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RECENT ADVANCES IN FUNCTIONAL REGION PREDICTION BY USING STRUCTURAL
AND EVOLUTIONARY INFORMATION — REMAINING PROBLEMS AND FUTURE
EXTENSIONS
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Abstract: Structural genomics projects have solved many new structures with unknown functions. One strategy to investigate the
function of a structure is to computationally find the functionally important residues or regions on it. Therefore, the development
of functional region prediction methods has become an important research subject. An effective approach is to use a method
employing structural and evolutionary information, such as the evolutionary trace (ET) method. ET ranks the residues of a protein
structure by calculating the scores for relative evolutionary importance, and locates functionally important sites by identifying
spatial clusters of highly ranked residues. After ET was developed, numerous ET-like methods were subsequently reported, and
many of them are in practical use, although they require certain conditions. In this mini review, we first introduce the remaining
problems and the recent improvements in the methods using structural and evolutionary information. We then summarize the
recent developments of the methods. Finally, we conclude by describing possible extensions of the evolution- and structure-based

CSBJ

methods.
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Introduction

The prediction of functional regions in a protein is an important
research focus, and many methods have been developed for this
purpose [1]. One of the most effective strategies is the detection of
evolutionarily important residues on the tertiary structure of a protein,
by integrating the structural and evolutionary information encoded in
a multiple sequence alignment (MSA) [2-9] (see a schematic image of
the strategy in Figure 1). The most popular and pioneering method
based on the strategy is Evolutionary Trace (ET) [2], which uses a
phylogenetic tree to rank the residues in a protein by their
evolutionary importance and maps them on a closely related structure.
The highly ranked residues are often clustered in space, and thus these
clusters correspond to functionally important residues and are used to
identify them. Many servers perform ET [10—12] or similar methods
[3,5,7,13], and were developed by the original designers of ET [10]
or other groups [3,5,7,11-13]. In this mini review, we will summarize
the recent advances in the ET and ET-related methods (evolution and
structure  information-based methods) using structural and
evolutionary information, including our work, over the past few years,
and then discuss the remaining problems. First, we will summarize the
various improvements of the measurements to evaluate the
evolutionary information calculated from an MSA. We will
subsequently introduce several improvements of functional region
prediction by exploiting the structural information. We will finally

introduce an important problem shared by the MSA-based methods
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in structural bioinformatics, and the challenges to solve it. At the end
of this review, we will explain the potential extensions of the
structure- and evolution-based methods. The web servers of the
introduced methods and their update statuses are summarized in

Table 1.

Recent advances

Improvements in the methods to evaluate evolutionary
information

One of the most widely used scores to consider evolutionary
information is the residue conservation at a site in an MSA. The
residue conservation reflects the evolutionary selection at functional
sites to maintain protein function and to retain structural folds [6],
regardless of the developed conservation score formulae [14].
Therefore, the discrimination between the functionally important
residues and the structurally important ones is often difficult [6]. This
problem has led to limitations of the methods to predict the
functional regions using conservation scores. In order to distinguish
between the residues conserved for functional reasons and those
conserved for structural constraints, Chelliah er al [6] developed
Crescendo. This program calculates the conservation scores with an
Environment-Specific Substitution Table (ESST) [15], which
describes the patterns of substitutions in terms of the amino acid
locations within secondary structure elements, as well as the solvent
accessibility and the existence of hydrogen bonds between side chains
and neighboring residues. Crescendo [6] predicts functional regions
by identifying clusters of residues with unusually high evolutionary
restraints, To this end, they identified the evolutionary restraint at a
site, as follows: 1) whether there is a high degree of evolutionary
conservation than expected, 2) whether ESST makes weak predictions
of the substitution patterns, and 3) whether there are residues within
spatially conserved regions, when protein structures within the same
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Figure 1. Procedure of the methods by integrating the structural and evolutionary information.

family are superimposed. Cheng er al. [16] also addressed a similar
problem, and developed a method to predict the functional regions by
distinguishing ~ between functional ~constraints and structural
constraints, but they adopted a different strategy to estimate the
structural constraint. In order to obtain measurements of the
structural constraints in a protein structure, they used Rosetta [17],
which is a computational method to design a protein and calculate its
free energy. They showed that combining these measures with
sequence conservation improved the prediction of functional protein
sites.

Zhang er al. [18] developed CUBE-DB, which provides calculated
conservation and specialization scores for residues in paralogous
proteins. The advantage of their database is that the functional
specificity at a site is calculated by considering two models of
evolution after divergence, “heterotachy” and “homotachy”. The word

heterotachy (for “different speed” in Greek) was applied by Lopez er

al [19] to refer to within-site rate variations throughout time in the
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field of molecular evolution. In contrast, homotachy (for “same
speed” in Greek) refers to the state in which the evolutionary rate of a
position is constant throughout time. Heterotachy was found among
homologous sequences of distantly related organisms, often with
different functions. In such cases, the functional constraints are likely
to be distinct, which would explain the different distributions of
variable sites. Zhang er al. [18] used heterotachy for referring to the
evolutionary rate variations among homologous groups. A high score
is calculated at a site where the residues are conserved in the reference
group of orthologs, but they overlap poorly with the residue type
choices in the paralogous groups (such positions are referred to as
functional determinants). In contrast to the case of heterotachy,
homotachy requires the conservation at a site within each paralogous
group (referred to as functional discriminants). Residues with high
scores are mapped on an evolutionarily related structure, if available,
via Jmol [20], erc, and are summarized as a table (html or
downloadable xlsx format). CUBE-DB presently covers only human

proteins belonging to multi-member families.
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Present and future of functional region prediction

Table 1. The computational methods to predict functional regions by using evolutionary and structural information, discussed in this

review, which are available through the internet. Names (abbreviation) and classification of each service (Server or Database), URLs, and

their features are described in each column.

Name
L .
(Server/Database) UR Description
Pioneering work
ET (Server) http://mammoth.bem.tmc.edu/ETserver.html

Crescendo (Server)

CUBE-DB
(Database)

http://epsf.bmad.bii.a-
star.edu.sg/cube/db/html/home.html

JET (Server) hetp://www.Igm.upme.fr/JET/JET html

SitesIdentify (Server)

Direct Coupling

Analysis (DCA) http://dca.upme.fr/DCA/DCA.html

MISTIC (Server) http://mistic.leloir.org.ar/index.php

ETA (Server) http://mammoth.bcm.tmc.edu/eta/

FREPS (Server) http://freps.cbre.jp

FunShift http://funshift.sbc.su.se

EvoDesign (Server)  http://zhanglab.ccmb.med.umich.edu/EvoDesign/

http://mordred.bioc.cam.ac.uk/~crescendo/crescendo.php

htep://www.manchester.ac.uk/bioinformatics/sitesidentify/

Last updated: 2011
Discrimination between structural and functional constraints

Structural and functional constraints are discriminated by the application of

ESST.
Last updated: 2006
Integration of conservation & other scores

Pre-evaluated conservation and specialization scores for residues in paralogous
proteins are provided as a table.

Last updated: 2012
Integration of conservation & other scores

Integrated scores of residue conservation and physicochemical properties are
used for the prediction.

Last updated: 2009
Conservation & other scores

Conservation scores and geometry-based cleft identification are used for the
prediction.

This server may no longer be updated.
Coevolutionary relationship between two sites

Discrimination between directly and indirectly correlated residues was achieved
by direct-coupling analysis (DCA).

Last updated: 2012
Visualization of coevolving sites

Connectivity among coevolving sites is visualized by a circular representation of
the MI network.

Last updated: 2013

Toward function prediction

A 3D template composed of ET residues is used for function prediction.
Last updated: 2013

Appropriate sequence selection

The MSA with the maximum DSPAC is adopted for the prediction.
Last updated: 2012

Functional shift analysis

FunShift performs functional shift (divergence) analysis between the
subfamilies of a protein domain family. The present release uses Protein
Domain families in Pfam (Version 12.0).

Last updated: 2004
Protein design

Designing ideal protein sequences for given scaffolds by evaluating the
foldability and goodness of the designs.

Last updated: 2013
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Integration of conservation and other scores

It is difficult to predict all of the types of functional regions by a
single score, because each functional region has its own physico-
chemical properties. For example, protein interfaces are not simply
discriminated from non-interface surfaces by the patches of conserved
residues [21]. The most conserved patches of residues overlap in only
37.5% of the actual protein interface, although the properties of the
interface differ from those of the rest of the protein. Considering
other types of scores seems to be essential, to improve the prediction
accuracy. Engelen er al [22] addressed this problem by integrating the
conservation information and the specific physicochemical properties
of the residues. They developed the Joint Evolutionary Trees (]ET)
method [22], to detect protein interfaces, the core residues involved in
the folding process, and the residues susceptible to site-directed
mutagenesis and relevant to molecular recognition. The performance
of JET is better than those of the other state-of-the-art methods.

Teppa er al [23] compared the abilities of several methods (real-
valued ET [24], cumulative mutual information (MI) [25], proximity
MI [25], evolutionary trace integer value [2], and the methods
designed for the identification of SDPs (SDPfox and XDET) [26])
to identify catalytic residues in enzymes, in order to investigate the
extents to which the predictive powers of the different methods
overlap. The results revealed that the methods can be divided in three
groups, with limited mutual overlaps. These groups consist of the
methods in which the predictive signal is strongly correlated to the
sequence conservation, those in which the predictive signal is derived
from MI, and those developed for the prediction of specificity-
determining positions. Interestingly, the combined scores of the first
and second groups (sequence conservation group and MI group)
achieved the highest performance. These observations revealed that
the sequence conservation and the MI scores are considered to be
distinct signals encoded on the MSA, and produce a complementary
effect. Therefore, their results demonstrated the possibility of
detecting catalytic residues more accurately, by integrating structural
and higher-order sequence evolutionary information. Thus, the
integration of the conservation score with other types of scores
represents a trend toward improving evolutionary information
methods. In addition to the methods examined in Teppa’s work
[2,24-26], Bray er al. [27] developed a functional site prediction tool,
SitesIdentify, which is based on combining sequence conservation
information with geometry-based cleft identification. This method
functioned quite favorably in comparison to other methods, in the
active site predictions for 237 non-redundant enzymes. As of 1+
November, 2013, the SitesIdentify server is not working at the URL
described in the original paper [27].

Coevolutionary relationship between two sites

The evolutionary scores calculated in an MSA used for functional
region prediction are roughly divided into two types: the scores at a
sitt and those between sites. The former type is the
conservation/variation of amino acids at a site, while the latter one is
the score of the degree of coevolutionary relationship between two or
more sites. In our opinion, the performance comparisons by Teppa er
al [23], described in the previous section, only focused on the former
point: the conservation/variation of amino acids at a site. Several
methods, such as correlated mutation [28,29], MI [30-36], and
covariation [37], have been developed to estimate the degree of the
coevolutionary relationship between two sites among the sequences in
an MSA. The methods in the former group are based on conserved
residues in MSAs, but the methods in the latter group that detect
coevolution between two sites are based on variable sites.
Furthermore, it should be noted that invariable sites do not contain
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any information in the coevolutionary score. A high coevolutionary
score is considered to indicate the spatial proximity or functional
connectivity between the sites, even when the sites are not close in the
primary structure of a protein. Therefore, these methods have been
applied to detect not only intramolecular interactions [28-38] but
also intermolecular interactions [39], regardless of direct or indirect
interactions. Aguilar er al [40] investigated how coevolution
information can be used to improve the prediction methods for
functional residues. They found that the clusters of co—evolving sites
related to the catalytic sites of an enzyme have distinguishable
topological properties in the residue-residue interaction network, and
also observed that these clusters usually evolve independently.
Interestingly, they suggested that the clustering of coevolving residues
could be related to a fail-safe mechanism, which causes no harm or
minimizes harm to other parts in a protein structure, in the case of a

er al [41] performed

comprehensive analyses of point mutations causing human diseases,

functional loss at a site. Kowarsch

with respect to the correlated mutations. They showed that l) the
correlated sites are significantly more likely to be disease-associated
than expected, 2) these signals cannot be explained by the
conservation patterns at each site, and 3) many correlations are not
related to physical contacts between sites. However, Halperin er a/
[42] highlighted the limitation of correlated mutation analyses, which
might also be true for other coevolutionary relationship-based
approaches. They showed that several correlated mutation methods
achieve practical accuracy for intramolecular interaction prediction on
their dataset, but the accuracy declines for intermolecular interaction
prediction. Overall, they insisted that the examined methods are not
suitable for large-scale intermolecular contact predictions. In other
words, the current methods can only achieve practical accuracy for a
handful of families. Therefore, the potential for the application of
coevolutionary information to functional region prediction remains
debatable. In addition, these methods have an important shortcoming
that is considered to affect their predictive accuracies. One important
problem stems from the fact that correlation in amino acid
substitution may arise from direct as well as indirect interactions [43].

The availability of many protein sequences enables the use of
various statistical approaches to address this problem. Recently,
discrimination between directly and indirectly correlated residues was
achieved by the direct-coupling analysis (DCA) by Weigt er al [43].
DCA combines covariance analysis with global inference analysis,
adopted from use in statistical physics. A message-passing algorithm
was used to implement DCA (mpDCA), but it was rather costly
computationally because it is based on a slowly converging iterative
scheme. Hence, the same group applied an algorithm based on the
mean-field approximation of DCA (mfDCA), which is 103 to 104
times faster than mpDCA, and thus can be used to analyze many long
protein sequences rapidly [44]. In addition to the DCA-related
methods, several groups addressed the discrimination between direct
and indirect correlations [45-50]. These methods were primarily
applied to identify constraints to fold a protein tertiary structure [44—
49]. However, Weigt er al. [43] applied their method to identify
constraints to maintain a protein—protein interaction [43,51].

In addition, one of the recent advances in coevolution-based
approaches is the development of MISTIC [52], by which a user can
visualize the connectivity among coevolving sites as a circular
representation of an MI network and their MIs interactively. Even
when the initial result is too complicated to understand, other scores
(cumulative MI [25], conservation, proximity MI [25] erc.) can be
considered simultaneously at both the nodes and edges, to highlight
the information encoded within an MSA. Such a visualization tool
clarifies the intricate evolutionary connections among sites.

Computational and Structural Biotechnology Journal | www.csbj.org



Toward function prediction

Almost all annotations assigned to protein sequences rely
primarily on the computational identification of similarity between
the protein sequences with unknown and known functions, which are
identified by BLAST [53] and other programs. Annotations are often
misleading when the sequence similarities between the queries and the
retrieved sequences are low. In these cases, the global structural
similarity between a protein of unknown function and one with a
known function is utilized [54—62]. Even when this approach fails,
turther functional information might be obtained by using local
structural similarities [63,64]. For example, surface patches or clefts
[65—73], or tertiary templates of small numbers of functional residues
[65,74-81] are used as 3D templates to infer protein functions,
through the identification of the corresponding key functional
residues and their geometries on other structures. Such 3D templates
may identify functional analogs without detectable homology that
convergently perform the same function. Various characteristics of
local structures have been used as queries to identify local structural
similarity in distantly related- or non-homologous structures. These
functional region predictions by local structural matches are often
complementary to methods by global structural or sequence-based
matches, when global structural or sequence-based methods do not
provide detailed information about a protein of unknown function. In
our opinion, however, evo]utionary information has not been fully
exploited for the detection of functional similarity among non-
homologous structures.

Recently, Kristensen er al. [82] applied evolutionary information
to develop the Evo[utionary Trace Annotation (ETA) pipe[ine, which
in principle can be applied to detect functional similarity among non-
homologous structures. The basic idea of the ETA-based function
annotation [82] is described as follows. A schematic image of the
method is available at http://mammoth.bcm.tme.edu/eta/manual.
html. At first, a few key functional residues are clustered into 3D
templates, and local structures similar to them are searched for in
other protein structures. Secondly, when the 3D template is matched
in the structure of a protein, the function of the structure in the found
protein is transferred to the query structure. In order to increase the
sensitivity of the functional annotation [83], the proteins identified by
ETA are linked together into a network of ETA similarities; then,
starting from proteins with known functions, competing functional
labels diffuse link-by-link over the entire network. A likelihood =
score for every function is assigned to every node. The function
corresponding to the most significant score is adopted at each node,
as its annotation, for example, by referring to the Enzyme
Commission (EC) numbers of the retrieved structures. In high
throughput controls, this competitive diffusion process recovered
enzyme activity annotations with 99% and 97% accuracies at half-
coverage for the third and fourth levels of the EC number,
respectively, although currently these predictions have only been
evaluated for homologs. These accuracies corresponded to false
positive rates 4-fold lower than that of the nearest-neighbor method
and 5-fold lower than that of the sequence-based annotations.
selection to  evaluate  evolutionary

Automatic  sequence

information

The selection of homologous sequences is a critical step in the
prediction of functional regions by using the conservation score,
because conserved residues are identified through comparisons of
homologous sequences [84]. The same is true for the other
evolutionary information-based methods described above. We
empirically know that a certain degree of sequence divergence in the
set of homologous sequences is essential for the identification of
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conserved residues. However, the selection of an appropriate
homologous sequence to calculate residue conservation has not been
sufficiently addressed. Aloy er al [8] developed an automatic method
to predict the functional regions of a protein, by detecting conserved
residue clusters on the tertiary structure. If no cluster is identified,
then the MSA is reconstructed by removing the distant homologues
to the prediction target, according to the evolutionary relationships
suggested by a phylogenetic tree. The process is iterated until at least
one cluster is identified. In other words, the iteration process is
forcibly terminated, even if more appropriate conditions are present
within the untested sequence space. Mihalek er 2/ [85,86] applied a
residue clustering measure, which was originally developed as a
formula for the identification of conserved residue clusters, to indicate
the appropriateness of a set of sequences for functional region
predictions [85,86]. The measure quantifies the degree of clustering
of the evolutionarily important residues in the tertiary structure of a
protein, and attaches greater importance to the clustering of the
residues that are far from each other on the primary structure. The
sequence set selected by their measure performed better in their
functional region prediction by the real valued ET-based method
[87]. They showed that the performance of their method for protein-
protein interaction interfaces was lower than that for active sites.
Recently, we addressed a similar problem by a different approach, and
developed the Functional REgion Prediction by using Spatial
statistics (FREPS) method [84]. FREPS implements an index,
DSPAC (the Degree of Spatial AutoCorrelation), to measure the
appropriateness of a set of homologous sequences [84]. Structure and
sequence information are integrated by spatial statistics within the
index, which represents the degree of conserved residue dustering on
the tertiary structure of the protein. The functional region prediction
performance, using the set of sequences selected by DSPAC, was
better than that obtained using the set selected under the fixed percent
sequence identity-conditions. In addition, DSPAC successfully
distinguished the sequence set including only C-type lysozyme from
that including both C-type lysozyme and its non-enzyme homologue,
o-lactalbumin. Similar to the residue clustering measure [85,86],
however, the performance of DSPAC for protein-protein interaction
interfaces was lower than that for active sites, although the details
have not been published yet. In order to assess various types of
functional regions, DSPAC [84] and residue clustering measures
[85,86] should be improved.

Future directions

We would like to conclude by describing three possible extensions
of the methods using structure and evolutionary information. The
first is the extension to identify the functional differences of closely
related proteins. In considerable numbers of protein families, a
subfamily develops a new function, changes substrate specificity, or
loses an original function. These family members can be categorized
into several subfamilies, for investigations of their functions. Several
databases and methods have been developed. For example, the
FunShift database [88] is a collection of such functionally changed
subfamilies (function shift) in a Pfam [89] protein family, identified
by using Conservation Shifting Sites and Rate Shifting Sites. It is
useful for protein design and mutagenesis studies, although FunShift
has not been updated since 2004. PANTHER [90] also provides
similar information curated by experts. Recently, Lee er al developed
GeMMA  [91], which
superfamilies into functional subfamilies, and is comparable to the
established method SCI-PHY [92]. The common feature of these
methods and databases is that they do not consider structural

automatically  classifies families and
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information, which might limit their predictive accuracies. As
described above and in our previous work [84], DSPAC was able to
distinguish the sequence set including only the proteins with identical
functional structures, from that including both the proteins with
identical functions and those with different functions. Theoretically,
the same is expected to be true for the residue clustering measure
[85,86]. In addition, the ET'A-based search [82] could be extended to
identify the functional differences by considering the local structural
differences between a 3D template and a matched one. These
measures might improve the predictive accuracy to identify the
functional differences of closely related proteins.

The second point is the extension to the template selection in
homology modeling, by the application of evolutionary information.
See details in our previous work [84]. Homology modeling is
frequently utilized for a sequence without a solved crystal structure.
Thus, the main purpose of the modeling is to investigate the
molecular function. It would be better to use the structure of a
protein with a function considered to be the same as or similar to the
sequence under consideration as a template, although a model based
even on a template with different functions can provide important
information. However, the template structures retrieved by fold
recognition programs do not always have the identical or similar
function to those of the target sequence, because such programs do
not directly evaluate the functional similarity between the target and a
retrieved structure. Here, we consider the inverse problem. Suppose
that we have a structure. The problem is to determine which
homologous sequences can be modeled, using the given structure as
the template. Fold recognition programs may not provide an answer
to the problem, since the functional similarity to the structure-known
protein is not considered in these programs. Considering the
functional differences by an ETA-based strategy [82], residue
clustering measures [85,86] or DSPAC [84] can be used to solve the
problem, since these can be extended to identify the set of sequences
that shares the same or similar biochemical functions.

The third point is the extension to protein design [93], which is
becoming a popular research subject. One of the main purposes of
protein design is to optimize the physicochemical characteristics of a
designed structure. Most current protein design methods rely on
physics-based force fields to search for low free-energy states.
Recently, Mitra er al [94] developed a method, EvoDesign, to design
ideal protein sequences for given scaffolds. At first, EvoDesign
collects a set of proteins with similar folds from the PDB data, by a
structural alignment with a query structure. Then, an evolutionary
profile is constructed from the MSA of the retrieved structures. This
profile is used for a conformational search in sequence space, where
the physicochemical packing of the side-chain and backbone atoms is
accommodated by neural-network-based solvation, torsion angle and
secondary structure predictions. However, this step does not consider
the functional similarity with the scaffold, but mainly focuses on the
foldability and goodness of the designs. Therefore, the retrieved
structures might not always have the identical or similar function to
that of the original scaffold. Evaluating the functional similarity by
evolutionary information-based approaches would contribute to
progress in protein design.
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