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Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic 
science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the spe-
cific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological 
changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this 
field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly 
from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. 
Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several 
points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and 
reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
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Introduction

Acute kidney injury (AKI) is an important challenge that 
negatively impacts patient survival in an intensive care unit 
(ICU). Although there was a 9% decline in the in-hospital 
mortality rate among patients treated with renal replacement 
therapy in the ICU from 2007 (44.9%) to 2016 (36.1%) in 
Japan, the mortality rate of sepsis patients remains high at 
> 50% [1]. Moreover, translational research for AKI has 
not yet been successful, and no specific treatment has been 
established in the clinical setting. The search result for 
the keywords “acute, kidney, injury, and rats” in PubMed 
showed over 6000 scientific articles, and “mice” instead of 
“rats” provides an additional above 3800 papers (June 2020). 
Sepsis is a major cause of AKI; however, when the term 
“sepsis” was added to either search, it decreased the results 
to < 270 (< 5%) and < 400 (< 11%), respectively. These 

numbers (rats + mice) account for about only 1% of all AKI 
publications. Septic AKI can lead to mortality in patients in 
the intensive care; therefore, this topic is relevant and should 
focus on more basic research. Septic AKI involves an infec-
tion that critically influences the development of AKI as 
compared to the other types of AKI. Thus, this review aimed 
to distinguish septic AKI from other types of AKI, discuss 
the basic scientific outcomes based on functional changes 
(Fig. 1), and introduce potential novel treatments.

Reduction in the glomerular filtration rate 
(GFR)

Glomerular hemodynamics

Changes in the GFR, from the viewpoint of hemodynamic 
change, are currently investigated on relatively big animals, 
such as dogs and sheep, because it is easier to create ICU-
like experimental settings for these animals as compared 
to that for smaller animals, such as rodents, and to perform 
continuous inulin/inulin-like compound-used clearance 
analyses. The former may be essential for the replication of 
a hyperdynamic state-like human septic AKI [2]. Changes 
in the cardiac output were accompanied by changes in the 
renal blood flow in septic animals [3]. Thus, animals in the 

This article was presented as the Oshima Award memorial lecture 
at the 62nd annual meeting of the Japanese Society of Nephrology, 
held at Nagoya, Japan in 2019.

 * Daisuke Nakano 
 dnakano@med.kagawa-u.ac.jp

1 Department of Pharmacology, Faculty of Medicine, Kagawa 
University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, 
Japan

http://orcid.org/0000-0002-7435-8465
http://crossmark.crossref.org/dialog/?doi=10.1007/s10157-020-01951-3&domain=pdf


1092 Clinical and Experimental Nephrology (2020) 24:1091–1102

1 3

hyperdynamic states typically show increased renal blood 
flow despite reduced renal function in septic AKI. One 
hypothesis for decline in GFR under conditions of increased 
renal blood flow is the gain in the ratio of the efferent-to-
afferent arteriole diameter under efferent vasodilation that 
increases plasma flow to the peritubular capillaries. The 
vasoconstrictors that showed higher affinity for the efferent 
arterioles, such as angiotensin II, might prevent AKI in the 
animals; thus, this is an area of focus in human AKI research 
[4, 5]. It is noteworthy that angiotensin II infusions initiated 
at 2 h after Escherichia coli infusions ameliorated both olig-
uria and serum creatinine levels, despite reduced renal blood 
flow in sheep [6]. Studies on sheep or pigs also reported that 
angiotensin II did not worsen the ATP level [7], medullary 
hypoxia [8], and mitochondrial respiration [9] during sepsis, 
suggesting that the vasoconstrictive effects of angiotensin 
II on the efferent arteriole might not induce reductions in 
blood supply to the peritubular capillaries. In a rodent sepsis 
model, lipopolysaccharides (LPS), an endotoxin, introduced 
at a dosage designed to induce AKI, constricted the afferent 
arteriole and decreased the ratio of the efferent-to-afferent 
arteriole diameter [10], thereby reducing the GFR.

Changes in glomerular cells

In addition to the afferent/efferent arteriole-dependent intra-
glomerular pressure changes, Xu et al. [11] reported that 

endotoxemia caused ultrastructural alterations in the glo-
merular endothelium. The endothelial surface layer (ESL), 
also called the glycocalyx, is a barrier composed of nega-
tively charged proteoglycans and glycoproteins. The ESL 
covers the endothelial fenestrae and limits the proteins from 
permeating the fenestrae; however, breakdown of this layer 
promotes permeability and allows access to even relatively 
large proteins, such as albumin [12]. Xu et al. [11] reported 
that endotoxemia produced TNF-α that degraded the ESL 
in the glomerular endothelium that was consistent with the 
observations reported in the vasculature of other organs [13]. 
Furthermore, LPS/TNF-α induced glomerular endothelial 
swelling and fenestrae density reduction at 24 h. Although 
an increase in albumin filtration increases colloidal osmotic 
pressure elevation in the Bowman’s capsule, the “benefit” 
of the GFR might be imperceptible owing to the fenestrae 
alteration that occurs during endotoxemia. The physiologi-
cal turnover rate of the ESL components was approximately 
5 days [14]; thus, the alterations in the glomerular endothe-
lium were expected to be reversible after the end of the 
cytokine storm.

Prerenal cause

The prerenal causes of GFR reduction were often resolved 
by fluid and vasopressor treatment although this might 
not be the case if sepsis increased the systemic vascular 
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permeability. The optimization of fluid resuscitation for 
sepsis or septic AKI in clinical studies has been debated in 
multiple review articles [15–19]. However, few studies have 
compared the efficacy of fluid use in septic AKI in basic 
studies [20–24]. Most interventional studies against septic 
AKI, especially those performed on rodents did not reflect 
a clinical setting because a small animal ICU setting is dif-
ficult to create/maintain.

Reduction of tubular flow rate

AKI could occur with oliguria and without a rise in the 
serum creatinine level. The unresponsiveness of serum cre-
atinine could result from the dilution of creatinine by fluids 
[25, 26] or via reduced production of creatinine during sepsis 
[27]. However, the underlying mechanism of development 
of oliguria in spite of the maintenance of renal circulation 
with fluid resuscitation and additional vasoactive agents was 
unknown until recently. We addressed this question using 
intravital imaging combined with multiphoton microscopy 
to find that that the filtrate flow rate had reduced in the proxi-
mal tubules, while the GFR was maintained at a normal level 
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Fig. 2  Time-lapse imaging after an intravenous bolus injection 
of Lucifer yellow, a fluorophore that is freely filtered from the glo-
meruli. Lucifer yellow was injected into a mouse that had received 
saline or LPS at either 6 or 24 h earlier. Green fluorescence at 0 s in 
the image is autofluorescence derived from proximal tubules. Distal 
nephron (indicated by yellow arrows) does not produce detectable 
green autofluorescence. a Several proximal tubules showed Lucifer 
yellow in the lumen within 20 s after injection. Lucifer yellow flowed 
into some distal nephrons at 30  s. At 180  s, Lucifer yellow flowed 
out from some distal nephrons. b Atto 565-conjugated LPS (red) 
was injected in the mouse used in these images. Atto565-LPS accu-
mulated in a part of the proximal tubules, presumably at the S2 seg-
ment. Several proximal tubules showed Lucifer yellow in the lumen 
within 20  s after injection in the mice 6  h after LPS injection. The 
inflow rates of Lucifer yellow into these proximal tubules were simi-
lar to that in healthy control mice, indicating preserved GFR in these 
nephrons. At 50 s after injection, Lucifer yellow-derived fluorescence 

was detected in the proximal tubules that took up LPS (red), but not 
in distal nephron in the imaging window. Lucifer yellow was detected 
in the distal tubular lumen at 180 s after the injection. c Atto 565-con-
jugated albumin (red) was injected in the mouse used in these images. 
The Atto 565-albumin was detected in the peritubular capillaries and 
glomerulus (white asterisk). At 33 s after following the Lucifer yel-
low injection 24 h after LPS injection, Lucifer yellow was detected in 
the Bowman’s space of glomerulus, some proximal tubular lumens, 
and peritubular capillaries. The slower appearance of Lucifer yel-
low and more flow into the peritubular capillary, compared to higher 
images, suggest poor hemodynamics, including GFR reduction. Male 
C57/BL6J mice were purchased from CLEA (Tokyo, Japan) and 
housed in our colony until they were of proper age (> 55 week-old) 
for the induction of AKI consistently. The detailed intravital imag-
ing setting, including microscopy setting, has been described previ-
ously [29, 31, 107]. PT proximal tubules, DCT/CD distal convoluted 
tubules, and cortical collecting duct
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(Figs. 2 and 3) because of the paracellular leakage of the 
tubular fluid into the interstitium in rats and mice in the LPS 
model. The LPS bound to TLR4 in the proximal tubules and 
subsequent signaling disrupted the tight junctions among 
the proximal tubular cells, resulting in paracellular leakage 
[28, 29]. The following experiments revealed that leakage at 
the proximal tubules affected recovery from oliguria when 
renal circulation was maintained with fluid resuscitation 
[29]. The GFR was restored through fluid resuscitation; 
however, tubular flow did not reach the bladder because of 
leakage at the proximal tubules (Fig. 1). Mechanistically, 
LPS/TLR4 stimulated p38 MAP kinase (transiently; < 6 h) 
and NF-κB (relatively continuously; until 24 h), disrupting 
the localization of ZO-1 and claudin 2 and reducing occludin 
expression [29]. Intravenously injected LPS conjugated with 
fluorophore first (− 20 min) was bound to S1 segments of 
the proximal tubules [30, 31]; thereafter, it was distributed 
to both the S1 and S2 segments overtime (1 h) [31]. In a later 
phase (6, 24, or 48 h), the distribution of the LPS showed 
heterogeneity; some proximal tubules accumulated LPS, 
and the others exhibited mild accumulation. However, the 
cause of heterogeneity remains unclear. These tubules with 
considerable accumulation of LPS might be downstream S2 
segment tubules; however, until now, there was no definitive 

examination for this speculation. Some tubules highly accu-
mulated LPS, while others showed a reduction in the tubular 
flow rate or cell swelling [31], resulting in tubular occlu-
sion and halted tubular flow. Continuous intravenous fluid 
infusion occasionally reopened the occluded tubular lumen 
that was accompanied by the delivery of tubular fluid to 
the lumen of the distal nephron, indicating recovery of the 
tubular flow [31]. Hato et al. [32] reported with elegant fluo-
rescence lifetime microscopy that LPS changes the nucleo-
tide metabolism in the S2 segments of the proximal tubules 
with increased reactive oxygen species production that was 
possibly induced by LPS binding to the S1 segment. It is 
noteworthy that fluorescence lifetime image analysis showed 
that LPS decreased the metabolic heterogeneity between S1 
and S2, albeit with heterogeneity in the tubular flow rate.

Microcirculation failure

The renal capillary network was often destroyed during 
non-septic AKI [33], and angiogenesis was indispensable 
for efficient tubular recovery [34, 35]. In septic AKI, micro-
circulation failure, rather than histological capillary destruc-
tion, caused changes in the oxygen supply to the tubules. 

Fig. 3  Representative multiphoton unlabeled images of the murine 
kidney (720-nm excitation laser wavelength) in each stage of septic 
AKI in the mice aged > 55  week. The left image is from a healthy 
control mouse. The lower images were enlarged images of the ens-
quared part in each upper image. The tubular lumen is visible as a 
dark lumen in each “blue” tubule. The blue color was derived from 
the autofluorescence of the tubules. There are some bright spots con-
taining strong green fluorescence in the image in the middle; these 
could be derived from the non-degradable metabolites in the aged 
tubules (the mouse was 57-week-old). The middle is from a mouse 
that received LPS (5 mg/kg) 6 h before image acquisition. The tubu-

lar lumen is visible, while the tubular flow rate is slowed (see images 
in Fig.  2b). The single nephron GFR in the mouse was at similar 
levels as those in LPS-untreated normal mice that were evaluated 
based on how quickly the Lucifer yellow dye flowed into the first seg-
ments of the proximal tubules. The right image is from a mouse that 
received LPS (5  mg/kg) 24  h before image acquisition. The mouse 
showed reduced GFR, and the tubular lumen was almost occluded in 
the image. Male C57/BL6J mice were purchased from CLEA (Tokyo, 
Japan) and housed in our colony until they were of proper age 
(> 55 week-old). The detailed intravital imaging setting is described 
in our previous publication [29, 31, 107]
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Rodent septic AKI models elicited heterogeneity of the red 
blood cells (RBCs) in each capillary, irrespective of the total 
renal perfusion or GFR [22, 31, 36]. The microcirculation 
failure in each capillary could be intermittent or could last 
for > 10 s [36]. There appeared to be several causes for RBC 
flow cessation, such as clotting, leukocyte attachment [31], 
and neutrophil extracellular entrapment (Fig. 4). The capil-
lary occlusion or cessation of the RBC flow-induced reactive 
nitrogen species production and mitochondrial membrane 
potential reduction in the adjacent tubules of the endotox-
emic rodents [31, 36]. Intravital imaging of the multipho-
ton laser microscopy carefully analyzed the co-localization 
between the microcirculation failure of the peritubular cap-
illaries and LPS-accumulated “leaking” in the proximal 
tubules; however, the occurrence in the capillary network 
was random [31].

Histopathological changes

As noted above, AKI is currently diagnosed via the GFR or 
urine output, and it is important to ensure patient survival 
during the acute phase. The pathological features of AKI dif-
fered, depending on the AKI cause. Renal ischemia/reperfu-
sion injury that is widely employed as an AKI model induces 
dramatic changes in the renal histology. Conditions related 
to renal ischemia/reperfusion injury include acute tubular 
necrosis, cell sloughing, cast formation, perivascular inflam-
mation [37], capillary rarefaction [35], tertiary lymphoid tis-
sue formation [38], tubular ferroptosis [39], and intrarenal 
denervation [40]. However, these pathological features were 
not always observed in septic AKI, wherein only modest 

histological changes in the kidneys were observed in human 
sepsis and animal models of sepsis [41, 42].

Therapeutic candidates against septic AKI

Standard supportive treatments, such as fluids and vasocon-
strictors, are used to restore the GFR; however, they do not 
address the changes in the tubules in the septic AKI cases. In 
addition, there are concerns surrounding fluid resuscitation 
[43–47]. Therapies that specifically target the reduction in 
the GFR/tubular flow rate and tubular injury in AKI do not 
currently exist in clinical settings, although several basic 
research papers have reported on their efficacy. The prob-
lems regarding this failed translation include physical bar-
riers in the laboratory that are not discussed in this review 
[48]. Instead, this review evaluates several candidate treat-
ments that target relatively multiple factors.

Ischemic preconditioning

Ischemic preconditioning is a possible strategy against 
perioperative end-organ damage, including AKI. Repeated 
short-time hypoxic/ischemic stress to the kidney has caused 
a tolerance to AKI in multiple experimental models, includ-
ing sepsis [49–51], ischemia/reperfusion [52–54], and cis-
platin models [55] in rodents. This method did not always 
work for large animals, such as dogs [56] and pigs [57–59]. 
Remote ischemic preconditioning involves repeated occlu-
sion of the limbs and might be applicable to both, basic and 
clinical studies. However, the effect was inconsistent; for 
example, it showed beneficial effects on sepsis in mice [60] 
and sheep [61], but not on ischemia/reperfusion in mice [62] 
and pigs [63]. Moreover, the causes of AKI did not appear to 
affect the results. Remote ischemic preconditioning before 
LPS injection did not ameliorate decreases in blood pres-
sure, systemic cytokine storms, or the urinary concentra-
tion of the tissue inhibitor of metalloproteinases-2*insulin-
like growth factor-binding protein-7 in a single-center RCT 
[64]. Conversely, remote ischemic preconditioning before 
the induction of anesthesia safely improved the long-term 
kidney function after living-donor renal transplantation in a 
double-blind RCT [65].

Endotoxin preconditioning

Endotoxin preconditioning involves the injection of a single 
low-dose endotoxin, including LPS, to protect the organs 
from subsequent events. Experiments on pigs have reported 
that endotoxin preconditioning suppressed the systemic 
oxygen demand despite unchanged global hemodynam-
ics in response to the Salmonella abortus equi endotoxin 
[66]. Although the precise mechanism is yet to be clarified, 

Fig. 4  A 3D image of the neutrophil extracellular entrapped in the 
live kidney of a mouse that received LPS 10  min before capturing. 
Green represents released/dead cell DNA (Sytox green), and magenta 
represents the autofluorescence of the tubules. Saturated Sytox green 
fluorescence changes to yellow in the nuclei. Male C57/BL6J mice 
were purchased from CLEA (Tokyo, Japan) and housed in our col-
ony until they were of proper age (12 week of age). The image was 
acquired as previously described [114, 115]
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studies on mice have demonstrated that the macrophages 
were the key cell type required to induce the anti-inflamma-
tory phenotype [67]. Moreover, the protection of the kidneys 
involved inducing macrophage clustering around the Bow-
man’s capsule and the S1 segment of the proximal tubules 
following LPS administration in mice [62]. The beneficial 
effects of the endotoxin preconditioning largely relied on 
changes in the macrophage primarily focused on the anti-
inflammatory phenotype; therefore, it has been reported that 
endotoxin preconditioning prevents organ damage associ-
ated with inflammation in several organs, such as ischemia-
induced neuronal damage [68, 69] and pancreatic damage 
[70]. However, owing to the modification effects of immune 
cell function, there are reports of deteriorating disease con-
ditions during sepsis [71] and lupus nephritis [72]. Chen 
et al. [71] demonstrated that super-low-dose LPS (ng order 
per kg body weight) exacerbated bacteremia and mortal-
ity and reduced neutrophil extracellular trap formation after 
cecum ligation and puncture in mice. Moreover, low-dose 
LPS (μg order per kg body weight) improved bacteremia 
and mortality rate and induced the neutrophil extracellular 
trap. Currently, no human studies have examined the effects 
of endotoxin preconditioning on sepsis/AKI because there 
are multiple concerns and steps that need to be overcome in 
basic research before clinical application. For example, the 
LPS dosage used for the human studies was 1–2 ng/kg that 
was considered a “super-low” priming dosage. The fact that 
a rodents’ response to LPS was much weaker than that of a 
human further complicates this issue. Another problem was 
the influence of risk factors on the protective effects, given 
that most studies have used young animals, and an older 
immune response could be different [73]. For instance, a 
comparison between a 2-month-old and a 12-month-old ICR 
mice showed that the beneficial effects of endotoxin precon-
ditioning were weaker in the older mice [74].

Cholinergic anti‑inflammatory pathway stimulation

Metz et al. developed a concept that has been termed the 
cholinergic anti-inflammatory pathway [75], mediated in a 
β2 adrenergic/α7 nicotinic acetylcholine receptor-dependent 
manner in the spleen [76, 77]. Several strategies have been 
used to stimulate the cholinergic anti-inflammatory pathway 
[78–83]. Although the precise neuronal network responsi-
ble for each stimulation remains debated, there are multi-
ple neuronal networks capable of inducing the cholinergic 
anti-inflammatory pathway, such as the central C1 neurons 
[82], the peripheral vagus [81, 83, 84], the sympathetic [85], 
and the sciatic nerves [86]. Nicotine was administered for 
reno-protection; it stimulated this pathway and protected 
the kidneys from ischemia/reperfusion injury in mice [87]; 
however, this treatment could worsen the survival rate dur-
ing sepsis owing to the suppression of the host defenses [84, 

88–90]. Nicotine administration was considered too risky 
for humans. Several methods were alternatively proposed to 
stimulate the cholinergic anti-inflammatory pathway. First, 
electrical vagus nerve stimulation could be performed via a 
portable device that has already been developed and is await-
ing clinical application. The efficacy of vagus nerve stimu-
lation on experimental AKI has been confirmed using the 
ischemia/reperfusion [81] and cisplatin [91] models. Either 
afferent or efferent nervous stimulation attenuated AKI via 
which both nerves were involved in the splenic α7 nicotinic 
acetylcholine receptor-dependent pathway (although afferent 
seemed to induce protection partially through an unknown 
pathway). Second, noninvasive ultrasound exposure report-
edly stimulates the peripheral neurons and induces the 
cholinergic anti-inflammatory pathway. The features of the 
ultrasonography examination could be used for application 
to the targeted organ at a variable strength [92]. Splenic 
ultrasonography modulation suppressed LPS-induced reduc-
tion of noradrenaline and acetylcholine and cytokine produc-
tion expression in the spleen [92] and attenuated AKI in the 
cecum ligation and puncture [79] and ischemia/reperfusion 
[83] models. Third, electroacupuncture could be another 
tool to stimulate this pathway. Electroacupuncture at ST36 
acupoint, known as Zusanli, induced anti-inflammatory 
responses [86] and protected the kidneys in septic models 
[93, 94]. This protection was attenuated by treatment with 
reserpine [86, 93], D1 receptor antagonist [86], α7nAChR 
antagonists [95–98], vagotomy [95, 99], and adrenalectomy 
[93], but not splenectomy [86]. Therefore, electroacupunc-
ture appeared to induce this protection via the cholinergic 
and adrenergic pathways.

Atrial natriuretic peptide

Atrial natriuretic peptide (ANP) is secreted from the 
atrium following reduced cardiac function. Endogenous 
ANP secretion is increased during human septic shock 
[100] and in the ovine hyperdynamic endotoxin model 
[101]. Its recombinant peptide at a low dosage was used 
against AKI, based on empirical observations. However, 
this effect has not been confirmed with strong evidence 
from multicenter, high-quality, large-sample RCTs [102]. 
In rodents, ANP suppressed renal ischemia-/reperfusion-
induced [103–106] and LPS model injuries [107]. We 
employed a suppressor dosage of ANP combined with 
fluid resuscitation in the LPS model of rats and demon-
strated that a 2-h treatment with ANP during the early 
phase (2–4  h after LPS) improved urine f low, GFR, 
tubular flow leakage, and survival rate [107]; however, 
the efficacy considerably lowered with treatment in a 
relatively later phase (18–20 h after LPS). This study 
also revealed that, in fluid-administered mice, endog-
enously secreted ANP stimulated its receptor GCA in the 
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endothelial cells and prevented vascular permeability 
gain and GFR reduction after LPS; further, exogenously 
administered ANP stimulated GCA in the proximal tubu-
lar cells and prevented LPS-induced tubular leakage. The 
limitations in basic research involved the use of young 
rodents and the sole purpose of the LPS model. ANP (the 
human recombinant type used in LPS study) is already 
approved and has been used for acute heart failure treat-
ment in Japan for the previous 25 years.

Meditation, exposure to cold, and breathing 
techniques

Pickkers et al. performed several studies using the endo-
toxin challenge in humans [108–111] and demonstrated 
that a training program, composed of meditation, cold 
exposure, and special breathing, increased adrenaline/
noradrenaline in the plasma and created a tolerance 
against experimental endotoxemia [110]. These data 
reported the sympathetic nervous system (plasma adrena-
line and noradrenaline) stimulation, increased leukocytes 
in the plasma, acute respiratory alkalosis (normalized 
immediately after cessation of the special breathing), rel-
atively high lactate, and decreases in oxygen saturation in 
the trained individuals following LPS administration. The 
limitation of this method is that the training protocol is 
too difficult for subjects with AKI risk factors. From the 
article [110], the following are the examples of this diffi-
culty: “standing in the snow barefoot for up to 30 min and 
lying bare-chested in the snow for 20 min; daily dipping/
swimming in ice-cold water (0–1 °C) for several minutes 
(including complete submersions); and hiking up a snowy 
mountain (elevation: 1590 m) bare-chested, wearing noth-
ing but shorts and shoes at temperatures ranging from − 5 
to − 12 °C (wind chill: − 12 to − 27 °C)” [110].

The current limitations of these therapeutic candidates 
are summarized in Table 1.

Conclusion and message

Septic AKI is associated with considerable hospital-based 
mortality; once a novel treatment method has been devel-
oped, it could save thousands of lives. Recent develop-
ments using artificial intelligence have enabled the predic-
tion of “new” antibiotics [112]. However, this might not 
be the case for AKI because there is lack of knowledge for 
the formation of a specific drug/chemical structure to train 
artificial intelligence, necessitating further basic research. 
For future basic studies to fight against septic AKI, the 
following three points should be considered in the study 
design.

As much as possible, studies to find the pathogenesis/
molecular mechanism should additionally examine the 
effect of factors existing in the clinical setting. Young 
rodent tests might show different results than older mice. 
Use of rodents might benefit the modification of genes 
(and are less expensive); however, the hemodynamic 
pattern does not reflect the clinical contribution of the 
target molecule that might be less or more when in actual 
clinical use. Septic patients are usually under antibiotic 
therapy and fluid administration [113], and this might 
mask the pathogenesis/molecular targets.
Intervention studies must confirm either mortality rate 
or CKD development because these are the objectives 
of the therapy. Attenuating the injury only at one time 
point does not guarantee that the treatment could prevent 
patient mortality.
As far as possible, intervention studies should reflect the 
clinical setting. Anti-immune therapy might suppress host 
defenses. Thus, even if it works against sterile inflamma-
tion, it might worsen bacteremia and increase mortality.
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Table 1  Limitations of each 
therapeutic candidate for human 
application

Limitations

Ischemic preconditioning Efficacy differs by cause of AKI or among species
Endotoxin preconditioning The optimum dosage window for the endotoxin must be used; if the 

dosage is too low, it induces priming and may further deteriorate 
sepsis

Aging may weaken the efficacy
Cholinergic anti-inflammatory 

pathway stimulation
Efficacy of the post-AKI treatment has not yet been examined
Aging may weaken the efficacy

ANP Must be subdepressor dosage
Lack of evidence from sepsis model

Cold exposure The training program is too rigorous
Lacks efficacy with sepsis and not an LPS model
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