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ABSTRACT: Chronic kidney disease (CKD) is the end point of a number of
systemic chronic diseases. The prevalence of CKD is increasing worldwide
and recent epidemiological studies are showing the high prevalence of renal
failure in CKD patients using complementary and alternative medicines
(CAMs). Clinicians believe that biochemical profiles of CKD patients using
CAM (referred here to as CAM-CKD) may be different compared to those
on standard clinical treatment and should be managed differently. The present
study aims to explore the potential of the NMR-based metabolomics
approach to reveal the serum metabolic disparity between CKD and CAM-
CKD patients with respect to normal control (NC) subjects and if the
differential metabolic patterns can provide rationale for the efficacy and safety
of standard and/or alternative therapies. Serum samples were obtained from
30 CKD patients, 43 CAM-CKD patients, and 47 NC subjects. The
quantitative serum metabolic profiles were measured using 1D 1H CPMG
NMR experiments performed at 800 MHz NMR spectrometer. The serum metabolic profiles were compared using various
multivariate statistical analysis tools available on MetaboAnalyst (freely available web-based software) such as partial least-squares
discriminant analysis (PLS-DA) and random forest (a machine learning) classification method. The discriminatory metabolites were
identified based on variable importance in projection (VIP) statistics and further evaluated for statistical significance (i.e., p < 0.05)
using either Student t-test or ANOVA statistics. PLS-DA models were capable of clustering CKD and CAM-CKD with considerably
high values of Q2 and R2. Compared to CAM-CKD patients, the sera of CKD patients were characterized by (a) elevated levels of
urea, creatinine, citrate, glucose, glycerol, and phenylalanine and phenylalanine-to-tyrosine ratio (PTR) and (b) decreased levels of
various amino acids (such leucine, isoleucine, valine, and alanine), high-density lipoproteins, lactate, and acetate. These changes
suggested that CKD patients manifest severe oxidative stress, hyperglycemia (with dampened glycolysis), increased protein energy
wasting, and reduced lipid/membrane metabolism. Statistically significant and strong positive correlation of PTR with serum
creatinine levels suggested the role of oxidative stress in the progression of kidney disease. Significant differences in metabolic
patterns between CKD and CAM-CKD patients were observed. With respect to NC subjects, the serum metabolic changes were
more aberrant in CKD patients compared to CAM-CKD patients. The aberrant metabolic changes in CKD patients with
manifestations of higher oxidative stress compared to CAM-CKD patients could explain clinical discrepancies between CKD and
CAM-CKD patients and further advocate the use of different treatment strategies for CKD and CAM-CKD patients.

■ INTRODUCTION
Chronic kidney disease (CKD), an irreversible progressive renal
function disorder, with an estimated worldwide prevalence of
nearly 8−16%, is becoming a serious public health issue as its
prevalence is increasing worldwide.1−3 Worldwide, diabetes
mellitus is the most common cause of CKD; however, other
causes, such as herbal and environmental toxins, have been
found to be more common in some regions.3 CKD is often
diagnosed quite late and a decrease in glomerular filtration rate
(GFR) leads to serious mortality in many patients worldwide.
Further, patients exhibit structural and/or functional abnormal-
ities in kidneys (present for more than 3 months), causing a

decreased renal function and altered metabolic activity of the
kidney. Clinically, CKD is defined as a reduced glomerular
filtration rate, increased urinary albumin excretion, or both,
which may also occur as a result of uncontrolled/complicated
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metabolic disorder such as diabetes mellitus (DM), hyper-
tension, liver diseases, or glomerulonephritis.3,4 Although the
estimated glomerular filtration rate (eGFR) and serum
creatinine are routinely used for the assessment of CKD,
however, these parameters may also depend on muscle
metabolism and muscular activities and often lead to erroneous
results for those who embody extremes of muscle mass such as
bodybuilders and amputees and those with sarcopenia or other
muscle-wasting disorders.4 Therefore, investigating other
diagnostic measures would be of immense value to aid in
further understanding of the CKD onset, progression, and
prognosis to offer more appropriate treatment for improved
patient care.
The complementary and alternative medicine (CAM) has

been used for thousands of year according to the theories,
beliefs, and experiences that originated from different cultures
and employed to keep health and prevent, diagnose, improve, or
treat physical and mental illnesses.2,5 A recent study reported
that the utilization rate of CAM among patients with chronic
diseases at outpatient clinics is about 63.9%.6 The use of CAM is
also widespread, including countries like India, and studies
report that about 66% of CKD patients have been using some or
the other form of CAM.7,8 The use of CAM among CKD
patients has been found to be high in the age range of 50−64
years (67%).9 Clinicians believe that the disease mechanism and
so biochemical profiles of CKD patients using standard clinical
treatment may be different from those CKD patients using CAM
(referred here to as CAM-CKD) for the management of
systemic chronic diseases such as diabetes mellitus (DM),
hypertension, glomerulonephritis, etc. The present study has
been undertaken to probe this conjectureby making use of
NMR-based clinical metabolomics approach. This is because
CKD is commonly associated with specific changes in
circulating metabolome and may involve metabolic comorbid-
ities (e.g., diabetes mellitus, hypertension, hypercholesterole-
mia, fatty liver, obesity, or cardiovascular disease).10 Serum
metabolomics analysis is becoming an influential methodology
for investigating metabolic biomarkers in chronic kidney disease
(CKD) for diagnostic screening, predicting disease progression,
and deciding the appropriate treatment.4,11−17 The resulted
metabolic disturbances associated with the severity of the
disease mirror the phenotype of an organism and provide a
detailed understanding of the metabolic processes involved in a
disease.18 The specific advantages of using NMR spectroscopy
for metabolic analysis are that it is nondestructive (the sample

analyzed can be used for further biochemical analysis), highly
reproducible, inherently quantitative, and requiring minimal or
no sample preparation.19

■ RESULTS
Patient Characteristics. The study involved 73 CKD

patients and 47 normal control (NC) subjects. Depending upon
the clinical history of CKD patients, i.e., if these patients have
been using CAM for more than 3 months prior to the CKD
diagnosis or not using CAM, these were categorized into two
groups: CKD (not using CAMs,N = 30) and CAM-CKD (using
CAMs,N = 43). The patient clinical and demographic details are
listed in Table 1. The serum creatinine levels were used to
estimate the glomerular filtration rate (eGFR) as described
previously.20−22 Following the criterion described previously,23

five stages were defined for CKD patients corresponding to two
groups of patients. For each patient group, the patient number in
each CKD stage is plotted and the results are shown in the
Supporting Information (Figure S1). It is clearly evident that
patients in stage 5 are the maximum (N = 17) in the CKD group
(N = 30), whereas those in stage 3 were found to be the
maximum (N = 12) followed by stage 5 (n = 7) in the CAM-
CKD group (see the Supporting Information, Figure S1). The
different stages of a disease have heterogeneous metabolic
alterations or metabolic homeostasis but have discrete under-
lying pathogenesis (pathobiology), rendering specific patterns of
metabolic changes. The present study aims to identify these
specific patterns of metabolic alternations in CKD and CAM-
CKD patient groups.

Multivariate Statistical Analysis to Access the Meta-
bolic Variations between CKD and CAM-CKD Groups.
The 1D 1HCPMGNMR spectra recorded at an 800MHzNMR
spectrometer have the potential to provide high-resolution
metabolic snapshot and physiological patterns across diverse
human serum samples. The cumulative 1D 1H CPMG NMR
spectra of serum samples obtained from CKD (in blue) and
CAM-CKD (in red) patients are stacked and shown in the
Supporting Information, Figure S2. Before starting the multi-
variate analysis based on NMR spectral features, the CPMG
spectral peaks (and so the spectral regions) were assigned for
specific serum metabolites, making composite use of the 800
MHz metabolite spectral database library of CHENOMXNMR
suite. Some selected CPMG NMR spectra were opened in the
processor module of CHENOMX software, manually phased,
corrected for baseline distortions, and referenced with respect to

Table 1. Clinical and Demographic Characteristics of Subjects Included in the Studya

CKD (N = 30) CAM-CKD (N = 43) CAM-CKD (N = 26)b normal control (N = 47)

male (female) 25 (5) 35 (08) 16 (10) 40 (7)
mean age ± standard deviation 43.3 ± 14.9 49.4 ± 11.36 49.7 ± 15.0 47.4 ± 8.1
staging (I, II, III, IV, V) 3, 3, 2, 5, 17 3, 8, 12, 3, 7 3, 0, 7, 2, 10
hemoglobin (g/dL) 9.01 ± 2.45 11.1 ± 2.22
total leukocyte count (TLC, cells/mm3) 7531.4 ± 3054.0 14069.4 ± 26496.6
platelets (G/L) 144,469 ± 67,530 315,242.4 + 524,167.7
serum creatinine (mg/dL) 5.91 ± 3.32 3.26 ± 3.22 4.90 ± 3.55
eGFR (mL/min) 24.2 ± 27.0 43.5 ± 30.0 31.7 ± 33.2
serum albumin (g/dL) 3.72 ± 0.47 3.85 ± 0.57
serum sodium (meq/L) 133.67 ± 6.08 140.44 ± 3.77
serum potassium (meq/L) 4.90 ± 0.91 4.75 ± 0.57

aAbbreviations used: meq/L, milliequivalents per liter; mg/dL, milligram per deciliter; mL, milliliter; G/L, Giga/liter; g/dL, gram per deciliter.
bValidation cohort of 26 CAM-CKD patients. The clinical details (such as hemoglobin, total leukocyte count (TLC), platelets, serum albumin,
serum sodium, and serum potassium) are not available.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06469
ACS Omega 2023, 8, 7722−7737

7723

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06469/suppl_file/ao2c06469_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06469/suppl_file/ao2c06469_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06469/suppl_file/ao2c06469_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


a singlet peak of formate (CH−) at δ(8.43 ppm). The processed
CPMGNMR spectra were then opened into the profiler module
of CHENOMX NMR suite, and the NMR peaks of various
metabolites were identified and assigned by comparing and
matching the chemical shift positioning, broadening, intensity,
and J-coupling peak patterns with the spectral patterns of
CHENOMX 800 MHz database metabolites. The 2D JRES
spectrum was used to elucidate the J-coupled multiplicity of
metabolite peaks in the CPMG NMR spectrum. The 2D 13C
HSQC spectrum and 1H−1H TOCSY spectra were analyzed
using the semi-automated software program “MetaboMiner” to
identify the metabolic peaks by comparing and matching the
built-in metabolic library peak patterns. The assignment of
NMR peaks in the spectral overlap regions and the NMR peaks
of metabolites having singlet peaks in the 1H NMR spectrum
(such as glycine, acetate, acetone, TMAO, etc.) was further
corroborated by their specific 13C chemical shifts in the 13C
HSQC spectrum and peak at the zero line of the 2D JRES
spectrum. The procedure provided us the assignment of (a)
most of the amino acids such as alanine, glycine, glutamate,
glutamine, proline, lysine, arginine, leucine, isoleucine, methio-
nine, valine, serine, threonine, histidine, phenylalanine, and
tyrosine, (b) metabolites of the glycolysis pathway (glucose,
lactate, pyruvate, and citrate) along with some other metabolites
like creatinine, acetate, 3-hydroxybutyrate (3HB), acetone,
trimethylamine (TMA), trimethylamine-N-oxide (TMAO), and
dimethyl-sulfone (DMS), and (c) lipid and membrane
metabolites such as glycerol, choline, and glycerophosphocho-
line (GPC). The assignment of signals of high-density
lipoproteins (HDL), low-density lipoproteins (LDL), very-
low-density lipoproteins (VLDL), and polyunsaturated fatty
acids (PUFAs) was based on previous reports. Although
metabolic differences in the NMR spectra of study groups are
often not compared visually, however, a visual comparison of
spectral features clearly revealed that the serum creatinine levels
are relatively elevated in the CKD group compared to the CAM-
CKD group (Figure S2A,B). This observation was found to be
well consistent with the clinically estimated serum creatinine
levels in these two groups (see Figure S2C), suggesting that the
acquired NMR spectra are manifesting clinically relevant
information and are deemed appropriate for further comparison
employing multivariate statistical data analysis tools.
First, the CPMG data matrix containing normalized spectral

features was analyzed using the unsupervised principal
component analysis (PCA) method for evaluating initial
grouping trends and class separation. The PCA score plots
showed a clear trend of group clustering and discrimination
between the patients and NC cohorts but no evident
discrimination between CKD and CAM-CKD patient cohorts.
Two outliers were found in the CAM-CKD group and excluded
from the analysis (one outlier spectrum was of the plasma
sample and the other contained a broad signal at a chemical shift
of 1.15 ppm and a bulged/distorted baseline near the water
region from the 4.0 to 5.7 ppm region). Next, we used the
supervised PLS-DA approach, and the resulted 2D and 3D score
plots (see the Supporting Information, Figure S3A,B,B′) showed
statistically significant separation between patient and NC
groups with R2 and Q2 values close to 0.8, suggesting that the
discriminatory model is adequately valid and can predict better
than chance (see the Supporting Information, Figure S3C).
However, separation between CKD and CAM-CKD patient
groups was not evident. Further, we performed OPLS-DA to
demonstrate the separation between study groups (CKD, CAM-

CKD, and NC). The resulted 2D score plot (see the Supporting
Information, Figure S3B) though clearly showed that patient
groups are well separated from the NC group; however, the
samples of CKD and CAM-CKD groups were found exquisitely
overlapping (see the Supporting Information, Figure S3D). One
predictive component (with R2X = 0.125, R2Y = 0.524, and Q2
= 0.495) and one orthogonal component (with R2X = 0.188,
R2Y = 0.182, and Q2 = 0.106) were involved in the OPLS-DA
model, which showed that the model had adequate stability (see
the Supporting Information, Figure S3E). Further, VIP score
plot analysis revealed more than 40 spectral features with VIP
score > 1.0 (see the Supporting Information, Figure S3F),
suggesting their discriminatory potential as per the VIP score
indexing, i.e., the higher the VIP score, the higher the
discriminatory potential of the metabolic feature in separating
the study cohorts. The majority of discriminatory spectral
features belonged to lipoproteins (such as HDL, LDL, and
VLDL), lipid/membrane metabolites (such as choline, GPC,
PUFA, etc.), and other abundantly present metabolites such as
glucose, lactate, creatinine, alanine, and isoleucine (see the
Supporting Information, Figure S3F). However, other serum
metabolites present in relatively low abundance failed to mark
their presence in the VIP score plot. This is because the 1D 1H
NMR spectrum of a serum sample often contains broad NMR
signals [i.e., δ(0.76 to 0.96, 1.20 to 1.36, 1.92 to 2.04, 2.90 to
3.00, and 5.23 to 5.33 ppm)] corresponding to either
lipoproteins and lipid/membrane metabolites in addition to
dominant signals of metabolites present in large abundance
(such as glucose and lactate). Another problem with this
conventional procedure of analyzing all the spectral features
(including those corresponding to blank/undesired spectral
regions with no metabolic annotations), the dominant signals of
lipoproteins (LDL and VLDL), lipid/membrane metabolites,
and glucose, which contribute to multiple spectral bins, is that it
does not render the subtle metabolic changes to mark their
presence in the VIP score plot (as evident from Figure S3F in the
Supporting Information). Therefore, we legitimately improved
the relevant information content by (a) excluding the redundant
spectral bins from the data matrix and combining some of the
bins corresponding to a particular metabolite and (b) moreover
screening discriminatory metabolites employing random forest
(RF) classification, which is an advanced machine learning
approach for supervised classification analysis and further
considers the statistical significance while screening the features
(biomarkers) of discriminatory potential from higher-dimen-
sional metabolomics data.24,25 Overall, a pruned data matrix
containing 49 NMR spectral features (tabulated in Table S1 of
the Supporting Information) was created and used further to
perform multivariate discriminatory analysis for the identifica-
tion of serum metabolic disturbances associated with CKD and
CAM-CKD patients with respect to NC subjects. As oxidative
stress is known to play an important role in the development and
progression of CKD disease,26−32 two additional spectral
features (PTR1 and PTR2) representing the apparent phenyl-
alanine-to-tyrosine ratio (PTR) (see the Supporting Informa-
tion) were evaluated, and as per the details, they are described in
the caption of Table S1 as well. The reason for this inclusion is
that elevated PTR levels have been demonstrated to serve as
indicative biomarkers of oxidative stress in different pathophy-
siological conditions.33−37 After preparing the pruned data
matrix containing adequate (total of 51) NMR spectral features,
the RF classification models generated using complete and
pruned data matrices were compared for their discriminatory
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performance as shown in Figure 1A,B. It is clearly evident that
the serum metabolic profiles of CKD patients are distinctively
different compared to CAM-CKD patients with respect to NC
subjects (Figure 2A,B). The out-of-bag (OOB) error for the RF
model based on all spectral features was found to be 13.6%,
suggesting its high prediction accuracy, that is, 86.4% (Figure
2A). However, for the RF model based on discrete/selected
spectral features, the out-of-bag (OOB) error was found to be
improved further to 12.7%, suggesting its high prediction
accuracy, that is, 87.3% (Figure 2A). Significant features were
identified by ranking of mean decrease accuracy (MDA)
extracted when the features are permuted, and the MDA score
plots are shown in Figure 2C,D. It is clearly evident that there is
high redundancy and the presence of unidentified features in the
MDA plot derived from RF classification based on all spectral
features (Figure 2C). On the other hand, the MDA plot derived
from RF classification based on selected spectral features
provided exquisite information about the metabolic alterations
underlying the pathophysiology of the disease. The identified
metabolic changes were further evaluated for statistical
significance using the ANOVA approach, and the results are
summarized in the Supporting Information (Table S2 and
Figure S3). Compared to healthy normal control subjects, the
CKD (including CAM-CKD) patients were characterized by (a)

decreased serum levels of lipid and membrane metabolites
(including HDL, LDL, VLDL, PUFA, choline, and GPC), the
majority of amino acids (such as alanine, histidine, and
glutamine), and N-acetylglycoproteins (NAGs) and (b)
increased serum levels of creatinine, acetate, formate, N-alpha
acetyl lysine (NAAL), various branched chain amino acids (such
as isoleucine, leucine, and valine), glutamate, and phenylalanine
and phenylalanine-to-tyrosine ratio (PTR). These changes are
indicative of a state of chronic inflammation sustained through
activated glutaminolysis and oxidative stress (as inferred from
the elevated serum PTR levels).

Pairwise PLS-DA Analysis for Evaluating Serum
Metabolic Disparity between Study Groups. The pruned
CPMG data matrix was further used to perform pairwise PLS-
DA analysis (Figure 2) and evaluate the extent of serum
metabolic disparity between patient and NC groups. The key
observations are summarized below:

(1) The serum metabolic profiles of CKD and CAM-CKD
patients are distinctively different compared to NC
subjects as inferred from exquisitely clustered and well-
separated CKD and CAM-CKD samples from NC
samples (Figure 2A,B).

Figure 1. (A, B) Random forest (RF) classification models showing cumulative error rates measured for each class using the RF machine learning
approach. (C, D) Significant features were identified by ranking of mean decrease accuracy (MDA) extracted with RF analysis when the features are
permuted. The overall error rate is shown as the red line, and other color lines represent the error rates for each class as indicated. The out-of-bag
(OOB) errors for the RF models generated (A, C) using all spectral features and (B, D) selected spectral features (as per the details provided in the
Supporting Information, Table S1) were found to be 13.6 and 12.7%, respectively. Abbreviations used are as follows: Gls, glucose; Gln, glutamine; Glu,
glutamate; Phe, phenylalanine; Tyr, tyrosine; His, histidine; 3HB, 3-hydroxybutyrate; Crt, creatinine; Ile, isoleucine; DMS, dimethyl-sulfone; Val,
valine; HDL, high-density lipoproteins. As mentioned here, spectral bins with an asterisk “*” represent the cumulative signal of bins corresponding to
the specified metabolite peak at that ppm. Bins specified by an even number for the last decimal place represent the cumulative signals of two adjacent
bins, e.g., Tyr@7.16 represents the sum of Tyr@7.15 and Tyr@7.17 and like this for other such features.
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(2) The Q2 values for the discriminatory model between NC
and CKD (highest Q2 = 0.71, Figure 2D) were found to
be consistently higher compared to those for the
discriminatory model between NC and CAM-CKD
(highest Q2 = 0.69, Figure 2E), suggesting that the
alterations in serum metabolic profiles are more aberrant
in CKD patients compared to CAM-CKD patients with
respect to NC subjects.

(3) The Q2 values for the discriminatory model between
CKD and CAM-CKD were found to be positive but
consistently lower (highest Q2 = 0.35, Figure 2F)
compared to those for the discriminatory model between
NC and patients (Figure 2D,E), suggesting that the use of
CAM though has conferred legitimate serum metabolic
changes; however, the metabolic disturbances are closely
related in CKD and CAM-CKD patients owing to similar
underlying pathophysiology.

Random Forest Classification Analysis to Access the
Metabolic Variations between CKD and CAM-CKD
Groups. The random forest (RF) classification analysis was
further used to evaluate the serum metabolic disparity (a)
between NC and diseased groups (Figure 3) and (b) between
CKD and CAM-CKD groups (Figure 4). The RF models
generated for comparison between CKD vs NC and CAM-CKD
vsNCwere found to be of high prediction accuracy, that is, more

than 96% (Figure 3A,B), in good concordance with 10-fold
cross-validation parameters of corresponding PLS-DAmodeling
(shown in Figure 2D,E). Discriminatory features were identified
by ranking of mean decrease accuracy (MDA, Figure 3C,D) and
checked for their statistical significance with the help of volcano
plots (Figure 3E,F).

Random Forest Analysis to Access the Metabolic
Variations between CKD and CAM-CKD Groups. The RF
classification model was generated using selected spectral
features, and the results are shown in Figure 4. The out-of-bag
(OOB) error for the RF model was found to be 15.5%,
suggesting its moderate prediction accuracy, that is, 84.5%
(Figure 4A), in good concordance with 10-fold cross-validation
parameters of corresponding PLS-DA modeling (shown in
Figure 2F). The potential discriminatory metabolites were
identified from the MDA plot derived from RF classification
analysis (Figure 4B), and the statistical significance of key
metabolic features was reconfirmed using the Student t-test
(Figure 4C). Compared to those of CAM-CKD patients, the
sera of CKD patients were characterized by (a) elevated levels of
urea, creatinine, citrate, glucose, glycerol, and phenylalanine and
phenylalanine-to-tyrosine ratio (PTR) and (b) decreased levels
of various amino acids (such leucine, isoleucine, valine, and
alanine), high-density lipoproteins, lactate, and acetate. These
changes suggested that CKD patients manifest severe oxidative

Figure 2. 2D score plots derived from the pairwise PLS-DA analysis of the pruned CPMG data matrix generated by selecting the spectral bins from the
complete data matrix corresponding to various metabolites as listed in Table S1 of the Supporting Information: (A) CKD vs NC, (B) CAM-CKD vs
NC, and (C) CKD vs CAM-CKD. The shaded or semitransparent areas represent the 95% confidence regions of each group as depicted by their
respective colors. Abbreviations used here are as follows: CKD, chronic kidney disease; CAM-CKD, CKD patients practicing traditional
complementary and alternative medicines; NC, normal control. (D−F) Bar plots showing the three performance measures (prediction accuracy,
multiple correlation coefficient R2, and explained variance in prediction Q2) obtained after the 10-fold cross-validation analysis of multivariate data.
The red star indicates the best classifier.
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stress, hyperglycemia (with dampened glycolysis), and increased
protein energy wasting.

Cross-Validation of Metabolic Changes in CKD and
CAM-CKD Patients. To make a reliable comparison between
clinical subtypes, a validation cohort of CAM-CKD patients (N
= 26) was further included for which the clinical and
demographic details are added in Table 1. Figure 5 compares
the serum metabolic features of CKD patients with the second

cohort of CAM-CKD patients (referred here to as CAM-
CKD_2) having dominance of stage 5 patients (total of 10 in
number). Both CKD and CAM-CKD_2 patients conferred
almost similar patterns of metabolic disturbances as observed for
the comparison of CKD with CAM-CKD patients, e.g., elevated
phenylalanine and phenylalanine-to-tyrosine ratio (PTR,
indicative of oxidative stress condition) both in CKD and
CAM-CKD cases with respect to NC subjects. Compared to

Figure 3. (A, B) Random forest (RF) classification models showing cumulative error rates measured for each class using the RF machine learning
algorithm. The overall error rate is shown as the red line, and other color lines represent the error rates for each class as indicated. The out-of-bag
(OOB) errors for each RF classification model are shown as insets. (C, D) Significant features were identified by ranking of mean decrease accuracy
(MDA) extracted with RF analysis when the features are permuted. (E, F) Volcano plots reporting p values against fold changes. The volcano plot
indicates−log 10 (p value) for serummetabolic profiles (Y-axis) plotted against their respective log 2 (fold change) (X-axis). Abbreviations used are as
follows: Gls, glucose; Gln, glutamine; Glu, glutamate; PTR, phenylalanine-to-tyrosine ratio; His, histidine; PUFA, polyunsaturated fatty acid; Crt,
creatinine; Cr, creatine; Ile, isoleucine; LDL, low-density lipoproteins; VLDL, very-low-density lipoproteins; HDL, high-density lipoproteins. As noted
here, spectral bins with an asterisk “*” represent the cumulative signal of bins corresponding to the specifiedmetabolite peak at that ppm. Bins specified
by an even number for the last decimal place represent the cumulative signals of two adjacent bins, e.g., Leu@0.94 represents the sum of Leu@0.93 and
Leu@0.95 and like this for other such features; PTR1 is evaluated as (Phe@7.30 + Phe@7.34)/Tyr@7.16, and PTR2 is evaluated as Phe@7.39/Tyr@
6.87.
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CAM-CKD_2, the degree of elevation of phenylalanine and
PTR was relatively higher in CKD (Figure 5), the finding of
which was in line with previous comparative analysis (Figure 4).
Persistently, the serum creatinine, urea, and glucose levels were
found to be significantly higher in CKD patients compared to
CAM-CKD_2 patients with respect to NC subjects (Figure 5).
Another important serum metabolic change observed was
elevated serum levels of myoinositol and decreased serum levels
of HDL (high-density lipoproteins) in CKD patients compared
to CAM-CKD_2 patients with respect to NC subjects (Figure
5). The comparative analysis further validated our metabolic
hallmark that the CKD patients exhibited more aberrant serum
metabolic changes compared to the CAM-CKD_2 patient
cohort with respect to NC subjects.
Further, we cross-validated the intervention effect of using

CAM by CKD patients by comparing the serum metabolic
profiles of stage 5 CKD patients (N = 17) with stage 5 CAM-
CKD patients (N = 17, 7 from the first cohort and 10 from the
second cohort). The results of PLS-DA-based multivariate
analysis are summarized in Figure 5, and those based on OPLS-
DA and RF classification analysis are included in the Supporting
Information (see Figure S6). The OPLS-DA model constructed
using three components (p1, o1, and o2) presents a good
classification for discrimination between stage 5 CKD (N = 17)
and CAM-CKD (N = 17) patients with R2X(cum) = 0.445,
R2Y(cum) = 0.814, and Q2 = 0.552 (see the Supporting
Information, Figure S6). Compared to CAM-CKD stage 5

patients, the serum levels of LDL/VLDL and creatinine were
high in CKD stage 5 patients and those of various amino acids
(such as branched chain amino acids, lysine, arginine, etc.; see
the Supporting Information, Table S6) and of organic acids such
as acetate were decreased in CKD stage 5 patients (Figure 6).
Next, the serum metabolic profiles of CAM-CKD stage 3

patients (N = 19, 12 from the first cohort and 7 from the second
cohort) with stage 5 patients (N = 17, 7 from the first cohort and
10 from the second cohort). The results based onOPLS-DA and
RF classification analysis are included in the Supporting
Information (see Figure S7). The OPLS-DA model constructed
using four components (p1, o1, o2, and o3) presents a good
classification for discrimination between stage 3 CAM-CKD (N
= 17) and stage 5 CAM-CKD (N = 17) patients with R2X(cum)
= 0.625, R2Y(cum) = 0.729, andQ2 = 0.342 (see the Supporting
Information, Figure S7). Compared to stage 3 CAM-CKD
patients, the serum levels of lipid metabolites (including LDL/
VLDL and PUFA) were decreased in stage 5 patients, whereas
those of ketone bodies (such as 3-hydroxy butyrate) were
increased in stage 5 patients (Figure 7B).

■ DISCUSSION
The aim of the present study was to characterize the serum
metabolic disparity between CKD and CAM-CKD patients with
respect to healthy normal control (NC) subjects and to suggest
distinctive metabolic signatures of the disease that would be

Figure 4. (A) Random forest (RF) classification model showing cumulative error rates measured for each class using the RF machine learning
algorithm and the out-of-bag (OOB) error shown as an inset. The overall error rate is shown as the red line, and other color lines represent the error
rates for each class as indicated. (B) Discriminatory features were identified by ranking of mean decrease accuracy (MDA) value based on RF analysis
when the features are permuted and further evaluated for their statistical significance employing Student t-test plot shown in panel (C). Abbreviations
used are as follows: Gls, glucose; Gln, glutamine; Glu, glutamate; PTR, phenylalanine-to-tyrosine ratio; His, histidine; PUFA, polyunsaturated fatty
acid; Crt, creatinine; Cr, creatine; Ile, isoleucine; LDL, low-density lipoproteins; VLDL, very-low-density lipoproteins; HDL, high-density
lipoproteins. As noted here, spectral bins with an asterisk “*” represent the cumulative signal of bins corresponding to the specified metabolite peak at
that ppm. Bins specified by an even number for the last decimal place represent the cumulative signals of two adjacent bins, e.g., Leu@0.94 represents
the sum of Leu@0.93 and Leu@0.95 and like this for other such features; PTR1 is evaluated as (Phe@7.30 + Phe@7.34)/Tyr@7.16, and PTR2 is
evaluated as Phe@7.39/Tyr@6.87.
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useful in guiding clinical treatment. The RF classification model
clearly revealed that the metabolic changes are aberrantly
different in CKD patients compared to CAM-CKD with respect
to NC subjects. The metabolic changes exquisitely reflected the
variability of biochemical processes underlying the pathophysi-
ology of CKD. Consistent with biochemical features of CKD,
the circulatory levels of creatinine were found to be significantly
increased in CKD and CAM-CKD patients compared to NC
subjects. Among patients, the serum levels of creatinine were
found to be significantly increased in CKD compared to CAM-
CKD (Figure 3).
Consistent with a previous report,38 the circulatory levels of

branched chain amino acids (such as valine,39−41 leucine, and

isoleucine) were found to be decreased in CKD patients
compared to CAM-CKD patients with respect to NC subjects,
suggesting a progressively increasing malnutritional status in
CKD patients.
Compared to CAM-CKD patients, the circulatory urea levels

were significantly higher in CKD patients with respect to NC
(Figure 2D). Urea, a marker of uremic retention, has now been
considered toxic at concentrations representative in CKD42 and
further increases insulin resistance and suppresses insulin
secretion.43,44 The finding is well in line with the elevated
circulatory glucose levels in CKD patients compared to normal
control and highlights the importance of management of
hyperglycemia in CKD patients.45 Studies have shown that the

Figure 5. Serum metabolic profiles of CKD (N = 29, one identified as an outlier) patients and validation cohort of CAM-CKD (N = 26) patients
(labeled here as CAM2) compared using the random forest (RF) classification method. (A) Random forest (RF) classification model showing
cumulative error rates measured for each class using the RFmachine learning algorithm. The overall error rate is shown as the red line, and other color
lines represent the error rates for each class as indicated. (B) The out-of-bag (OOB) error for the RF model was found to be 6.9%, suggesting the high
prediction accuracy of the RF model, that is, 93.1%. (C) Mean decrease accuracy (MDA) score plot highlighting the serum metabolic features of
discriminatory potential. (D) Representative box-cum-whisker plots showing a metabolic change in CKD (red) and CAM2 (green) patients with
respect to normal control subjects (in blue). For each box plot showing quantitative variations of relative NMR signal integrals, the boxes denote
interquartile ranges, the horizontal red line inside the box denotes the median, and the bottom and top boundaries of the boxes are the 25th and 75th
percentiles, respectively. Lower and upper whiskers are the 5th and 95th percentiles, respectively. Abbreviations used as follows: Phe, phenylalanine;
PTR, phenylalanine-to-tyrosine ratio; HDL, high-density lipoprotein.
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increased availability of urea also leads to elevated levels of
cyanate and, hence, carbamylated compounds, which interfere
with organ and body functions through multiple mechanisms.42

Elevated circulatory levels of urea have been implicated in the
development of oxidative stress and insulin resistance46 in CKD,
and nutritional management of urea levels has been demon-
strated to slow the decline in renal function.46 Compared to NC,
the CKD patients manifested higher oxidative stress as inferred
from the elevated circulatory levels of phenylalanine and
phenylalanine-to-tyrosine ratio (PTR, which is known to serve
as an indicative biomarker of oxidative stress in different

pathophysiological conditions).33−37 The statistically significant
and positive correlation of circulatory PTR levels (Figure 4)
with serum creatinine levels further suggested their association
with the severity of the disease and may serve as a surrogate
marker to improve the diagnostic/prognostic screening of CKD.
Several studies have shown that oxidative stress (due to both
antioxidant depletions and increased ROS production) disrupts
mitochondrial homeostasis and, thus, normal functioning of
kidney cells, which are metabolically highly active and rich in
oxidation reactions in mitochondria.47,48 Oxidative stress is
among the leading mechanisms of cardiovascular complications,

Figure 6. Serummetabolic profiles of stage 5CKD (N = 17) andCAM-CKD (N= 17) patients compared using PLS-DA-based discriminatory analysis.
(A) 3D PLS-DA score plot derived from the normalized spectral features and (B) performance of the PLS-DA classification model generated using
different numbers of components. The red star indicates the best classifier. (C) Variables situated at the top right end are increased, while those situated
at the lower left side are decreased in the sera of CKD patients compared to CAM-CKD patients. (D) Representative box-cum-whisker plots showing
relative metabolic changes in stage 5 CKD patients (in green) compared to stage 5 CAM-CKD patients (in red). For each box plot showing
quantitative variations of relative NMR signal integrals, the boxes denote interquartile ranges, the horizontal red line inside the box denotes themedian,
and the bottom and top boundaries of the boxes are the 25th and 75th percentiles, respectively. Lower and upper whiskers are the 5th and 95th
percentiles, respectively. Abbreviations used as follows: PUFA, polyunsaturated fatty acids; Ile, isoleucine.
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and in patients at advanced stages of CKD, increased oxidative
stress is associated with profound dysregulation of lipid
metabolism and marked abnormalities of serum lipid
profiles.49,50 Studies have shown that oxidative stress plays a
key role in inducing dyslipidemia,49,50 possibly through
oxidation of lipoprotein/lipid metabolites in CKD, with this
oxidation further increasing the risk of CVD.51,52 Significantly
higher cardiovascular morbidity and mortality in CKD patients
have also been attributed to dyslipidemia.53 This can be
attributed to formation of atherosclerotic plaques as oxidized
lipoproteins play a crucial role in atherosclerosis initiation and
progression through chemotactic and proliferating actions on
monocytes/macrophages, inciting their transformation into
foam cells.54−56 A recent NMR-based serum metabolomics
study revealed decreased circulatory levels of lipid and
membrane metabolites in CKD patients.57 The NMR signals
of lipoproteins have also been found to be decreased in the sera
obtained from acute myocardial infarction (AMI) patients
admitted to the intensive care unit (ICU).58 Consistent with
these metabolomics studies, the NMR signals of lipoproteins
(including HDL, LDL, and VLDL) and lipid metabolites were
found to be significantly decreased inCKD/CAM-CKDpatients
compared to NC. Contrary to this, the NMR signals of
lipoproteins (LDL and VLDL) and lipid metabolites are
significantly elevated in patients with lupus nephritis,59,60

suggesting that CKD patients might share a CVD-like
dyslipidemia pattern. Oxidative stress is often associated with
inflammatory condition; however, the inflammatory state was
not evident from the present metabolomics analysis and found
to be consistent with previous clinical reports38 and NMR-based
serummetabolomics study.15 The decreased NMR signals ofN-
acetyl glycoproteins (NAGs) in CKD patients could be
attributed to the overlap of NAG signal with NMR signals of
lipid metabolites, which are aberrantly decreased in these
patients.
Consistent with various previous reports, the serum levels of

myoinositol were found to be elevated in CKD patients (Figure
5B).39−41 Compared to CAM-CKD patients, the serum levels of

myoinositol in CKD patients increased apparently, further
supporting the finding that the disease is more severe in CKD
patients not using CAM (Figure 5B,D).

■ UNDERLYING RATIONALE FOR THE
INTERVENTION EFFECT OF CAM IN CKD

Epidemiological studies have demonstrated that CKD patients
show high cardiovascular morbidity and mortality and
approximately 50% mortality of ESRD patients is due to
cardiovascular disease (CVD).61,62 The key factor inducing
CVD in patients with kidney diseases is suggested to be oxidative
stress32,63,64 and its impact on dysregulation of lipid metabolism
and abnormal serum lipid profiles.49,50 The present study
revealed that the circulatory levels of phenylalanine and PTR are
significantly increased in CKD patients compared to CAM-
CKD patients (w.r.t. NC subjects), suggesting that the use of
CAM is conferring positive effects by ameliorating the systemic
oxidative stress in CKD patients. The elevated oxidative stress
has been suggested to play a key role in numerous clinical
complications and adversely lead CKD patients’ progression to
end-stage renal disease (ESRD).64 Based on literature reports
and the findings of this study, we believe that effective
management of oxidative stress in early stage CKD patients
will serve to both slow the rate of progression of CKD to ESRD
and reduce the risk of developing CVD complications. Indeed,
several previous studies investigated anti-oxidant treatments in
CKD patients and showed a reduction in oxidative stress and
many showed improved renal function.64 A PLS-DA analysis
based on the pruned data matrix containing 51 spectral features
(see the Supporting Information, Table S1) resulted in exquisite
separation between the study groups, which was comparable to
that obtained with the complete data matrix (see the Supporting
Information, Figure S1).

■ CONCLUDING REMARKS
The study revealed serum metabolic differences between CKD
patients with and without CAM. This observation may provide

Figure 7. Serum metabolic features subjected to Pearson r-based correlation analysis with creatinine. The plots in panels (A) and (B) represent when
the correlation analysis performed involves features (A) from all the three study groups and (B) from patient (i.e., CKD and CAM-CKD) groups. The
explicit correlation values with their corresponding p values are tabulated in the Supporting Information (see Table S5A,B).
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an important clue to understanding the differences in the
metabolic derangement between the two groups of CKD
patients. Compared to the CAM-CKD group, the patients in the
CKD group manifested higher oxidative stress as inferred from
the elevated circulatory levels of phenylalanine and phenyl-
alanine-to-tyrosine ratio. The statistically significant and positive
correlation of circulatory PTR levels (Figure 7) with serum
creatinine levels further suggested their association with the
severity of the disease and may serve to improve the prognostic
screening of CKD. Further, significantly decreased serum levels
of branched chain amino acids (such as valine and leucine) in
CKD patients (p < 0.05) were found to be well consistent with a
previous report,38 and their negative correlation with the serum
creatinine level suggested a depressed nutritional status in these
patients (Figure 7). However, these preliminary results require
further validation to functionally associate oxidative stress with
the severity of CKD. As mentioned here, the low circulatory
PTR levels in the CAM-CKD group (but significantly higher
compared to the NC group) can also be attributed to the less
number of late stage CKD patients in this group. As the sample
size of the present study is very small and, further, there is
variability in the number of samples in different stages of CKD,
we failed to perform the stage-wise comparison between CKD
and CAM-CKD groups. Nevertheless, the study results were
found to be well consistent with various previous reports,41,65

especially the use of NMR-based serum levels of myoinositol,
creatinine (both elevated and inversely correlated to GFR), and
valine (decreased and positively correlated to GFR) for the
estimation of GFR41 in combination with the immunoturbido-
metric quantification of serum cystatin C, age, and sex.
Compared to the NC group, the observed metabolic changes

in CKD patients were found to be in good concordance with
various previous studies. Therefore, it is legitimate to believe
that the disease-induced metabolic changes in CKD patients
subdue those induced by different confounding factors such as
BMI, diet, exercise, etc., when compared with respect to the
normal control (NC) subject. However, the impact of
confounding factors on the relative metabolic changes between
CKD and CAM-CKD patients cannot be ignored. For example,
studies have shown a strong geographic influence on the
metabolome of CKD patients and further association between
the body mass index (BMI) and risk for CKD.66−68 Therefore,
confounder-induced differences, such as BMI, diet, exercise, etc.,
may impact metabolic dysregulations in CKD patients and a
careful evaluation of these factors on the metabolome of CKD
patients needs to be considered in future studies.
As further mentioned here, the metabolic differences in our

present study have been derived from normalized spectral
features, which may provide ambiguous information when the
corresponding bin contains signals from multiple metabolites.
For example, the spectral bin at 3.23 ppm, which mainly
represents glucose, does have contribution of NMR signals from
GPC and trimethylamine-N-oxide (TMAO). Other than this,
the subtle but significant metabolic changes may fail to show off
in the VIP score plot or MDA plot in the presence of dominant
signals of lipoproteins (LDL and VLDL), lipid/membrane
metabolites, glucose, and lactate, which further contribute to
multiple spectral bins as well. In summary, we demonstrated that
serum metabolic profiles are aberrantly changed in CKD
patients compared to CAM-CKD patients, and the use of
CAM strongly affected the metabolic phenotypes of CKD
patients and so the progression of disease to advanced stages of
CKD. The findings of this study may also be used for guiding the

future clinical and preclinical metabolomics studies related to
evaluating the therapeutic efficacy and safety, especially, of CAM
treatments.

■ MATERIALS AND METHODS
Recruitment of Subjects. The study protocol was

approved by the institutional research and ethical committee,
SGPGIMS, Lucknow, India (IEC code: 2015-92-EMP-EXP; file
no. PGI/BE/607/2016; date of approval: 06 October 2016),
and written informed consent was obtained from all of the
patients before enrollment in the study. The blood samples from
the peripheral vein were obtained (after overnight fasting) from
30 CKD and 43 CAM-CKD patients (between the years 2017
and 2018) and, for comparative evaluation, 47 age- and sex-
matched normal healthy subjects (mostly kins or guardians of
the patients). As the study involved the analysis of serum
samples, therefore, serum tubes were used to collect the blood,
incubated at ambient room temperature of 25 °C, and then the
tube was centrifuged at 1200 rpm for 15 min at 4 °C. The
supernatant (which represents the serum) was stored in 1.5 mL
microcentrifuge (Eppendorf type) tubes and kept at −80 °C
until the NMR analysis.

NMR Measurements and Spectral Data Processing. For
NMR measurements, the samples were prepared following the
procedure as described previously.19,60 Briefly, the stored serum
samples were thawed at room temperature and vortexed and 300
μL of serum was mixed with 300 μL of saline sodium phosphate
buffer solution (buffer strength, 20 mM; 100% D2O; containing
0.9% NaCl). After centrifugation (12,000 rpm, 10 min), 550 μL
of supernatant was transferred to a 5 mm NMR tube. The
samples were kept at 4 °C until measurement. The NMR spectra
on all the serum samples were recorded at 300 k using an Avance
III 800 MHz NMR spectrometer (Bruker, GmBH, Germany)
equipped with Cryoprobe. The NMR spectra of the serum
samples were recorded by using the transverse relaxation-edited
1D 1H CPMG (Carr−Purcell−Meiboom−Gill) NMR spectra
with water presaturation (employing the standard Bruker library
pulse program cpmgpr1d). For each sample, 128 subsequent
scans were collected with a spin-echo delay of 300 μs; there were
128 loops, a relaxation delay of 5 s, an acquisition time of 2.045 s,
a time domain of 64 k, and a spectral width of 20.03 ppm. The
recorded CPMG NMR spectra were processed using the
standard Fourier transformation (FT) procedure in Bruker
NMR data processing software named Topspin (v3.6, Bruker
Biospin, Germany). Each FID was zero-filled to 64 k data points,
and an exponential broadening of 3 Hz was applied prior to the
Fourier transformation. All spectra were calibrated w.r.t. lactate-
CH3 signal at δ(1.31 ppm) following manual phase and baseline
correction. The 1H NMR peaks in highly overlapped and
complex spectral regions of the 1D 1H CPMG NMR spectra
were identified and assigned, making composite use of the 2D
JRES, homonuclear 1H−1H TOCSY (total correlation spec-
troscopy), and heteronuclear 1H−13C HSQC (heteronuclear
single quantum correlation) spectra recorded on selected
samples. For this, the information provided by the 1D CPMG
spectra was combined with the 2D JRES, 1H−1H TOCSY, and
1H−13CHSQCNMR spectra and compared with the libraries of
1H and 13C chemical shifts reported in the literature for
compounds commonly found in the serum in addition to those
given in the freely available software MetaboMiner69 following
the procedural steps described previously.70−72
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The present study involved the comparative analysis of
normalized spectral features obtained by dividing each spectrum
ranging from 0.6 to 8.6 ppm into equal sized bins of 0.02 and
0.01 ppm using Bruker AMIX software (version 3.8.7, Bruker
GmbH, Germany). Depending upon the ppm span of the
peak(s) of a particular metabolite, the bins were selected
strategically either from 0.02 or 0.01 ppm binned data matrices
(explicit information is evident from the legends of the different
tables). The variability due to the residual water signal was
removed by discarding the spectral region δ(4.5 to 5.1 ppm)
prior to binning. The total intensity sum of the spectral bins was
used to normalize the integral value of each spectral bin. The
resulted data matrix containing normalized spectral bins (or
features) was then subjected to multivariate and univariate
statistical analyses. Two metabolic features (PTR1 and PTR2)
representing the phenylalanine-to-tyrosine ratio (PTR) were
additionally included in the data matrix and evaluated as follows:
PTR1 = (Phe@7.30 + Phe@7.34)/Tyr@7.16 and PTR2 =
Phe@7.39/Tyr@6.87. The spectral bins were annotated
manually with the help of NMR Suite of commercial software
Chenomx v8.6 (Edmonton, Alberta, Canada), which has the
advantage of a database of standard metabolite spectra at a
variety of magnetic field strengths and a variety of pH values.73

Multivariate Analysis. Multivariate analysis (MVA) is used
to transform the complex multivariate data into easily under-
standable graphical representations and identify discriminatory
variables. MVA was performed using statistical analysis modules
of MetaboAnalyst (v5.0, a freely available, user-friendly, web-
based analytical platform for metabolomics data analysis from
the University of Alberta, Canada: www.metaboanalyst.
ca).74−76 The analysis was performed following the procedure
as described previously.77,78 Briefly, the CPMG data matrix
containing normalized spectral bins was pareto-scaled (mean-
centered and divided by the square root of the standard
deviation of each variable) and subsequently subjected to
unsupervised principal component analysis (PCA) for an initial
overview of the grouping trend (i.e., intrinsic clustering) and
outliers within the data set. After initial overview and
identification of the outliers, the supervised clustering method,
i.e., partial least-squares discriminant analysis (PLS-DA), was
used as a diagnostic model to identify the distinguishing features
and further to identify the marker metabolites that can
differentiate the CKD and CAM-CKD patient groups from
the normal control (NC) group. Compared to PCA, PLS-DA
inclines to overfit the data and so maximizes the class
discrimination. Therefore, PLS-DA models were rigorously
validated by the default 10-fold cross-validation algorithm,
which helps to evaluate 100% classification accuracy using the
top 5 latent variables.76 The quality of the models was assessed
by R2 (goodness of fit parameter) and Q2 (predictive ability
parameter) values. As such, R2 represents the proportion of
variance in the data explained by the models and Q2 represents
the proportion of variance in the data predicted by the
model.78,79 The performance of PLS-DA models was further
improved by OPLS-DA. OPLS-DA is an extension of PLS-DA
featuring an integrated orthogonal signal correction (OSC) filter
to remove variability not relevant to class separation.19,80 The
metabolites of discriminatory potential were identified from the
PLS-DA model based on their higher ranking in the VIP
(variable importance on projection) score plot.81 The
supervised random forest (RF) classification analysis was
performed within the statistical analysis module of Metab-
oAnalyst.82,83 The discriminatory variables/features are ranked

in RF by their contributions to classification accuracy, i.e., mean
decrease accuracy (MDA) quantifies the discriminatory
importance of a variable by measuring the change in prediction
accuracy when the values of the variable are randomly permuted
compared to the original observations.84−86 As mentioned here,
the MDA-based feature selection method does consider the
statistical classification without any biological significance.85,87

The metabolic features with MDA ≥ 0.01 were considered as of
discriminatory potential and further subjected to univariate
statistical testing using variants of t-test: (a) Mann−Whitney U
test to compare continuous data between two groups and (b)
volcano plot and one-way analysis of variance (ANOVA) for
comparison between three groups. This analysis was used to
evaluate the statistical significance and performed using the
“Statistical analysis” module ofMetaboAnalyst,75,76 and the level
of statistical significance was set at p < 0.05. The results are
summarized in the Supporting Information (Tables S2−S4 for
normal control subjects and patient samples). The standard box
plot representations were used to visualize the variation in the
levels of significantly altered metabolites. The key metabolic
changes were further evaluated for diagnostic potential using
receiver operating characteristic (ROC) curve analysis per-
formed with the “Biomarker analysis” module of MetaboAna-
lyst,75,76 and the area under the ROC (AUROC) curve of more
than 0.9 was considered the criterion for diagnostic perform-
ance. Continuous variables were expressed as the mean ± SD
and categorical variables as the percentage.

Correlation Analysis. Circulatory creatinine levels were
regressed against other metabolic levels to identify metabolites
that correlated with serum creatinine levels. The results are
summarized in the Supporting Information (Table S5A,B for
normal control subjects and patient samples).
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