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Abstract

Objectives

The study aimed to investigate the ceRNA network in biological development of Tongue

Squamous Cell Carcinoma (TSCC) and to identify novel molecular subtypes of TSCC to

screen potential biomarkers for target therapy and prognosis by using integrated genomic

analysis based on The Cancer Genome Atlas (TCGA) database.

Material and methods

Data on gene expressions were downloaded from TCGA and GEO database. Differentially

expressed RNAs(DERNAs) were shown by DESeq2 package in R. Functional enrichment

analysis of DEmRNAs was performed using clusterprofilers in R. PPI network was estab-

lished by referring to String website. Survival analysis of DERNAs was carried out by sur-

vival package in R. Interactions among mRNAs, miRNAs and lncRNAs were obtained from

Starbase v3.0 and used to construct ceRNA network. Consensus Cluster Plus package was

applied to identify molecular subtypes. All key genes were validated by comparing them with

GEO microarray data. Statistical analyses of clinical features among different subtypes

were performed using SPSS 22.0.

Results

A total of 2907 mRNAs (1366 up-regulated and 1541 down-regulated), 191miRNAs (98 up-

regulated and 93 down-regulated) and 1831 lncRNAs (1151 up-regulated and 680 down-

regulated) were identified from tumor and normal tissues. A ceRNA network was success-

fully constructed and 15 DEmRNAs, 1 DEmiRNA, 2 DElncRNAs associated with prognosis

were employed. Furthermore, we firstly identified 2 molecular subtypes, basal and differenti-

ated, and found that differentiated subtype consumed less alcohol and was related to a bet-

ter overall survival.
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Conclusion

The study constructed a ceRNA network and identified molecular subtypes of TSCC, and

our findings provided a novel insight into this intractable cancer and potential therapeutic tar-

gets and prognostic indicators.

Introduction

Oral squamous cell carcinoma (OSCC), among others, is one of the most frequent cancers in

the world. The major type of OSCC is tongue squamous cell carcinoma, the incidence which

accounts for 25%~40% [1]. OSCC is characterized by a rapid local invasion, an early lymph

node metastasis and a poor prognosis [2]. According to a retrospective analysis by Nair [3],

TSCC was clinically different from other oral cancers due to its pathological factors, suggesting

that TSCC could be regarded as a particular type of OSCC. The occurrence of TSCC could be

attributed to tobacco, alcohol and areca nut [4]. Although great efforts have been made in the

advances in surgical techniques, chemo-radiotherapy and some other target therapies, the

overall survival of TSCC still hovers around 50% [5]. Thus, it is crucial to reveal the underlying

biological mechanism and different molecular subtypes of TSCC associated with prognosis in

order to discover novel biomarkers for target therapy and prognosis prediction.

MRNAs and some non-coding RNAs, including microRNAs(miRNAs) and long non-cod-

ing RNAs (lncRNAs), play an important role in the initiation and progression of TSCC.

MiRNA, which is a family of functional noncoding RNA molecules with a length of 20–25

nucleotides, widely participate in post-transcriptional regulation by targeting mRNAs. A series

of miRNAs have been demonstrated as oncogenes or tumor suppressors of TSCC [6,7].

LncRNAs, which are defined as endogenous non-coding RNAs that are longer than 200 nucle-

otides, regulate biological processes including transcriptional regulation, cell metabolism and

RNA modification in tumorigenesis and metastasis of TSCC [8,9]. On the basis of the function

of miRNAs and lncRNAs, Salmena et al put forward a hypothesis of competing endogenous

RNA (ceRNA) across transcriptome, in which all types of RNA transcripts were believed to be

able to act as a ceRNA through microRNA response elements (MREs) that are accessible to

microRNA binding [10]. According to such a hypothesis, a great number of studies further

demonstrated the importance of ceRNA in the occurrence and development of different can-

cers. For example, Zhou et al used GEO database to construct a miRNA-mRNA network of

TSCC [11]. Nohata et al identified a prognostic lncRNAs malignant progression of TSCC [12].

The ceRNA network of OSCC was first established by Simin Li in 2017[13]. However, to the

best of our knowledge, no study has been conducted on ceRNA network of TSCC.

In addition to the regulation of ceRNA network in carcinogenesis, different clinical or

molecular subtypes have been increasingly shown to be associated with different clinical and

pathological factors. Walter et al identified 4 gene expression subtypes of head and neck squa-

mous cell carcinoma (HNSCC) [14], and to further expand Walter’s study, Zevallos [15] et al

carried out gene expression analysis and demonstrated 4 subtypes to predict nodal metastasis

and survival in human papilloma virus (HPV)–negative OSCC. However, we still lack a classi-

fication of TSCC subtypes.

Therefore, the aim of present study is to investigate the hidden crosstalk among various

RNAs in TSCC via ceRNA network construction and to identify molecular subtypes of TSCC

that can be used to predict prognosis. Furthermore, we identified that several genes with differ-

ential expressions from tumor and normal tissues were significantly associated with overall
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survival by integrated analysis. Our findings provided a novel insight into the biological pro-

cess of TSCC and potential biomarkers for target therapy and survival prediction.

Methods and materials

1. Data collection and preprocessing

Gene expression data (RNA sequencing profiles and miRNA profiling) and corresponding

clinical data of TSCC were obtained from TCGA database (https://portal.gdc.cancer.gov/),

and 126 TSCC samples and 13 normal controlled samples were collected. Among these data,

data on mRNA and lncRNA expressions were obtained from Illumina HiSeqRNASeq plat-

forms, while miRNA data were collected from Illumina HiSeqmiRNASeq platforms.

RNA sequencing profiles based on TCGA were preprocessed by pre-filtered low count

genes (total counts<10). MRNAs and lncRNAs were encoded according to GENCODE

Release 29 (GRCh38.p12) (https://www.gencodegenes.org/human/). miRNAs were annotated

based on miRbase v22 (http://www.mirbase.org/index.shtml#opennewwindow).

3 gene expression profiles of TSCC (GSE30784, GSE13601 and GSE28100) were down-

loaded from Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)

by searching the term “tongue squamous cell carcinoma” (January 2019). GSE30784 and

GSE13601 were determined based on Affymetrix Human Genome U133 Plus 2.0 Array and

U95 Version 2 Array. The platform of GSE28100 was Agilent-021827 Human miRNA Micro-

array (V3) (miRBase release 12.0 miRNA ID version).

2. Identification of differentially expressed mRNAs, miRNAs, and lncRNAs

in TSCC

The differentially expressed lncRNA (DElncRNA), mRNA (DEmRNA), miRNA (DEmiRNA)

in TSCC samples and normal controlled samples were identified using DESeq2 package of R

software (Version 3.8; http://www.bioconductor.org/packages/release/bioc/html/DESeq2.

html). P-value was adjusted to false discovery rate (FDR). |log2 fold change (FC) |>1.5 and P-

value<0.05 were set as the cutoff criteria. The heatmaps were plotted based on pheatmap pack-

age of R.

3. Functional enrichment analysis of GO annotation and KEGG Pathways

ClusterProfiler v3.8 package of R was used to analyze and visualize functional profiles (Gene

Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway)

of the genes in order to determine shared functions among DEmRNAs. P<0.05 was consid-

ered as a threshold of GO and KEGG enrichment analysis.

4. Establishment of protein–protein interaction (PPI) network

To understand the underlying interaction of DEmRNAs, the STRING website was employed

to construct the PPI network, which was visualized by the Cytoscape software v3.6.1.

5. DEmRNAs, DElncRNAs, and DEmiRNAs associated with prognosis

Survival analysis was carried out by using the survival package of R to help assess the prognos-

tic value of differentially expressed RNAs in TSCC patients. All samples were divided into

either the high-expression group(>median) or the low-expression group(<median) in terms

of the expression of each DEmRNA, DElncRNA, and DEmiRNA. The Survival curves were

plotted using the Kaplan-Meier method. The log-rank test was adopted to assess statistical sig-

nificance. P<0.05 was considered as statistically significant.
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6. Prediction of lncRNA–miRNA and miRNA–mRNA interactions

We predict the interaction between DElncRNA and DEmiRNA or DEmRNA and DEmiRNA

by using starBase v3.0, which determined more than 1.1 million miRNA-ncRNA, 2.5 million

miRNA-mRNA and 1.5 million RNA-RNA interactions from multi-dimensional sequencing

data. In addition, the prediction results of miRanda, Targerscan and miRmap were integrated

by starBase. Only the regulatory pairs of DEmiRNAs and DEGs, DElncRNAs and DEmiRNAs

had opposite expressions and were therefore included in the present study.

7. Construction of ceRNAs regulatory network

According to ceRNA theory, the selected interaction of DEmiRNAs and DEmRNAs and of

DElncRNAs and DEmiRNAs were integrated to construct the DElncRNAs-DEmiRNAs-

DEmRNAs ceRNA network using Cytoscape software v3.6.1.

8. Validation of expressions of crucial DEmRNAs, DElncRNAs, and

DEmiRNAs basing on ceRNA network and prognosis analysis

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an interactive web analysis tool for GEO

data to identify genes with differential expressions among different groups provided by GEO

database. We applied GEO2R to confirm key RNAs. Crucial DEmRNAs and DElncRNAs were

verified in GSE30784 and GSE13601 and GSE28100 was used to validate crucial DEmiRNAs.

9. Copy number variations (CNV), somatic mutation (SNV) and

methylation analysis of hub genes

To determine the possible regulatory mechanism of crucial RNAs with differential expressions

from TSCC and normal tissue, CNV and methylation data analysis on selected RNAs were

performed by cor package of R software. Pearson correlation analysis was carried out to iden-

tify whether they had correlated relationship with Pearson correlation coefficient >0.40, which

was set as a cutoff. SNV analysis was performed to excavate whether there existed some muta-

tions of genes that possibly regulated genes, which were most significantly related to prognosis,

by using Fisher test. P value < 0.05 was considered as statistically significant.

10. Molecular subtypes of TSCC classification

To find out if some molecular subtypes of TSCC were associated with prognosis, we classify

TSCC subtypes in terms of gene expression from TCGA using ConsensusClusterPlus package

of R. The top 2000 variable genes were reduced for integrative clustering analysis by median

absolute deviation. All sample were divided into k (2 to 6) groups for determining a stable clas-

sification by k value analysis.

11. Clinical features description and survival analysis of different subtypes

Clinical information (i.e. clinical stage, T stage, N stage, smoking history, alcohol history,

nodal extracapsular spread) was collected. Chi-square test was used to assess statistical signifi-

cance between each subtype with p<0.05, which was set as the cut-off criterion. Survival analy-

ses of patients with different subtypes were performed subsequently using a log-rank test by

survival package of R. P value <0.05 was set as a threshold.
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12. Identification of differential expression of mRNAs, miRNAs, lncRNAs

between different subtypes of TSCC associated with prognostic DERNAs

and functional enrichment analysis of GO and KEGG

To understand the intrinsic biological features between different molecular subtypes, we iden-

tified mRNAs, lncRNAs and miRNAs with differential expressions. Among these DERNAs,

genes overlapped with prognostic genes mentioned above were considered as potential prog-

nostic predictors for TSCC, according to different subtypes. Functional enrichment analyses

were carried out to excavate biological mechanism and to define gene expression subtypes by

clusterprofiler mentioned above. P<0.05 was considered as a cutoff of GO and KEGG enrich-

ment analysis.

Results

1. DElncRNAs, DEmiRNAs, and DEmRNAs in TSCC

A total of 2907 mRNAs (1366 up-regulated and 1541 down-regulated), 191miRNAs (98 up-

regulated and 93 down-regulated) and 1831 lncRNAs (1151 up-regulated and 680 down-regu-

lated) were identified in mRNA-seq and miRNAseq data between |log2 fold change (FC) |>1.5

and P value < 0.05. RNAs with differential expressions were visualized in heatmap (Fig 1).

Top 10 DElncRNAs, DEmiRNAs and DEmRNAs were list in Table 1.

2. Functional enrichment analysis of gene ontology and KEGG pathways

2907 DEmRNAs were involved in the functional enrichment analysis using clusterProfiler

package of R. GO annotation consists of biological process (BP), cellular component (CC),

molecular function (MF). The top 50 GO analyses results were list in S1 Table. These results

Fig 1. Heatmap of top 100 variable of differentially expressed RNAs between TSCC and non-tumor tissues. (A) DElncRNAs, (B) DEmiRNAs, (C) DEmRNAs.

https://doi.org/10.1371/journal.pone.0216834.g001
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(Fig 2) revealed that DEmRNAs were enriched in 1313 BPs, most of which took part in extra-

cellular organization, ion transmembrane transport, muscle biological process and epidermal

cell differentiation. MF analysis indicated that these DEmRNAs were significantly associated

with 257 MFs, including channel activity, DNA-binding transcription activator activity, RNA

polymerase II-specific, actin binding, enzyme inhibitor activity and cytokine activity. We

found that the most enriched CC was collagen-containing extracellular matrix. KEGG pathway

analysis (Fig 2 and S2 Table) showed that a total of 50 pathways were highly enriched, which

was consistent to DEmRNAs. These pathways were mainly involved in Cytokine-cytokine

receptor interaction, PI3K-Akt signaling pathway, Human papillomavirus infection, Focal

adhesion and Calcium signaling pathway.

3. Protein-protein network analysis

Based on DEmRNAs, 12872 pairs of mRNA interaction relationship were identified using the

STRING database with scores of>0.4. Genes, whose number of edges were larger than 50,

Table 1. Top 10 DElncRNAs, DEmiRNAs and DEmRNAs between tumor and normal tissues in TSCC.

Symbol Log2 Fold Change P value Type

lncRNA

LINC01322 8.484446 2.6E-24 Up

G2E3-AS1 7.404014 1.99E-10 Up

LINC01614 7.147533 8.21E-19 Up

BX322234.2 6.685120 3.36E-13 Up

LINC02434 6.651148 7.58E-12 Up

AC011632.1 6.614810 4.80E-09 Up

LINC02577 6.504801 2.32E-34 Up

AFAP1-AS1 6.460035 1.49E-17 Up

DLGAP1-AS5 -6.304910 1.42E-10 Down

LINC02582 6.284453 1.03E-07 Up

miRNA

miR-615-3p 5.633801 7.38E-17 Up

miR-135a-5p -5.447620 1.57E-14 Down

miR-105-5p 5.239907 6.10E-08 Up

miR-1269b 5.104939 0.001494 Up

miR-1251-5p -5.07307 1.46E-05 Down

miR-4652-5p 4.884050 6.15E-10 Up

miR-767-5p 4.811304 7.29E-07 Up

miR-1269a 4.717552 5.45E-07 Up

miR-375-3p -4.59202 1.88E-13 Down

miR-196a-5p 4.518151 1.05E-20 Up

miR-1910-5p 4.302478 2.11E-10 Up

mRNA

SMR3B -13.322939 3.39E-16 Down

PRH2 -12.899204 8.68E-45 Down

BPIFA2 -12.664771 4.21E-18 Down

PIP -12.656535 3.43E-19 Down

C6orf58 -11.223360 1.12E-84 Down

ZG16B -10.726593 4.64E-49 Down

KRT36 -10.329547 1.64E-39 Down

STATH -9.9115524 4.04E-18 Down

PRR4 -9.6244041 3.05E-50 Down

MAGEB2 8.4345422 1.57E-09 Up

https://doi.org/10.1371/journal.pone.0216834.t001
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Fig 2. The top 10 enrichment scores in KEGG pathway and GO enrichment analysis of the DEmRNA. (A)Biological process of DEmRNAs; (B)

Molecular function of DEmRNAs; (C) cellular component of DEmRNAs; (D) KEGG pathway of DEmRNAs.

https://doi.org/10.1371/journal.pone.0216834.g002
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were employed in PPI network (S3 Table). 77 mRNAs were therefore selected to construct PPI

network (Fig 3) using Cytoscape. The gene with the highest degree was ALB (Degree = 217),

and ITGAX was the gene with the highest combined score (Combined score = 0.932).

4. Prognostic overall survival assessment of DEmRNAs, DEmiRNAs, and

DElncRNAs

The survival analysis was performed to evaluate the prognostic signatures of DEmRNAs,

DEmiRNAs, and DElncRNAs. Setting P<0.05 as a cutoff, a total of 154 DEmRNAs, 6

Fig 3. PPI network of DEmRNAs whose edges larger than 50. The size of nodes represents number of edges.

https://doi.org/10.1371/journal.pone.0216834.g003
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DEmiRNAs, 76 DElncRNAs were significantly related to overall survival. Among these poten-

tial prognostic biomarkers, a low expression of NAGS, which was the gene the most signifi-

cantly associated with survival (P = 0.00036), was positively related to OS. For DEmiRNAs, a

low expression of hsa-miR-1229-3p linked the most significantly to a high OS(P = 0.0053).

However, a low expression of AL359851.1 the most significantly suggested a longer survival

time, with a P = 0.00096 in DElncRNAs. The 3 biomarkers that were the most significantly

related of each type of DERNAs were presented in Fig 4. All survival analysis results were

given in S4 Table.

5. CeRNAs regulatory network construction

StarBase v3.0 was used to match DEmiRNAs and DEmRNAs or DElncRNAs. A total of 358

pairs of DEmiRNA-DEmRNA interactions (S5 Table) combined by 26 DEmiRNAs and 185

DEmRNAs were successfully predicted. In miRNA-ncRNA interaction analysis, 23 DEmiR-

NAs and 22 DElncRNAs were involved in 44 pairs of DEmiRNA-DElncRNA interactions (S6

Table). All the interactive pairs were integrated to construct the lncRNA-miRNA-mRNA

ceRNA network (Fig 5), which contained 249 nodes and 409 edges, using cytoscape software.

To identify critical DERNAs that played an important part in both biological process and

prognosis, we screened prognostic DERNAs that were involved in ceRNA network. Finally, we

obtained 15 DEmRNAs(SLC16A1, E2F7, SCN8A, ZIC2, NR4A1, CLU, GFPT2, CEP55, PLK1,

SYBU, STC2, DEPDC1B, MICB, LIFR, BIRC5), 1DEmiRNA(hsa-miR-337-3p) and 2 DElncR-

NAs(AC017048.3, AC156455.1) l. The result suggested that these RNAs were particularly cru-

cial for the occurrence, development and prognosis of TSCC.

Fig 4. Kaplan-Meier survival plots of the top 3 prognostic RNAs; (A) NAGSKM-plot for median threshold; (B) SOHLH1 KM-plot for median threshold; (C)

ETNPPL KM-plot for median threshold; (D) hsa-miR-1229-3p KM-plot for median threshold; (E) hsa-miR-654-3p KM-plot for median threshold; (F) hsa-

miR-377-5p KM-plot for median threshold; (G) AL359851.1 KM-plot for median threshold; (H) LINC02560 KM-plot for median threshold; (I) AC009226.1

KM-plot for median threshold.

https://doi.org/10.1371/journal.pone.0216834.g004
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Fig 5. The ceRNA network of lncRNA-miRNA-mRNA in TSCC. Diamond represent lncRNA, rounded rectangles indicate miRNA, and ellipses indicate mRNA. The

size of nodes represents number of edges. Red nodes indicate up-regulation while blue nodes indicate down-regulation. Different shades of color represent different

levels of expression.

https://doi.org/10.1371/journal.pone.0216834.g005
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6. Validation of expressions of crucial DEmRNAs, DE-miRNAs, and DE-

lncRNAs

To further confirm the biological function and prognostic value of the DEmRNAs, DE-miR-

NAs and DE-lncRNAs, we used GEO2R to analyze 3 GEO data (GSE30784, GSE13601 and

GSE28100). SYBU, AC017048.3 and LOC100506691 were demonstrated to be non-differen-

tially expressed in none of the mRNA microarrays. However, others were validated in at least

one data (Table 2).

7. CNV methylation and SNV analysis of hub genes

As 15 DEmRNAs mentioned above had been demonstrated as playing an important role in

the development and prognosis of TSCC, we aimed to find the underlying regulatory mecha-

nism. Methylation analysis did not show any gene whose methylation was negatively corre-

lated with its gene expression level, by using cor package of R. However, the expression of

GFPT2(Pearson’s correlation coefficient = 0.436363) was possibly to be positively correlated

with its CNV. SNV analysis of the most significant prognostic gene, NAGS, identified FAT1

(p = 0.039) as a potential SNV locus that regulate the gene expression of NAGS.

8. Molecular subtypes of TSCC classification

As DERNAs actively participated in TSCC onset and development, we speculated if there were

some intrinsic gene expression subtypes related to different prognoses in TSCC. The 2000

most variable genes were employed by variance filtering (MAD method). The output of Con-

sensusClusterPlus showed k (2 to 6) clusters (Fig 6), and we calculated cluster-consensus and

item-consensus results, which were visualized in Fig 6. All samples were successfully

Table 2. Validation of prognostic RNAs involved in ceRNA network.

Symbol

mRNA GSE30784 GSE13601

SCN8A T T

E2F7 T F

SLC16A1 T T

SYBU F F

GFPT2 T T

LIFR T T

MICB T T

PLK1 T T

CEP55 F T

STC2 T T

BIRC5 T T

ZIC2 T T

DEPDC1B T F

NR4A1 F T

CLU T T

GSE28100

MiR-337-3p T

T: True; F: False

https://doi.org/10.1371/journal.pone.0216834.t002
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categorized into 2 subtypes in terms of the most stable k value, and such a process resulted in

the removal of 66 out of 126 samples from subtype A and 60 out of 126 samples from subtype B.

9. Clinical characteristics description and prognostic assessment

The clinical characteristics was described, and the results (Table 3) revealed no correlation of

TSCC molecular subtype with clinical features such as gender, onset age, pathologic N or T

stage, clinical stage and smoking. Noticeably, the patients in group A had a longer drink his-

tory(p = 0.024) and more alcohol consumption per day(p = 0.006). Kaplan-Meier survival

curve in two subtypes (Fig 7) indicated that subtype B was significantly associated with a better

overall survival(p = 0.0039).

10. Identification of differential expression of mRNAs, miRNAs, lncRNAs

between different subtypes of TSCC overlapping with prognostic DERNAs

and functional enrichment analysis of GO and KEGG

After performing DESeq2 package, 715 DEmRNAs, 7 DEmiRNAs and 521 DElncRNAs were

screened. Top 10 DEmRNAs between two subtypes were list in Table 4. Morpheus website was

Fig 6. Heatmaps of the consensus matrices for k = 2(A), 3(B) and 4(C). Cluster-Consensus Plot shows the cluster-consensus value of clusters at each k. The item

tracking plot(D) showed cluster assignments were stable at k = 2. Cluster-Consensus Plot(E) at k = 2 indicated reasonably high CLC among the clusters.

https://doi.org/10.1371/journal.pone.0216834.g006
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Table 3. Clinical features of molecular subtypes.

Subtype 1 2 P Value

Pathologic N stage 0.697

N0 34(51.5%) 30(50.0%)

NX 1(1.5%) 2(3.3%)

N1 11(16.7%) 13(21.7%)

N2 20(30.3%) 15(25%)

Pathologic T stage 0.137

TX 1(1.5%) 1(1.7%)

T1 3(4.5%) 8(13.3%)

T2 27(40.9%) 23(38.3%)

T3 21(31.8%) 22(36.7%)

T4 14(21.2%) 6(10.0%)

Clinical stage 0.193

1 2(3.0%) 7(11.7%)

2 20(30.3%) 15(25%)

3 16(24.2%) 18(30%)

4 27(40.9%) 19(31.7%)

x 1(1.5%) 1(1.67%)

Smoking 0.131

Never1 19(28.8%) 25(41.7%)

Former2 25(37.9%) 13(21.7%)

Current3 6(9.1%) 10(16.7%)

4 14(21.2%) 12(20%)

Missing 2(3.0%) 0

Smoking years 0.053

Never 19(28.8%) 25(41.7%)

1~20 2(3.0%) 6(10%)

20~30 4(6.1%) 5(8.3%)

30~ 29(43.9%) 19(31.7%)

Mising 12(18.2%) 5(8.3%)

Alcohol 0.024

Yes 49(74.2%) 33(55.0%)

No 17(25.8%) 27(45.0%)

Alcohol consumption per day 0.006

0 22(33.3%) 34(56.7%)

1~5 24(36.4%) 10(16.7%)

5~ 2(3.0%) 6(10.0%)

missing 18(27.3%) 10(16.7%)

Gender 0.254

Male 46(69.7%) 36(60.0%)

Female 20(30.3%) 24(40.0%)

Onset age 0.55

15~30 2(3.0%) 5(8.3%)

30~50 12(18.2%) 13(21.7%)

50~70 42(63.6%) 34(56.7%)

70~ 10(15.2%) 8(13.3%)

Pathological nodal extracapsular spread 0.033

Yes 14(21.2%) 10(16.7%)

(Continued)
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applied for plotting the heatmap of DEmRNAs (Fig 8). The 3 most upregulated genes were

BPIFB2, CTCFL and NTS in subtype A, while DEFB4B, CRNN and MUC21 were the 3 most

up-regulated genes in subtype B. DERNAs, 25 mRNAs, 5lncRNAs and 0 miRNA were found

to overlapped with prognostic RNAs mentioned above (Table 5). Further enrichment analysis

(S7 Table) showed that upregulated genes in subtype A were highly enriched not only in meta-

bolic process, digestion and multicellular organismal homeostasis in GO, but also in chemical

carcinogenesis, metabolism by cytochrome P450 and in nicotine addiction in KEGG (Fig 9).

However, upregulated genes in group B (S8 Table) was involved in GO including keratinocyte

or epidermal cell differentiation, skin or development, peptide cross-linking and cell killing

and KEGG, including lipid or acid metabolism and IL-17 signal pathway. Therefore, we

termed these two subtypes ‘basal’ and ‘differentiated’ in terms of their particular differential

expression gene functions and literature reviews.

Discussion

TSCC, which is the most common kind of OSCC, is generally characterized by a notably

aggressive biological behavior and a poor survival. It is urgent to detect the underlying genetic

pathogenesis and to find reliable therapeutic targets and prognostic biomarkers for TSCC in

order to improve patients’ clinical outcome. In this study, we used TCGA database to identify

mRNAs, miRNAs, lncRNA with differential expressions between TSCC and normal control

tissues. To further understand the DERNAs, GO and KEGG analysis were performed subse-

quently. The results of GO analysis showed that extracellular matrix organization, extracellular

structure organization, muscle contraction, regulation of ion transmembrane transport and

muscle system process were involved in the biological process of TSCC initiation, which was

different from other GO types of OSCC [16,17]. This suggested TSCC might be a special type

of OSCC, which might be resulted from particular anatomical and histological structure of the

tongue. Moreover, the enriched KEGG pathway was found to be involved in cytokine-cytokine

receptor interaction, PI3K-Akt signaling pathway, HPV infection, alcoholism, focal adhesion,

MAPK signaling pathway and cAMP signaling pathway, which was consistent with findings

from other previous studies on the tumorigenesis of TSCC [18,19]. We next constructed the

PPI network with DEmRNAs and obtained the hub genes with the highest degree including

ALB, FN1, EGF, MM9, KNG1, COL1A1, SPP1, ACTN2, most of which were reported to play a

critical role in carcinogenesis and tumor progression [20–23].

The ceRNA network was established by integrating all DERNAs. A total of 15 prognostic

DEmRNAs (SLC16A1, E2F7, SCN8A, ZIC2, NR4A1, CLU, GFPT2, CEP55, PLK1, SYBU,

STC2, DEPDC1B, MICB, LIFR, BIRC5), 1 DEmiRNA(hsa-miR-337-3p) and 2 DElncRNAs

(AC017048.3, AC156455.1) were involved in ceRNA network. We investigated the underlying

mechanism of mRNA with differential expression, and apart from GFPT2, no correlation was

identified between CNV or methylation and gene expression, which provided foundation for

intensive study in future. SNV analysis of NAGS (the most significant prognostic gene) indi-

cated that somatic mutation in FAT1(atypical cadherin 1) may be associated with the dysregu-

lation of NAGS. According to Pickering, FAT1 was mutated in 30% of OSCC samples, which

was also the highest frequency of mutation in HNSCC [24,25]. Researchers also suggested that

Table 3. (Continued)

Subtype 1 2 P Value

No 35(53.0%) 44(73.3%)

Unknown 17(25.8%) 6(10%)

https://doi.org/10.1371/journal.pone.0216834.t003
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FAT1 inhibited migration and invasion in OSCC and some other types cancers [26,27]. In this

study, FAT1 mutation was shown to be related to differential expression of NAGS, which

resulted in a remarkable variation of overall survival. All these results suggested that FAT1

could be used as a novel candidate tumor suppressor or prognostic predictor.

SLC16A1(solute carrier family 16 member 1), alternatively known as MCT, is the most sig-

nificant prognostic DEmRNA employed in ceRNA network and might have the potential to be

Fig 7. KM plot of 2 molecular subtypes of TSCC.

https://doi.org/10.1371/journal.pone.0216834.g007

Table 4. Top 10 DEmRNAs between two molecular subtypes.

Symbol Log2FoldChange Pvalue High expression in which subtype

BPIFB2 -6.12855 1.75E-10 A

DEFB4B 5.844115 2.73E-21 B

CTCFL -5.78405 1.47E-16 A

NTS -5.5462 5.91E-27 A

BPIFB1 -5.41866 6.25E-20 A

CRNN 5.009013 2.23E-22 B

CYP26A1 -4.70985 3.56E-16 A

MUC5B -4.47367 7.41E-20 A

MUC21 4.343534 6.98E-15 B

MUC2 -4.32957 2.87E-25 A

https://doi.org/10.1371/journal.pone.0216834.t004
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an important biomarker of survival prediction and therapeutic target in TSCC. Recent studies

have confirmed our speculation, Voelxen found that tumor samples from OSCC patients had

significantly elevated relative expression levels of MCT [28]. Susana et al. suggested that MCT

might be a prognostic molecule of OSCC [29]. E2F7(transcription factor 7), targeted by

MIR424, miR-3666 and miR-26a, is highly expressed in multiple tumors [30,31] such as endo-

metrial carcinoma, breast cancer, colorectal cancer and glioma, indicating that E2F7 might

constitute a potential therapeutic target. The overexpression of E2F7 was also detected in

Fig 8. Heatmap of DEmRNAs between 2 molecular subtypes of TSCC.

https://doi.org/10.1371/journal.pone.0216834.g008
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HNSCC [32]. It was also found that Sphk1-dependent activation of AKT mediated E2F7-in-

duced doxorubicin resistance, which might be similar to the mechanism of progression in

TSCC. SCN8A (sodium voltage-gated channel alpha subunit 8), which is related to different

types of cancers [33,34] including colorectal cancer, prostate cancer, breast and some other

types of cancer, emerges as an aggressive oncogene and could cause poor prognosis [35]. ZIC2

(Zic family member 2) has been reported to be crucial to the progression of cancer [36–38]

such as hepatocellular carcinoma, epithelial ovarian tumor, osteosarcoma and OSCC. ZIC2

could activated the PI3K/AKT signal pathway, which played a vital role in TSCC, as it pro-

motes viability, migration, and invasion of cancer cells. Sakuma [38] et al. detected that a sig-

nificant up-regulation of ZIC2 in OSCC samples was related to a poor survival rate. NR4A1

(nuclear receptor subfamily 4 group A member 1) was validated to be targeted by miR-377

[39] and PCH4 [40] and act as a tumor promoter in OSCC. Besides, Liu and Chen [41,42] dis-

covered that NR4A1 could be a critical general regulator in the induction of T cell dysfunction

and inhibit NR4A, thus, NR4A1 was seen as promising in cancer immunotherapy. The prog-

nostic DEmiRNA, hsa-miR-337-3p targeting one DEmRNA (AMOT, a witnessed oncogene in

OSCC [43]), has been implicated to target AMOT, HOXB7 [44], MMP-14 [45], PTEN [46]

Table 5. DERNAs between two subtypes related to prognosis.

Symbol logFC P value of survival analysis

SOHLH1 -4.108109034 0.000401198

TGM5 1.856189234 0.001104156

ODF4 1.83110008 0.002145965

SPINK7 4.11976683 0.004824705

FUT6 1.522467309 0.00743154

RNF224 1.914806608 0.008302427

CNFN 2.680331441 0.010640736

PNCK -2.685197192 0.016092106

PCP4 -1.814741921 0.017260067

FAM25A 2.833964095 0.01735488

HPN -2.256573085 0.019961787

SPRR2E 2.816019954 0.020093855

CLDN17 2.912792033 0.020322063

S100A9 2.13252753 0.024516409

SLC2A14 -1.683662504 0.026262725

LEXM 2.217909192 0.028836265

CRCT1 2.901957091 0.028858706

TGM7 2.447755921 0.030069596

MAL 3.924051739 0.033186621

CCDC187 -2.418284944 0.037448993

SPRR2A 2.669076678 0.037724674

CCDC155 -2.442240546 0.047564285

C9orf152 -2.351492462 0.048737265

SLC9A2 -2.31320548 0.049015

SPINK6 3.219429317 0.049538758

LINC02560 1.76588842 0.001813109

LINC02028 2.121778242 0.016551484

LOC349160 -1.806825885 0.023342443

LINC02487 1.783316228 0.032572701

LOC101927503 -1.858832402 0.04787

https://doi.org/10.1371/journal.pone.0216834.t005
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and acted as a tumor suppressor through sponging oncogene. Loss of miR-337-3p expression

was associated with the development of cancer [47]. Most of these DERNAs were demon-

strated to participate in carcinogenesis and progression in existing studies. However, the

underlying functions of the 2 prognostic DElncRNAs in cancer remain poorly understood.

To further explore the possible genetic classification of TSCC, we identified 2 molecular

subtypes in TSCC and termed these 2 subtypes basal and differentiated, according to gene

function and Pickering’s work on integrative genomic analysis of OSCC [48]. We integrated

the clinical data of the 2 subtypes, interestingly, we found that basal tumors were highly associ-

ated with alcohol consumption but a poor clinical outcome. Moreover, the basal tumors were

likely to come from patients with a smoking habit. All these clinical features suggested that

alcohol and tobacco participate in critical progression of TSCC, therefore leading to a worse

prognosis. In addition, we obtained 715 DEmRNAs, 7 DEmiRNAs, 521DElncRNAs. The func-

tional analysis results suggested that basal tumor was expected to be related to metabolic pro-

cess, chemical carcinogenesis and nicotine addiction, which could explain its different clinical

manifestation. However, differentiated tumor was shown to participate in keratinocyte or epi-

dermal cell differentiation, skin or epithelial development, peptide cross-linking, cell killing

and IL-17 signal pathway, which were similar to the features characterized by a previous study

on differentiated subtype [49]. These findings contributed to a better understanding on the dif-

ference of clinical characteristics and the underlying biological mechanism between different

subtypes of TSCC.

Among these DERNAs, 25 mRNAs and 5lncRNAs were significantly correlated to prognos-

tic RNAs and had a potential to act as predicted biomarkers to evaluate prognosis. These find-

ings are mostly consistent with the results of previous studies. ODF4 (outer dense fiber of

sperm tails 4) has been reported to have a high expression [50] in breast cancer, prostate can-

cer, basal cell carcinoma and chronic myeloid lymphoma. Afsharpad [51] determined ODF4

expression in urinary exfoliated cells, cancerous tissue and tumor-free tissue to confirm its

diagnostic and surveillance potential. SPINK7(serine peptidase inhibitor, Kazal type 7

Fig 9. The top 10 enrichment scores in KEGG pathway and GO enrichment analysis of the DEmRNA between two subtypes. (A)BP of up-regulatory mRNA in

subtype A; (B) BP of up-regulatory mRNA in subtype B; (C) MF of up-regulatory mRNA in subtype A; (D)MF of up-regulatory mRNA in subtype B (E) KEGG pathway

of up-regulatory mRNA in subtype A; (F) KEGG pathway of up-regulatory mRNA in subtype B.

https://doi.org/10.1371/journal.pone.0216834.g009
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(putative)) targeted by miR-1322[52] by inhibiting invasion of cancer cells via the urokinase-

type plasmin activator receptor 1 integrin pathway or by upregulating p53 expression was con-

sidered as a tumor suppressor in multiple types cancers [53–55]. Li et al [56] validated the pre-

dictive value of SPINK7 in noninvasive early detection of gastric cancer. Therefore, it is

possible to predict prognosis of TSCC patients by detecting SPINK7 expression in saliva. The

dysregulation of LINC02487, alternatively known as LOC441178, was detected by transcrip-

tome analysis and verified by RT-PCR in OSCC [57]. Xu [58] et al found that LINC02487

could sponge coiled-coil-containing protein kinase 1 (ROCK1) in OSCC, and that OSCC

patients with a high expression of LINC02487 would have a longer survival time, which was in

accordance with our result and also suggested that LINC02487 could be a new therapeutic tar-

get and prognostic indicator for TSCC. To the best of our knowledge, no relevant studies

found that LINC02028, LOC101927503, LOC349160 and LINC02560 existed in cancer.

With the advance of RNA sequencing and bioinformatic analysis, a large amount of geno-

mic data become available but requires to be decoded. In our study, we found that 15 DEmR-

NAs, 1 DEmiRNA, 2 DElncRNAs were related to prognosis by constructing ceRNA network

of TSCC. Most of them were found to act as oncogenes or tumor suppressors in many types of

cancer, and the analysis of GO and KEGG pathway and PPI network further confirmed their

function. Combining the ceRNA network theory, we considered that these DERNAs played a

critical role in the occurrence of TSCC and could be utilized as biomarkers for target therapy.

Additionally, we firstly confirmed 2 molecular subtypes in TSCC using data from TCGA by

clustering analysis, and such an effort helped comprehend the intrinsic classification of TSCC

and specific biological process of each subtype. We correlated DEmRNAs between basal and

differentiated tumor with prognosis, and 25 mRNAs and 5 lncRNAs were identified to be asso-

ciated with prognosis. Evidence suggested that these critical molecules not only participated in

the initiation, but also in the development of TSCC and helped deciding prognosis and therapy

decision. Advances and limitations of this study should also be acknowledged. It should be

noticed that we integrated several categories of genetic data to bring out the importance of

these selected molecules at different regulatory levels, which has hardly been done in previous

studies. However, the data from TCGA only included American samples, which could not rep-

resent the whole existing conditions and as the regulatory pathway of molecular is very intri-

cate, what we found in the study may be the tip of an iceberg. Thus, the mechanism of TSCC

or even in all types of cancer still has an immense potential to be discovered, and further clini-

cal trials and molecular experiments are required to verify our results.

Conclusion

The TCGA-based comprehensive genomic analyses successfully established a ceRNA network

of TSCC and defined 2 intrinsic molecular subtypes of TSCC. Furthermore, we demonstrated

key molecules involved in carcinogenesis and progression by integrating results of analyses of

ceRNA network, overall survival and subtype classification. These discoveries provided a novel

genetic landscape and the foundation for prognostic prediction or for more effective treat-

ment, in which key genes are checked and targeted by specific inhibitors or promotors
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