
 

  

 

 

 

 

 

 

 

 
 
 
 
 
 

Introduction 
 

The prediction of functional regions in a protein is an important 
research focus, and many methods have been developed for this 

purpose [ ]. One of the most effective strategies is the detection of 

evolutionarily important residues on the tertiary structure of a protein, 
by integrating the structural and evolutionary information encoded in 
a multiple sequence alignment (MSA) [2–9] (see a schematic image of 

the strategy in Figure ). The most popular and pioneering method 

based on the strategy is Evolutionary Trace (ET) [2], which uses a 
phylogenetic tree to rank the residues in a protein by their 
evolutionary importance and maps them on a closely related structure. 
The highly ranked residues are often clustered in space, and thus these 
clusters correspond to functionally important residues and are used to 

identify them. Many servers perform ET [ 0– 2] or similar methods 

[3,5,7, 3], and were developed by the original designers of ET [ 0] 

or other groups [3,5,7, – 3]. In this mini review, we will summarize 

the recent advances in the ET and ET-related methods (evolution and 
structure information-based methods) using structural and 
evolutionary information, including our work, over the past few years, 
and then discuss the remaining problems. First, we will summarize the 
various improvements of the measurements to evaluate the 
evolutionary information calculated from an MSA. We will 
subsequently introduce several improvements of functional region 
prediction by exploiting the structural information. We will finally 
introduce an important problem shared by the MSA-based  methods  

  
 
 
 
 
 

 
 

 

in structural bioinformatics, and the challenges to solve it. At the end 
of this review, we will explain the potential extensions of the 
structure- and evolution-based methods. The web servers of the 
introduced methods and their update statuses are summarized in 

Table . 

 
Recent advances 
 

One of the most widely used scores to consider evolutionary 
information is the residue conservation at a site in an MSA. The 
residue conservation reflects the evolutionary selection at functional 
sites to maintain protein function and to retain structural folds [6], 

regardless of the developed conservation score formulae [ 4]. 

Therefore, the discrimination between the functionally important 
residues and the structurally important ones is often difficult [6]. This 
problem has led to limitations of the methods to predict the 
functional regions using conservation scores. In order to distinguish 
between the residues conserved for functional reasons and those 
conserved for structural constraints, Chelliah et al. [6] developed 
Crescendo. This program calculates the conservation scores with an 

Environment-Specific Substitution Table (ESST) [ 5], which 

describes the patterns of substitutions in terms of the amino acid 
locations within secondary structure elements, as well as the solvent 
accessibility and the existence of hydrogen bonds between side chains 
and neighboring residues. Crescendo [6] predicts functional regions 
by identifying clusters of residues with unusually high evolutionary 
restraints. To this end, they identified the evolutionary restraint at a 

site, as follows: ) whether there is a high degree of evolutionary 

conservation than expected, 2) whether ESST makes weak predictions 
of the substitution patterns, and 3) whether there are residues within 
spatially conserved regions, when protein structures  within the  same  
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family are superimposed. Cheng et al. [ 6] also addressed a similar 

problem, and developed a method to predict the functional regions by 
distinguishing between functional constraints and structural 
constraints, but they adopted a different strategy to estimate the 
structural constraint. In order to obtain measurements of the 

structural constraints in a protein structure, they used Rosetta [ 7], 

which is a computational method to design a protein and calculate its 
free energy. They showed that combining these measures with 
sequence conservation improved the prediction of functional protein 
sites. 

Zhang et al. [ 8] developed CUBE-DB, which provides calculated 

conservation and specialization scores for residues in paralogous 
proteins. The advantage of their database is that the functional 
specificity at a site is calculated by considering two models of 
evolution after divergence, “heterotachy” and “homotachy”. The word 
heterotachy (for “different speed” in Greek) was applied by Lopez et 
al. [ 9] to refer to within-site rate variations throughout time in the 

field of molecular evolution. In contrast, homotachy (for “same 
speed” in Greek) refers to the state in which the evolutionary rate of a 
position is constant throughout time. Heterotachy was found among 
homologous sequences of distantly related organisms, often with 
different functions. In such cases, the functional constraints are likely 
to be distinct, which would explain the different distributions of 

variable sites. Zhang et al. [ 8] used heterotachy for referring to the 

evolutionary rate variations among homologous groups. A high score 
is calculated at a site where the residues are conserved in the reference 
group of orthologs, but they overlap poorly with the residue type 
choices in the paralogous groups (such positions are referred to as 
functional determinants). In contrast to the case of heterotachy, 
homotachy requires the conservation at a site within each paralogous 
group (referred to as functional discriminants). Residues with high 
scores are mapped on an evolutionarily related structure, if available, 
via Jmol [20], etc., and are summarized as a table (html or 
downloadable xlsx format). CUBE-DB presently covers only human 
proteins belonging to multi-member families. 

Figure 1. Procedure of the methods by integrating the structural and evolutionary information. 
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It is difficult to predict all of the types of functional regions by a 
single score, because each functional region has its own physico-
chemical properties. For example, protein interfaces are not simply 
discriminated from non-interface surfaces by the patches of conserved 

residues [2 ]. The most conserved patches of residues overlap in only 

37.5% of the actual protein interface, although the properties of the 
interface differ from those of the rest of the protein. Considering 
other types of scores seems to be essential, to improve the prediction 
accuracy. Engelen et al. [22] addressed this problem by integrating the 
conservation information and the specific physicochemical properties 
of the residues. They developed the Joint Evolutionary Trees (JET) 
method [22], to detect protein interfaces, the core residues involved in 
the folding process, and the residues susceptible to site-directed 
mutagenesis and relevant to molecular recognition. The performance 
of JET is better than those of the other state-of-the-art methods. 

Teppa et al. [23] compared the abilities of several methods (real-
valued ET [24], cumulative mutual information (MI) [25], proximity 
MI [25], evolutionary trace integer value [2], and the methods 
designed for the identification of SDPs (SDPfox and XDET) [26]) 
to identify catalytic residues in enzymes, in order to investigate the 
extents to which the predictive powers of the different methods 
overlap. The results revealed that the methods can be divided in three 
groups, with limited mutual overlaps. These groups consist of the 
methods in which the predictive signal is strongly correlated to the 
sequence conservation, those in which the predictive signal is derived 
from MI, and those developed for the prediction of specificity-
determining positions. Interestingly, the combined scores of the first 
and second groups (sequence conservation group and MI group) 
achieved the highest performance. These observations revealed that 
the sequence conservation and the MI scores are considered to be 
distinct signals encoded on the MSA, and produce a complementary 
effect. Therefore, their results demonstrated the possibility of 
detecting catalytic residues more accurately, by integrating structural 
and higher-order sequence evolutionary information. Thus, the 
integration of the conservation score with other types of scores 
represents a trend toward improving evolutionary information 
methods. In addition to the methods examined in Teppa’s work 
[2,24–26], Bray et al. [27] developed a functional site prediction tool, 
SitesIdentify, which is based on combining sequence conservation 
information with geometry-based cleft identification. This method 
functioned quite favorably in comparison to other methods, in the 

active site predictions for 237 non-redundant enzymes. As of st 

November, 20 3, the SitesIdentify server is not working at the URL 

described in the original paper [27]. 
 

The evolutionary scores calculated in an MSA used for functional 
region prediction are roughly divided into two types: the scores at a 
site and those between sites. The former type is the 
conservation/variation of amino acids at a site, while the latter one is 
the score of the degree of coevolutionary relationship between two or 
more sites. In our opinion, the performance comparisons by Teppa et 
al. [23], described in the previous section, only focused on the former 
point: the conservation/variation of amino acids at a site. Several 
methods, such as correlated mutation [28,29], MI [30–36], and 
covariation [37], have been developed to estimate the degree of the 
coevolutionary relationship between two sites among the sequences in 
an MSA. The methods in the former group are based on conserved 
residues in MSAs, but the methods in the latter group that detect 
coevolution between two sites are based on variable sites. 
Furthermore, it should be noted that invariable sites do not contain 

any information in the coevolutionary score. A high coevolutionary 
score is considered to indicate the spatial proximity or functional 
connectivity between the sites, even when the sites are not close in the 
primary structure of a protein. Therefore, these methods have been 
applied to detect not only intramolecular interactions [28–38] but 
also intermolecular interactions [39], regardless of direct or indirect 
interactions. Aguilar et al. [40] investigated how coevolution 
information can be used to improve the prediction methods for 
functional residues. They found that the clusters of co-evolving sites 
related to the catalytic sites of an enzyme have distinguishable 
topological properties in the residue-residue interaction network, and 
also observed that these clusters usually evolve independently. 
Interestingly, they suggested that the clustering of coevolving residues 
could be related to a fail-safe mechanism, which causes no harm or 
minimizes harm to other parts in a protein structure, in the case of a 

functional loss at a site. Kowarsch et al. [4 ] performed 

comprehensive analyses of point mutations causing human diseases, 

with respect to the correlated mutations. They showed that ) the 

correlated sites are significantly more likely to be disease-associated 
than expected, 2) these signals cannot be explained by the 
conservation patterns at each site, and 3) many correlations are not 
related to physical contacts between sites. However, Halperin et al. 
[42] highlighted the limitation of correlated mutation analyses, which 
might also be true for other coevolutionary relationship-based 
approaches. They showed that several correlated mutation methods 
achieve practical accuracy for intramolecular interaction prediction on 
their dataset, but the accuracy declines for intermolecular interaction 
prediction. Overall, they insisted that the examined methods are not 
suitable for large-scale intermolecular contact predictions. In other 
words, the current methods can only achieve practical accuracy for a 
handful of families. Therefore, the potential for the application of 
coevolutionary information to functional region prediction remains 
debatable. In addition, these methods have an important shortcoming 
that is considered to affect their predictive accuracies. One important 
problem stems from the fact that correlation in amino acid 
substitution may arise from direct as well as indirect interactions [43].  

The availability of many protein sequences enables the use of 
various statistical approaches to address this problem. Recently, 
discrimination between directly and indirectly correlated residues was 
achieved by the direct-coupling analysis (DCA) by Weigt et al. [43]. 
DCA combines covariance analysis with global inference analysis, 
adopted from use in statistical physics. A message-passing algorithm 
was used to implement DCA (mpDCA), but it was rather costly 
computationally because it is based on a slowly converging iterative 
scheme. Hence, the same group applied an algorithm based on the 

mean-field approximation of DCA (mfDCA), which is 03 to 04 

times faster than mpDCA, and thus can be used to analyze many long 
protein sequences rapidly [44]. In addition to the DCA-related 
methods, several groups addressed the discrimination between direct 
and indirect correlations [45–50]. These methods were primarily 
applied to identify constraints to fold a protein tertiary structure [44–
49]. However, Weigt et al. [43] applied their method to identify 

constraints to maintain a protein-protein interaction [43,5 ].  

In addition, one of the recent advances in coevolution-based 
approaches is the development of MISTIC [52], by which a user can 
visualize the connectivity among coevolving sites as a circular 
representation of an MI network and their MIs interactively. Even 
when the initial result is too complicated to understand, other scores 
(cumulative MI [25], conservation, proximity MI [25] etc.) can be 
considered simultaneously at both the nodes and edges, to highlight 
the information encoded within an MSA. Such a visualization tool 
clarifies the intricate evolutionary connections among sites. 
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Almost all annotations assigned to protein sequences rely 
primarily on the computational identification of similarity between 
the protein sequences with unknown and known functions, which are 
identified by BLAST [53] and other programs. Annotations are often 
misleading when the sequence similarities between the queries and the 
retrieved sequences are low. In these cases, the global structural 
similarity between a protein of unknown function and one with a 
known function is utilized [54–62]. Even when this approach fails, 
further functional information might be obtained by using local 
structural similarities [63,64]. For example, surface patches or clefts 
[65–73], or tertiary templates of small numbers of functional residues 

[65,74–8 ] are used as 3D templates to infer protein functions, 

through the identification of the corresponding key functional 
residues and their geometries on other structures. Such 3D templates 
may identify functional analogs without detectable homology that 
convergently perform the same function. Various characteristics of 
local structures have been used as queries to identify local structural 
similarity in distantly related- or non-homologous structures. These 
functional region predictions by local structural matches are often 
complementary to methods by global structural or sequence-based 
matches, when global structural or sequence-based methods do not 
provide detailed information about a protein of unknown function. In 
our opinion, however, evolutionary information has not been fully 
exploited for the detection of functional similarity among non-
homologous structures. 

Recently, Kristensen et al. [82] applied evolutionary information 
to develop the Evolutionary Trace Annotation (ETA) pipeline, which 
in principle can be applied to detect functional similarity among non-
homologous structures. The basic idea of the ETA-based function 
annotation [82] is described as follows. A schematic image of the 
method  is  available  at  http://mammoth.bcm.tmc.edu/eta/manual. 
html. At first, a few key functional residues are clustered into 3D 
templates, and local structures similar to them are searched for in 
other protein structures. Secondly, when the 3D template is matched 
in the structure of a protein, the function of the structure in the found 
protein is transferred to the query structure. In order to increase the 
sensitivity of the functional annotation [83], the proteins identified by 
ETA are linked together into a network of ETA similarities; then, 
starting from proteins with known functions, competing functional 
labels diffuse link-by-link over the entire network. A likelihood z-
score for every function is assigned to every node. The function 
corresponding to the most significant score is adopted at each node, 
as its annotation, for example, by referring to the Enzyme 
Commission (EC) numbers of the retrieved structures. In high 
throughput controls, this competitive diffusion process recovered 
enzyme activity annotations with 99% and 97% accuracies at half-
coverage for the third and fourth levels of the EC number, 
respectively, although currently these predictions have only been 
evaluated for homologs. These accuracies corresponded to false 
positive rates 4-fold lower than that of the nearest-neighbor method 
and 5-fold lower than that of the sequence-based annotations. 
 

The selection of homologous sequences is a critical step in the 
prediction of functional regions by using the conservation score, 
because conserved residues are identified through comparisons of 
homologous sequences [84]. The same is true for the other 
evolutionary information-based methods described above. We 
empirically know that a certain degree of sequence divergence in the 
set of homologous sequences is essential for the identification of 

conserved residues. However, the selection of an appropriate 
homologous sequence to calculate residue conservation has not been 
sufficiently addressed. Aloy et al. [8] developed an automatic method 
to predict the functional regions of a protein, by detecting conserved 
residue clusters on the tertiary structure. If no cluster is identified, 
then the MSA is reconstructed by removing the distant homologues 
to the prediction target, according to the evolutionary relationships 
suggested by a phylogenetic tree. The process is iterated until at least 
one cluster is identified. In other words, the iteration process is 
forcibly terminated, even if more appropriate conditions are present 
within the untested sequence space. Mihalek et al. [85,86] applied a 
residue clustering measure, which was originally developed as a 
formula for the identification of conserved residue clusters, to indicate 
the appropriateness of a set of sequences for functional region 
predictions [85,86]. The measure quantifies the degree of clustering 
of the evolutionarily important residues in the tertiary structure of a 
protein, and attaches greater importance to the clustering of the 
residues that are far from each other on the primary structure. The 
sequence set selected by their measure performed better in their 
functional region prediction by the real valued ET-based method 
[87]. They showed that the performance of their method for protein-
protein interaction interfaces was lower than that for active sites. 
Recently, we addressed a similar problem by a different approach, and 
developed the Functional REgion Prediction by using Spatial 
statistics (FREPS) method [84]. FREPS implements an index, 
DSPAC (the Degree of Spatial AutoCorrelation), to measure the 
appropriateness of a set of homologous sequences [84]. Structure and 
sequence information are integrated by spatial statistics within the 
index, which represents the degree of conserved residue clustering on 
the tertiary structure of the protein. The functional region prediction 
performance, using the set of sequences selected by DSPAC, was 
better than that obtained using the set selected under the fixed percent 
sequence identity-conditions. In addition, DSPAC successfully 
distinguished the sequence set including only C-type lysozyme from 
that including both C-type lysozyme and its non-enzyme homologue, 

α-lactalbumin. Similar to the residue clustering measure [85,86], 
however, the performance of DSPAC for protein-protein interaction 
interfaces was lower than that for active sites, although the details 
have not been published yet. In order to assess various types of 
functional regions, DSPAC [84] and residue clustering measures 
[85,86] should be improved. 

 
Future directions 

 
We would like to conclude by describing three possible extensions 

of the methods using structure and evolutionary information. The 
first is the extension to identify the functional differences of closely 
related proteins. In considerable numbers of protein families, a 
subfamily develops a new function, changes substrate specificity, or 
loses an original function. These family members can be categorized 
into several subfamilies, for investigations of their functions. Several 
databases and methods have been developed. For example, the 
FunShift database [88] is a collection of such functionally changed 
subfamilies (function shift) in a Pfam [89] protein family, identified 
by using Conservation Shifting Sites and Rate Shifting Sites. It is 
useful for protein design and mutagenesis studies, although FunShift 
has not been updated since 2004. PANTHER [90] also provides 
similar information curated by experts. Recently, Lee et al. developed 

GeMMA [9 ], which automatically classifies families and 

superfamilies into functional subfamilies, and is comparable to the 
established method SCI-PHY [92]. The common feature of these 
methods and databases is that they do not consider structural 
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information, which might limit their predictive accuracies. As 
described above and in our previous work [84], DSPAC was able to 
distinguish the sequence set including only the proteins with identical 
functional structures, from that including both the proteins with 
identical functions and those with different functions. Theoretically, 
the same is expected to be true for the residue clustering measure 
[85,86]. In addition, the ETA-based search [82] could be extended to 
identify the functional differences by considering the local structural 
differences between a 3D template and a matched one. These 
measures might improve the predictive accuracy to identify the 
functional differences of closely related proteins. 

The second point is the extension to the template selection in 
homology modeling, by the application of evolutionary information. 
See details in our previous work [84]. Homology modeling is 
frequently utilized for a sequence without a solved crystal structure. 
Thus, the main purpose of the modeling is to investigate the 
molecular function. It would be better to use the structure of a 
protein with a function considered to be the same as or similar to the 
sequence under consideration as a template, although a model based 
even on a template with different functions can provide important 
information. However, the template structures retrieved by fold 
recognition programs do not always have the identical or similar 
function to those of the target sequence, because such programs do 
not directly evaluate the functional similarity between the target and a 
retrieved structure. Here, we consider the inverse problem. Suppose 
that we have a structure. The problem is to determine which 
homologous sequences can be modeled, using the given structure as 
the template. Fold recognition programs may not provide an answer 
to the problem, since the functional similarity to the structure-known 
protein is not considered in these programs. Considering the 
functional differences by an ETA-based strategy [82], residue 
clustering measures [85,86] or DSPAC [84] can be used to solve the 
problem, since these can be extended to identify the set of sequences 
that shares the same or similar biochemical functions. 

The third point is the extension to protein design [93], which is 
becoming a popular research subject. One of the main purposes of 
protein design is to optimize the physicochemical characteristics of a 
designed structure. Most current protein design methods rely on 
physics-based force fields to search for low free-energy states. 
Recently, Mitra et al. [94] developed a method, EvoDesign, to design 
ideal protein sequences for given scaffolds. At first, EvoDesign 
collects a set of proteins with similar folds from the PDB data, by a 
structural alignment with a query structure. Then, an evolutionary 
profile is constructed from the MSA of the retrieved structures. This 
profile is used for a conformational search in sequence space, where 
the physicochemical packing of the side-chain and backbone atoms is 
accommodated by neural-network-based solvation, torsion angle and 
secondary structure predictions. However, this step does not consider 
the functional similarity with the scaffold, but mainly focuses on the 
foldability and goodness of the designs. Therefore, the retrieved 
structures might not always have the identical or similar function to 
that of the original scaffold. Evaluating the functional similarity by 
evolutionary information-based approaches would contribute to 
progress in protein design. 
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