hypertrophy induced by PE in cardiomy-
ocytes or by angiotensin II in mice [36]. Indeed, NAD requires SIRT3 to deacetylate and
activate liver kinase B1 (LKB1) and its target AMPK [36]. Furthermore, a decreased SIRT2
protein expression was reported in hypertrophic hearts from mice whereas cardiac-specific
SIRT2 overexpression protected the hearts against angiotensin II–induced hypertrophy [37].
As shown for SIRT3, SIRT2 deacetylates LKB1 at lysine 48, these promote the phosphoryla-
tion of LKB1 and the subsequent activation of AMPK signaling [37]. Moreover, SIRT7 levels
increase in myocardial tissues after pressure overload induced by transverse aortic constric-
tion in mice [21]. Cardiomyocyte-specific deletion of SIRT7 exacerbates hypertrophy and
fibrosis induced by transverse aortic constriction, suggesting an antihypertrophic role of
SIRT7 [21]. Indeed, SIRT7 deacetylates the hypertrophy response transcription factors such
as GATA-binding factor 4 (GATA4) in cardiomyocytes [21]. Conversely, P300 acetylates
GATA4 and activates its DNA binding activity, inducing cardiac hypertrophy and heart
failure [22].

Finally, HDAC3 expression and activity increase during hypertrophy [80] whereas
a decreased binding of HDAC3 to myofibrils is observed in PE-induced hypertrophy in
neonatal rat cardiomyocytes that increases the acetylation of CapZβ1 at lysine 199 and
alters myofibril growth during cardiac hypertrophy [34].

3.2. Cardiac Fibrosis

Cardiac fibrosis, defined as an excessive deposition of extracellular matrix in the
cardiac muscle, is an important contributor to several heart diseases. Interestingly, in
isoproterenol-injected mice, KAT2B activity was found to be increased only in cardiac fi-
broblasts, whereas no effects were observed in cardiomyocytes isolated from these mice [39].
In this model, KAT2B induces acetylation of SMAD2 and, subsequently, activates SMAD2
and the transforming growth factor β signaling pathway [39]. SMAD3 could also be acety-
lated during cardiac fibrosis [41,42]. Activation of SIRT1 by resveratrol [41], nicotinamide
mononucleotide [42] or geniposide [70] could decrease SMAD3 acetylation and fibrosis.
Moreover, inhibition of P300 appears to exert anti-fibrotic functions [82].

Decreased α-tubulin acetylation and increased HDAC6 were also described in cardiac
fibroblasts or the heart from isoproterenol-induced fibrosis. Interestingly, treatment of
cardiac fibroblasts with tubastatin A, an HDAC6 inhibitor, restored α-tubulin acetylation
and decreased fibrosis [83].

3.3. Heart Failure

Cardiac hypertrophy and fibrosis are both involved in heart failure development by
activation of several intracellular signaling pathways, leading to left ventricular remodeling
with systolic dysfunction. Despite the best modern therapeutic management, left ventric-
ular remodeling remains independently associated with heart failure and cardiovascular
death at long-term follow-up after myocardial infarction [84]. Moreover, alterations in
cardiac energy metabolism, both in terms of changes in energy substrate preference and
decreased mitochondrial oxidative metabolism and ATP production, are key contributors
to heart failure development [5].

An increase in P300 expression is observed during ischemia/reperfusion injury [85]
and myocardial infarction [69]. Interestingly, it was described that activation of P300
acetylase, leading to an increase in acetylated H3K9 induced by myocardial infarction, is
reversed by treatment with polyunsaturated fatty acid [69]. Indeed, eicosapentaenoic acid
and docosahexaenoic acid directly blocks the histone acetyltransferase activity of P300
and subsequently reduces both hypertrophy and fibrosis induced by myocardial infarction
in rats [69]. Other P300 inhibitors were also described to be cardioprotective, such as
Ecklonia stolonifera Okamura extract [86], curcumin [87] and metformin [88]. Moreover,
KAT2B levels are also increased by ischemia/reperfusion injury [73].
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The expression and activity of sirtuins are also highly impacted during heart failure.
As an example, a decrease in SIRT3 and SIRT6 expressions were observed in human failing
hearts that induces a global increase in protein acetylation [63,77]. Proteomic analysis also
identified an increased acetylation of mitochondrial proteins induced by transverse aortic
constriction [89].

Inhibition of SIRT3 was also described to induce mitochondrial oxidative stress and
hypertrophy, notably by increasing the inactive form of SOD2 (acetylated on lysine 68)
in hypertrophy [27] or following ischemia/reperfusion [90]. Moreover, deletion of SIRT2
exacerbates cardiac hypertrophy and fibrosis and decreases cardiac ejection fraction and
fractional shortening in angiotensin II-infused mice by inhibition of AMPK activation,
whereas cardiac-specific SIRT2 overexpression reversed this phenotype [37]. SIRT1 expres-
sion and activity are decreased in the heart following ischemia/reperfusion [30]. SIRT1
inhibition was also reported to increase endoplasmic reticulum stress-induced cardiac
injury by decreasing eukaryotic initiation factor 2 alpha (eIF2α) deacetylation on lysine 143
in cardiomyocytes and in adult-inducible SIRT1 knockout mice [91].

Acetylation of contractile proteins is also modified during heart failure. For example,
acetylation of β-MHC on lysine 951 was decreased in both ischemic and non-ischemic
failing hearts [31].

3.4. Obesity

Obesity is a major cause of disability and is often associated with cardiac hypertrophy,
fibrosis, type 2 diabetes, obstructive sleep apnea and alteration of cardiac metabolism. It
has notably described an increase in genes involved in fatty acid oxidation [11]. Moreover,
several studies have suggested an increase in acetylation raised from the non-enzymatic
reaction of high levels of acetyl-CoA generated during a high-fat diet (HFD) and obesity [5].
Furthermore, hyperacetylation of mitochondrial proteins and metabolic inflexibility was
reported in response to HFD or obesity. SIRT3 expression is decreased in left ventricles
of obese patients and is associated with an increased level of brain natriuretic peptide
(BNP), a marker of cardiac dysfunction and of protein acetylation [17]. It was also reported
that exposure of cardiomyoblasts H9c2 to palmitate led to an increase in both SIRT3 and
GCN5L1 RNA levels [11]. At the metabolic level, HFD induced an increase in SCAD and
LCAD acetylation and activity [11]. Moreover, the acetylation level of α-tubulin on lysine
40 is increased in the hearts of HFD mice and a pharmacological activation of α-tubulin
acetylation decreases glucose transport [92].

In the other hand, cardiac specific inhibition of SIRT6 in mice exposed to HFD-induced
cardiac hypertrophy and lipid accumulation [93]. In this context, SIRT6 activated the expres-
sion of endonuclease G and SOD2, that could decrease oxidative stress and hypertrophy [93].

3.5. Type 2 Diabetes

As obesity, type 2 diabetes is also associated with several cardiac dysfunctions such
as cardiac hypertrophy and fibrosis, and acetylation may be involved in these mecha-
nisms. Indeed, SIRT1 expression and activity are decreased in the heart of diabetic rats,
induced by HFD and streptozotocin injection and, conversely, an up-regulation of SIRT1
by adenovirus attenuates cardiac dysfunction and oxidative stress [30]. Moreover, in a
model of sucrose-fed rats, cardiac dysfunction is associated with a decreased SIRT3 protein
expression (despite an increase at RNA level) and an increased GCN5L1 (protein and RNA)
and mitochondrial protein acetylation [11,17]. Decreased SIRT3 levels are also associated
with an increased acetylation of SOD2, and an increased oxidative stress and apoptosis in
heart of diabetic mice [79]. Interestingly, exposure of cardiomyoblasts H9c2 to high glucose
concentration decreased SIRT3 [78] and increased GCN5L1, oxidative stress and autophagy
mediated by cytoplasmic Forkhead box O1 (FOXO1) acetylation [11,76]. Conversely, ex-
pression of GCN5L1 is decreased in hearts of diabetic ZSF1 rats, a model characterized
by obese animals with hyperglycemia, hyperinsulinemia and cardiac dysfunction [10].
This decreased GCN5L1 expression and activity, with no modulation of SIRT3, induced



Biomedicines 2022, 10, 1834 9 of 14

a decrease of short- and long-chain acyl CoA dehydrogenases and a reduced respiratory
capacity [10]. One explanation could be the transition from prediabetes, in which GCN5L1
becomes elevated to promote mitochondrial fatty acids oxidation, to an overt diabetic
state, in which GCN5L1 expression is downregulated leading to an overall decrease in
mitochondrial fuel oxidation [10].

On the other hand, OVE26 mice, a mouse model of type 1 diabetes, develop cardiac
dysfunction with increased left ventricle diameters and fibrosis and decreased ejection frac-
tion associated with an increase in HDAC3 activity, oxidative stress and inflammation [81].
Interestingly, the selective HDAC3 inhibitor RGFP966 reversed the cardiac phenotype in
these mice [81]. In another model of type 1 diabetes, injection of streptozotocin in rats
induced cardiac dysfunction, cardiac hypertrophy, fibrosis and inflammation [72] as well as
oxidative stress [28]. This oxidative stress is due to an increased HDAC6 activity leading to
a decrease in the acetylated form of peroxiredoxin 1, suggesting that acetylation of perox-
iredoxin 1 is involved in this activation [28]. In this context, tubastatin A, a highly selective
inhibitor of HADC6, may represent an interesting pharmacological target since treatment
of diabetic rats with tubastatin A increased acetylation of peroxiredoxin 1 and decreased
oxidative stress and cardiac dysfunction [28]. Conversely, SIRT1 expression and activity
appear to be decreased in the left ventricles of streptozotocin-induced diabetic rats [72]
and mice [38]. In these models, reduced SIRT1 expression is associated with acetylation
of endothelial nitric oxide synthase [72] or Akt [38]. In addition, SIRT6 expression is also
decreased in the hearts of diabetic mice [63], suggesting that sirtuin family members may
play a crucial role in type 1 diabetes-associated cardiac dysfunctions.

3.6. Pharmacological Modulation of Cardiac Acetylation

Due to the major implication of KATs and KDACs in cardiac dysfunction induced
by obesity, type 2 diabetes or heart failure, targeting these enzymes could be beneficial
for patients.

First, inhibition of P300 appears to be a promising approach to inhibit cardiac hy-
pertrophy and fibrosis induced by several stimuli. As an example, oral administration
of eicosapentaenoic acid (1 g/kg) or docosahexaenoic acid (1 g/kg) one week after my-
ocardial infarction preserved fractional shortening and decreased cardiac hypertrophy
and perivascular fibrosis [68]. Ecklonia stolonifera Okamura extract, an algae traditionally
used in Japanese foods, inhibits PE-induced hypertrophy in neonatal rat cardiomyocytes
and restores fractional shortening and reduced cardiac hypertrophy and fibrosis by oral
administration one week after myocardial infarction in rats [73]. Oral administration of
curcumin (50 mg/kg/day) acts also as a P300 inhibitor and decreases posterior wall thick-
ness, cardiac hypertrophy and perivascular fibrosis induced by hypertension [74]. Finally,
metformin, that directly inhibits P300-mediated acetylation of H3K9, blocks PE-induced
cardiomyocytes hypertrophy [75].

Based on the cardioprotective effects of SIRT3, it seems essential to develop new thera-
peutic strategy to increase its expression or activity. Recent reviews have well described
these molecules [94,95]. For example, exogenous NAD is able to inhibit hypertrophy in-
duced by PE in cardiomyocytes or by angiotensin II in mice [36]. Resveratrol, an activator
of both SIRT1 and SIRT3, is also described to be cardioprotective [41].

4. Conclusions

Despite available therapies, cardiovascular diseases, and particularly ischemic dis-
eases, still remain the first cause of mortality and morbidity in the world. Obesity and
type 2 diabetes are some of the major risk factors of cardiovascular diseases. Acetylation
is an essential mechanism involved in several processes contributing to cardiac diseases
such as cell metabolism, gene transcription or enzymatic activity. In this context, targeting
enzymes responsible of acetylation/deacetylation could be beneficial and is a very promis-
ing research area, as demonstrated by the development of inhibitor targeting P300 [82],
modulators of SIRT6 [96] or agonists of SIRT3 [94,95] to treat cardiac dysfunctions.
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