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Grating interferometer based imaging with X-rays and neutrons has proven to hold huge potential for
applications in key research fields conveying biology and medicine as well as engineering and magnetism,
respectively. The thereby amenable dark-field imaging modality implied the promise to access structural
information beyond reach of direct spatial resolution. However, only here a yet missing approach is reported
that finally allows exploiting this outstanding potential for non-destructive materials characterizations. It
enables to obtain quantitative structural small angle scattering information combined with up to
3-dimensional spatial image resolution even at lab based x-ray or at neutron sources. The implied two orders
of magnitude efficiency gain as compared to currently available techniques in this regime paves the way for
unprecedented structural investigations of complex sample systems of interest for material science in a vast
range of fields.

X
-ray and neutron imaging1 as well as small angle scattering (SAS)2 are invaluable tools for structural
characterization in material sciences and applied studies. Their applications span a range from fun-
damental hard matter sciences via engineering and soft matter materials research to applications in medical

diagnostics. While imaging provides direct real space access to individual structures typically in the micrometer
range and above, small angle scattering enables statistical structural characterizations in the sub-micrometer
range. Due to its statistical nature the application of SAS is limited to samples that are homogeneous within the
probed region. The investigation of complex heterogeneous samples apart from model systems therefore requires
spatially resolved approaches as provided by imaging. Imaging, however, is in general limited to the study of larger
structures and it is hence the intermediate range of largely hierarchical structures, which poses a major challenge
in nowadays material science and corresponding method development. The efficiency of conventional SAS
instruments in this regime is poor, as the required angular resolution implies high collimation and coherence
demands at significant cost of intensity3. Spatial resolved studies are therefore very limited, although significant
efforts have been made on such instrumentation.

The introduction of grating interferometers for dark-field contrast imaging (Fig. 1) provided a 2 order of
magnitude efficiency gain4 for approaching structures in a SAS regime, where direct space imaging methods begin
overlapping the resolution range of scattering methods. Only grating interferometry4,5 paved the way for the
broad application of dark-field (DF) scatter contrast imaging1,6,7 exploiting angular information in this regime.
DF scatter images held the promise to reveal SAS information in imaging6 even with 3-dimensional resolution7.

Over the past decade dark-field imaging with X-rays6 as well as with neutrons7 has turned out as a remarkable
success8–19. Applications of dark-field contrast with neutrons up to now concentrate mainly on engineering
materials15 but especially also magnetic materials16–19, where neutrons provide remarkable contrast due to their
magnetic moment. For X-ray dark-field contrast imaging the ability of this technique to access soft tissue early on
moved the focus to medical applications in particular with regard to cancer diagnostics and research9–11.

However, corresponding results up to now are qualitative, providing mainly image contrast between more or
less scattering into a vaguely defined angular range. While the successful application as such underlines the wide
spread need of corresponding structural information8–19, DF contrast imaging has yet to be explored fully in order
to create the experimental approaches and analyses tools to fulfill its promises to serve as a scientific technique
providing quantitative structural information in the SAS range. The success of the yet qualitative method
triggered a remarkable effort in fully understanding and describing the measured signals theoretically in order
to finally extract quantitative information13,20–29.
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The solution introduced in this paper overcomes such limitations
and can serve (i) to utilize the 2 order of magnitude gain4 of grating
based dark-field contrast for conventional SAS studies in the ultra-
SAS (USAS) regime2 and (ii) to finally provide access to such
structural information beyond direct spatial resolution in imaging
experiments6. Consequently (iii) it also enables informed and correct
interpretations of up to now achieved qualitative DF scatter images.
Hence the approach (iv) introduces the potential for quantitative
structural SAS investigations with 3-dimensional tomographic reso-
lution with (v) an efficiency allowing broad application through the
use of lab x-ray sources as well as neutron sources. The possibility of
measuring SAS functions for several voxels of a volume without the
need of any rastering protocol, like nowadays required in a corres-
ponding SAS experiment with a pencil-beam30, will open new ways
and extend the potential of non-destructive characterization of
materials.

In imaging with a Talbot-Lau grating interferometer a cosine
modulation function is measured in every pixel of an image by scan-
ning one of the gratings to achieve sub-pixel resolution of the inter-
ference pattern induced by a phase grating (Fig. 1). Thus not only the
conventional attenuation image, which corresponds to the mean
intensity of this pattern in a pixel, but also a differential phase con-
trast image and a dark-field image can be generated from the data.
The phase contrast is measured by the relative phase shift of the
modulation pattern and allows for mapping the refractive index
distribution providing complementary image contrast in many cases
in addition to the attenuation contrast image. Phase imaging4,5 is a
well-established quantitative tool e.g. enabling x-ray imaging of low
contrast materials like biological tissue samples, polymers or fibre
composites. The dark-field signal is based on the relative visibility, i.e.
modulation amplitude and is related to small angle scattering
induced by the sample by sub-image-resolution structure sizes.
The dark-field signal hence provides access to structural information
beyond direct spatial resolution of the imaging instrument.

However, up to date most efforts to achieve quantitative informa-
tion have either been limited to establishing relations between the
signal measured and the thickness7,12,13,20,22,23,26,29, which in turn
allows utilizing conventional tomographic reconstruction, i.e.
retrieving the corresponding signal in 3D, or to solutions for very
specific scattering structures with the potential to describe the signal
when the sample parameters are known in detail beforehand27,28. The
former attempts in general re-establish the approximation already
published a decade ago31,32 and used for first tomographic recon-
structions of the dark-field signal from a grating interferometer7.
There the signal is described as a convolution of a Gaussian scattering
function with the width

B~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
path

fB tð Þdt

s
with fB~sN

�
R2 ð1Þ

and the cosine response function of the grating interferometer7,26,29.
Heres, N and R are denoting the position dependent scattering cross
section, particle density and correlation length of scattering struc-
tures in the sample, respectively. The integration is over the path of
the radiation denoted with t. Note that the parameter fB corresponds
to what was later called ‘‘linear diffusion coefficient’’ and assigned
‘‘e’’ and ‘‘V’’ for x-rays26 and neutrons29, respectively, without further
specifying dependencies, while B was later denoted ‘‘s’’ for both.
However, such simple Gaussian approximation is not suited to
extract quantitative small-angle-scattering (SAS) information2 con-
veying a number of parameters like the scattering power, involving
thickness, concentration and scattering cross section, as well as struc-
tural correlations; this implies that corresponding quantitative
information is not accessible from a single measured parameter like
the modulation amplitude. Hence, all descriptions also in the latter
attempts named above27,28 are currently only suited to describe a
priori well-known systems and systematic behavior related to thick-
ness and eventually concentration etc.

However, for the case of plane wave illumination (without source
grating) and a sample placed upstream of the phase grating W.
Yashiro et al.21 achieve a more general result and thorough descrip-
tion of the measured signal via rigorous wave calculations. This
way the authors manage to relate the modulation contrast measured
at different Talbot orders21,24 to structural information. Corre-
spondingly the authors find a limited means to probe such depend-
ence via a scan of the distance L2 (Fig. 1) for the geometry of the plane
wave case they are referring to. In this works it is already pointed out
and shown experimentally that in such manner probed functions
relate via Fourier transformation to small angle scattering functions.
However, some important implications for thorough measurements
and interpretations stay unrevealed this way, as we will discuss in the
light of our more general approach.

A completely different recent approach attempts to extract the
scattering function by de-convolving the measured signal with the
instrument function and thereby deriving the scattering function25.
However, such an approach is also limited concerning achieving a
meaningful SAS function ready for quantitative analyses of structural
parameters as evident when dealing with a cosine resolution func-
tion. Correspondingly, in Ref. 25 no claim is made to establish any
quantitative relationship to structural sample parameters.

In contrast to earlier attempts the problem is to be solved in a more
general approach here, without employing detailed wave calculations
and specifics of the grating interferometer. This will allow to arrive at
a high level general solution for the SAS information contained in
modulated beam measurements of which grating interferometry is
the most prominent and promising example. We will simply employ
general and well known high level SAS theory and boundary condi-
tions to provide not only a clear relationship between the data mea-
sured and quantitative structural SAS information that can hence be

Figure 1 | Schematic sketch of Talbot Lau grating interferometer set-up including three gratings and the corresponding distances and sample area
referred to in this work; the cosine modulation function at the analyzer grating right in front of the detector is sketched as well.
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extracted, but also the means of the measurement strategy suited to
do so and to achieve such fully SAS-equivalent information.

Results
As the principles of measurements with neutrons and x-rays are
equivalent related to this technique, no distinction shall be made
between those here.

Due to the modulation geometry a grating set-up is sensitive to
SAS in one dimension only. That makes it equivalent to other tech-
niques in this angular regime such as slit collimated SAS instru-
ments2, Bonse Hart cameras33 but also spin-echo small angle
neutron scattering (SESANS)34 measuring what is referred to as
slit-smeared SAS2,34. Hence, the well-known limitations of modeling
and data analyses apply2. This is characteristic of the technique itself
and implies, that scattering systems, which display ordering of aniso-
tropic structures, i.e. which produce asymmetric scattering patterns
in 2D, require special attention concerning sample orientation and
might limit the ability of structural analyses especially without rotat-
ing the sample2,24,34. Note that this by no means implies that the
method(s) are limited to isotropic particle or structure shapes2.
However, it also implies that the scattering geometry that has to be
taken into account here can be restricted to one dimension and
corresponding scattering and correlation functions represent projec-
tions of the 2D functions onto a single axis (perpendicular to the
beam and in modulation direction) as is described in detail in2,34.

In order to derive a general solution, a relation between conven-
tional scattering theory and dark-field contrast imaging parameters
can be found when describing the scattering angle h, for which in the
SAS approximation sinh,h,tanh, as

h*
x
Ls

and h*
ql

2p
, ð2Þ

respectively. Consequently one can express the scattering vector q
not only in terms of the scattering angle h but also in terms of the
position-shift x of the interference pattern at a specific sample to
detector distance Ls in a grating measurement as

q~
2ph

l
~

2px
lLs

ð3Þ

The position shift x corresponds to a phase shift Dv of the modu-
lation function of

Dv~
2px

p
~

2pLsh

p
~

lLs

p
q~jGlq ð4Þ

where first x is substituted by Lsh, then 2ph by ql and finally
lLs

p
by

jGI .
Consequently we find what has earlier been referred to as the

autocorrelation length of a grating set-up27

jGI~
lLs

p
ð5Þ

as simply defined by geometric considerations. Note that that is
hence a general case and not limited to spatial beam modulation
by a grating interferometer set-up. Note that L’s given by the relation
L’s5(L1 1 L2-Ls)L2/L1 is required for calculating jGI in case the
sample is positioned between source (grating) and phase grating,
with the distances between those given by L1 and between phase
grating and analyser grating (detector) by L2. This corresponds to
the findings by Donath et al.35 for the sensitivity of the grating inter-
ferometer in different geometries. When the sample is placed
upstream the phase grating in the plane wave case, where no source
grating is used, L’s is simply replaced by the distance L2 between
phase and analyser grating because for limL1??L’s~L2 and with

the definition L25mp2/l follows that jGI~
lLs

p
~mp with m being

the Talbot order21 just like applied in Ref. 21,24. This way, however,
only discrete values of Ls can be probed and an intrinsic connection
with the Talbot effect rather than a dependence on geometric con-
ditions only is implied.

Having established a correlation between the induced phase shift
Dv of scattering to a specific angle h, the auto-correlation length and
the modulus of the scattering vector q, it is important to understand
how scattering and a specific scattering function impact the visibility
measured with a grating interferometer set-up. The visibility V is
defined as V5(Imax-Imin)/(Imax 1 Imin) of the measured intensity I,
which is spatially modulated corresponding to the interference pat-
tern introduced by the phase grating at a specific Talbot distance at
which it is detected5. While radiation which is not scattered (h0 5 0)
and therefore arrives with Dv 5 0 contributes at a maximum to the
visibility V, as its particular visibility V5V0, radiation which is scat-
tered to a specific angle h, i.e. with a specific q and hence a specific
phase shift Dv~jGIq obviously contributes less. Consequently a
degradation of the visibility is introduced, by scattered radiation
producing a visibility V,V0. Given that the scattering function is
symmetric around its center at q0505h0, which is a general assump-
tion of SAS, i.e. scattering to h means equal scattering to -h or S(q) 5

S(-q), and with the basic relation

(cosDvzcos({Dv))=2~cosDv ð6Þ

that is valid for all points of the modulation function (Fig. 2) as

(cos(vzDv)zcos(v{Dv))=2~cosv cosDv ð7Þ

the visibility can be expressed as

Vs jGI ,qð Þ~V0 jGIð Þcos Dvð Þ~V0 jGIð Þcos jGI qð Þ: ð8Þ

Taking into account the whole scattering function S(q) and that the
final visibility is a result of the convolution of the scattering function
with the modulation function7,26,29 of the grating interferometer this
transforms into

Vs jGI ,qð Þ~V0 jGIð Þ
ð?

{?
dq S qð Þcos jGIqð Þ: ð9Þ

Given the fact that the scattering function S(q) is a kind of Fourier
transform of the real space correlation function,

Figure 2 | Illustration of the modulation term and the basic cosine

relations by an undisturbed modulation term of the instrument response

function like in an ideal empty beam measurement (blue line), a

modulation term according to equ. (7) like assuming scattering causing a

phase shift Dv of 1/- p/5 (orange line) coinciding with the sum (dots) of

half ‘‘intensity’’ modulations shifted in phase to p/5 and -p/5 like

illustrated by gray dashed lines.
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S qð Þ~
ðz?

{?
djG jð Þcos jqð Þ ð10Þ

and hence

G jð Þ~
ðz?

{?
dqS qð Þcos jqð Þ ð11Þ

the normalized visibility can be put as

Vs jGIð Þ=V0 jGIð Þ~
ð?

{?
dq S qð Þcos jGIqð Þ~G jGIð Þ ð12Þ

being directly proportional to the real space correlation function.
This result means, that grating based, and in general cosine modu-

lation based (dark-field) SAS measurements36, perform a back-trans-
formation of the scattering function into real space and hence allow
direct measuring of the real space correlation function of a system.

However, the measured signal might also contain un-scattered
radiation. In order to account for that the macroscopic scattering
cross section S and the sample thickness t have to be taken into
account and with St defining the fraction of scattered radiation

Vs jGIð Þ=V0 jGIð Þ~ 1{Stð ÞzStG jGIð Þ ð13Þ

This situation and solution can be found equivalent to that of the
well-known and well described spin-echo small-angle neutron scat-
tering (SESANS)37, where the response function can be written as a
cosine dependence of the beam polarization, rather than a spatial
function, on jSEq with jSE being the auto-correlation length of such
set-ups referred to as spin-echo length37. It can be shown, as has been
shown for SESANS, that taking into account multiple scattering leads
to38

Vs jGIð Þ=V0 jGIð Þ~eSt G jGIð Þ{1ð Þ: ð14Þ

Evidently the simple multiplication with the sample thickness is only
valid for a homogeneous sample, which one might assume in a SAS
experiment but not so much for samples investigated in imaging,
where such multiplication hence has to be replaced by the common
integral along a specific path of the beam through the sample as

Vs jGIð Þ=V0 jGIð Þ~e
Ð

path
S G jGIð Þ{1ð Þdt ð15Þ

with S and G being position dependent functions.
This establishes a complete description of the dark-field signal and

its constitution, by replacing previously used so-called material
dependent constants referred to as linear diffusion coefficient26,29

and random Gaussian distributions describing scattering phe-
nomenological by well defined and established material parameters
like the macroscopic scattering cross section and the real space cor-
relation function. The latter finally provides the direct correlation of
the signal with the structural parameters of the scattering structures,
which is fundamental for every scattering method, but could not be
established before for grating based dark-field contrast. The equival-
ence of the solution with the one found for SESANS allows for
directly applying modeling and analyses tools developed and
described for this technique. In particular, the considerations and
calculations provided in Ref. 34 can be directly applied to the case
addressed here. In this reference Andersen et al. translate many of the
so-called form factors for conventional SAS, describing spheres,
cylinders, spheroids etc. for the given case and some theoretical
and model distributions are shown in order to highlight the applic-
ability for the study of anisotropic density distributions. This further
implies that such approach allows for applying grating interferom-
eters not only for imaging applications but also as a powerful tool for
conventional SAS studies especially in the ultra small angle regime
utilizing the orders of magnitude of efficiency gain previously

restricted to imaging applications only. This in turn enables multi-
scale measurements bridging Fourier space and real space methods
with low brilliance lab based x-ray and with neutron sources.

In addition, this solution for grating based dark-field measure-
ments implies that S G jGIð Þ{1ð Þ can even be reconstructed for a
tomography for every correlation length jGI probed and hence the
functionS G jGIð Þ{1ð Þ can be retrieved for any position (x,y,z) in the
sample corresponding to the spatial resolution of the set-up (voxel).
This corresponds to a 3D resolved quantitative SAS measurement in
case the tomography is performed for a sufficient number of correla-
tion length values.

Discussion
In order to demonstrate the potential of this approach an example
shall be given. Assuming a specimen of diluted hard spheres with
radius r, for which the real space correlation function, like many
others, is well known from SESANS39 being

G fð Þ~G j=rð Þ~ 1{
f

2

� �2
" #1=2

1z
1
8

f2

� �

z
1
2

f2 1{
f

4

� �2
" #

ln
f

2z 4{f2� �1=2

" # ð16Þ

and which has been stressed earlier27,28,29, allows comparing the the-
ory presented here with calculations and measurements presented in
Ref. 27. For that purpose the data presented in Fig. 3a (from Fig. 4 in
Ref. 27) is extracted and sorted by sample, i.e. different radii r of
spherical SiO2 particles measured in a dispersion of H2O, and by
autocorrelation lengths used for the specific measurements like given
in Ref. 27. This data27 md9(r,jGI) is multiplied by the autocorrelation
length jGI in order to get a correspondence with the function
2r(G(jGI)-1) in the description derived here. Fig. 3a also demon-
strates, that the calculation and data presented in Ref. 27 corresponds
to 2rjG(jGI)-1j/jGI. In the presented theory the factor r is an integral
part of the macroscopic scattering cross section S for spherical part-
icles which is defined asX

~ 3=2ð ÞwVDp2l2r: ð17Þ

Other parts of S like the scattering length density contrast Dr, wave-
length l and volume fraction wV on the other hand are not taken into
account as they have been normalized with in Ref. 27 according to
equ. d71 ibid. With these values a normalized visibility correspond-
ing between the theory here and the data extracted from Ref. 27 is
achieved with

V ’s
V0

~e{md’jGI ~e2r G jGIð Þ{1ð Þ ð18Þ

and the results of both are plotted in Fig. 2b as a function of jGI. A
very good agreement is found, which proves that the theory very well
describes the measurements. Furthermore, it is clearly visualized that
important sample characteristics can not only be quantified, but
easily be read from the data in particular for such kind of structure.
The autocorrelation value at the saturation point, i.e. where the vis-
ibility does not decrease anymore with increasing autocorrelation
length, directly provides the diameter of the hard spheres responsible
for the scattering signal. This can already be seen from the trans-
formation performed in Fig. 3a as compared to the representation in
Ref. 27. At 2r/jGI # 1, jG(jGI $ 2r)-1j51. On the other hand it is
obvious, that the visibility value of the saturation is directly related to
the macroscopic scattering cross section S of the system, i.e. to the
volume fraction of the particles and the scattering length density
contrast. That means at jGI 5 2r the visibility value stabilizes

atVs jGI§2rð Þ=V0 jGI§2rð Þ~e{St . The information content of such
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measurement is equivalent to that of a conventional SAS measure-
ment, however, spatial resolution is achieved without the require-
ment of scanning a pencil beam, like in conventional SAS
experiments aiming for macroscopic 2D spatial resolution.

Figure 3b also illustrates, how the contrast achieved depends on
the specific autocorrelation length at which a single measurement is
performed and hence that the dark-field contrast between different
sized scattering particles can potentially be even inverse when mea-
sured at a different autocorrelation length e.g. at different set-ups.
That implies that the contrast of dark-field images can significantly
be influenced by the choice of the parameters defining the autocor-
relation length, like the wavelength, the sample to detector distance
and the used period of the interference pattern. Therefore even in
qualitative measurements significant care has to be taken of the use of
the corresponding parameters, because otherwise severe misinter-
pretations and discrepancies between measurements might be
caused. The specific shape of scattering structures defines the con-
trast behavior in dependence on the set autocorrelation length34 and
the concentration and scattering length densities define the satura-
tion of the dark-field signal at the autocorrelation length correspond-
ing to the longest correlation length in the sample, i.e. the maximum
dimension of the structure. Nearest neighbor correlations when
resolved for example in systems with high concentrations and giving
rise to what is referred to as structure factor in SAS will cause further
modulation of the signal at corresponding longer autocorrelation
lengths34,39.

Not only in this respect it is certainly worth considering the work
by W. Yashiro et al. in Ref. 24, where a strongly anisotropic structure
is investigated with grating interferometry. In particular the mea-
sured points for a sample orientation of w 515u and the point at jGI
5 4 mm (note jGI is expressed as ‘‘pd’’) are most noteworthy (Fig. 5a
in Ref. 24). Taking into account next neighbor correlations (a struc-
ture factor in terms of SAS) like described in Ref. 34, 39, i.e. pair
correlations apart from the real space correlation of an isolated shape
of a scattering structure (a form factor in SAS), but also the tomo-
graphic representation of bigger structures in the same sample (fig. 9
in Ref. 24), it must seem obvious that such next neighbor correlation
has been measured here and the particular deviations from the pre-
sented fit are not just an artifact. In the approach presented in Ref. 24

and Ref. 21, the autocorrelation length jGI is described as the product
of what is referred to as the Talbot order and the modulation period.
While this is equivalent to the purely geometric description provided
here for the particular set-up used in these works, it seems to limit
probing this parameter to a few distinct values. Though the approach
has lead via extensive wave calculations to the conclusion that the
visibility as a function of jGI ‘‘should be related to the Fourier trans-
form’’21 of the angular scattering function and a corresponding
description and interpretation of such function in terms of real space
correlation functions of structures, no reliable specific shapes and
dimensions of scattering structures could be provided. Such can only
be achieved, in the light of the here presented general and extensive
approach, by probing a sufficient number of values and applying
model fits equivalent to procedures applied in SAS. For the cases
presented in Ref. 21 and 24 that would imply to place the sample
between the phase and analyzer grating, which themselves are set to a
high Talbot order and scanning the distance of the sample to the
analyzer grating. Subsequently the models that are described in Ref.
34 and 39 can be fitted according to the presented analogy of meth-
ods and will provide values for diameters, shapes and orientations as
well as next neighbor distances just like in corresponding SAS or
SESANS studies. Like described in Ref. 34 only in cases where no a
priori knowledge about the sample structures can be applied and is
obvious from the measurements, a sum of Gaussians like proposed in
Ref. 21 might be the most viable option for data fitting. Even in such
cases the average structure size can be directly extracted from the
measured visibility function34, though also the principle of Guinier
analyses and Porod’s law2,34 is readily available for corresponding
data analyses.

In conclusion a quantitative and general relation between the
measured visibility in grating interferometer based dark-field con-
trast imaging and the specific sample parameters of scattering cross
section and in particular the real space correlation function of the
structures in the sample that contribute to small-angle scattering and
hence the dark-field signal has been derived. It has been demon-
strated how a scan of the autocorrelation length of the set-up in a
dark-field contrast measurement yields the corresponding para-
meters and hence 2D SAS measurements become possible in such
imaging mode providing the potential of full quantification of scat-

Figure 3 | Data versus theory (a) Representation of measured data md’ and calculation as provided in Ref. 27 (blue line and symbols); Data and theory

transformed according to jGI md’/2r (red crosses and green line with circles, respectively) and | (G-1) | as calculated for the samples from the theory

presented here (red line) displaying full agreement proving that the calculation presented and data reduction in Ref. 27 corresponds to 2r | (G-1) | /jGI; (b)

Visibility data (markers) from (a) Ref. 27 and calculation (lines) presented according to equ. (18) as a function of autocorrelation length jGI and sorted by

sample (particle size), demonstrating good agreement between theory and data as well as the direct relation to particle size and scattering cross section

(note: here represented by 2r only), both of which can be extracted straightforwardly. (Note: no error bars are given as original data in Ref. 27 is provided

without error bars and any additional introduced error is considered less than the given symbol sizes).
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tering parameters and consequently full structural characterization.
The equivalence with a well known neutron scattering method,
namely SESANS has been demonstrated, which in turn allows to
build on the well know scattering functions, i.e. real space correlation
functions, derived for this method in literature. Additionally, the
presented theory underlines the potential of tomographic measure-
ments, which allow obtaining corresponding information with 3D
spatial resolution. This theoretical assessment of the dark-field signal
bears the potential to revolutionize the application of dark-field
imaging, which already now as a qualitative tool is highly successful
with x-rays as well as with neutrons. The knowledge of its quantitat-
ive character will without any doubt open numerous new fields in
many areas of material science exploiting the outstanding efficiency
for spatial resolved SAS investigations. And finally the generality of
the approach and solution implies that it applies to and allows for
other techniques of sinusoidal beam modulation to be developed and
exploited for SAS and eventually for spatially resolved fully quant-
itative SAS studies.
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