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Abstract: Most triazine-based liquid crystalline (LC) dendrimers reported thus far are the main-
chain LC macromolecules with long flexible chains at their periphery and attached to internal rigid
or semi-rigid frameworks. Their formation of mesogenic phases often depends on the intermolecular
face-to-face π–π interactions between dendritic molecules, which are unusual. Their mesogenic
phases can also be formed by incorporation of mesogenic units to the dendritic skeletons through
long flexible chains, as most side-chain LC dendrimers, in which the peripheral mesogenic units
generally play the important roles. For main-chain triazine-based dendrimers, their morphology
is maintained by restricted freedom of rigid or semi-rigid connecting units, and their formations
of LC phases are therefore not straightforward to be controlled. In this review, we thus describe
modulating of the intermolecular face-to-face π–π interactions between the triazine-based dendritic
molecules, with the aim of forming LC phases through molecular design.

Keywords: triazine; dendrimer; liquid crystal

1. Introduction

Since the discovery of dendrimers in the late 1970s, [1] there has been substantial de-
velopment in their synthesis and study of their physical properties. Dendrimers generally
consist of a central core, linking bridges and peripheral groups. They can be efficiently pre-
pared by iterative processes through convergent, divergent, and combined approaches as
demonstrated in Scheme 1 [2]. Although dendrimers may have a branched architecture and
three-dimensional spatial arrangement, their morphology is still predictable. Formed by
controllable step-by-step and iterative processes, dendrimers are a class of macromolecules
with several characteristics that polymers do not have, such as monodispersity, controllable
sizes, and internal cavities [2]. In particular, various types of functionally designed groups
can be attached at the periphery of dendrimers to give desired properties for this type
of macromolecule. Therefore, dendrimers have been extensively investigated and are
currently applied in various fields, including drug delivery [3–9], catalysis [10–16], light
harvesting [17–22], and porous materials [23–27].

With mesogenic units in the dendritic framework, dendrimers have also been observed
to exhibit liquid crystal (LC) behaviors on thermal treatment. Compared with traditional LC
usually with low molecular weight, LC dendrimers often have a higher molecular weight
and exhibit columnar mesophases on thermal treatment and are 2-D regular materials, thus
yielding better self-assembling ability in a long-range domain and which have usefulness
as solvating candidates in opto-electronic devices [28–34]. LC dendrimers can generally
be divided into side-chain dendrimers in which the mesogenic units are incorporated at
the periphery of molecules and main-chain dendrimers in which the mesogenic moieties
are designed as linking moieties within the internal framework. Most LC dendrimers are
side-chain LCs with flexible cores or linking units and peripheral mesogenic units linked
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to the internal dendritic structures through long flexible chains. The mesogenic units are
important in inducing their LC behavior, and this type of LC dendrimer mostly consists of
PMAMA (polyamidoamine), PPI (polypropylimine), Si-derivatives (siloxanes, carbosilanes,
and carbosilazanes), and polyester as their dendritic network, all of which have been
reviewed extensively [2,35–38]. Special functional moieties, such as fullerene and ferrocene,
may be incorporated in side-chain LC dendrimers for particular properties as reported in
literatures [2,36,39]. There are fewer main-chain LC dendrimers [40–45] than side-chain
LC dendrimers because mesogenic moieties are used as bridging units in their internal
structures, leading to a rigid or semi-rigid dendritic framework in the main-chain LC
dendrimers in which flexible alkyl chains are frequently grafted at the periphery to increase
their solubility in organic solvents. Therefore, in contrast to side-chain LC dendrimers
in which the LC phases are mostly induced by the peripheral mesogenic units, both the
rigid or semi-rigid internal frameworks and flexible peripheral chains are all important
in inducing mesophases for the main-chain LC dendrimers [2,36,37], and this leads the
formation of mesophases of the main-chain LC dendrimers to be difficult to control. As in
the rod-like liquid crystals, the ionic, H-bond, and metallo interactions are also extensively
employed in LC dendrimers, which also consist of side-chain and main-chain types of LC
materials, depending on whether their mesogenic units are incorporated in the internal
framework or at the periphery of dendritic network, which have been reviewed in the
literature [46–48].
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Cyanuric chloride, a simple heterocycle with three reactive sites on its ring, can be
used as a branching unit for efficiently preparing dendrimers. For instance, the first chloro
substituent can be replaced by alkylamines at 0 ◦C, and subsequently, the second and
the third substituents can undergo similar substitutions at room temperature and above
60 ◦C, respectively (Scheme 2) [49,50]. The triazine-based dendrimers were first prepared
by Takagi [51] and later investigated by others [52,53]. Little progress on LC dendrimers
based on the triazine unit has been reported since then. To the best of our knowledge,
in 2008, Lai and co-workers were the first to report LC dendrimers on the basis of the
1,3,5-triamino-s-triazine unit [54]. Kotha and colleagues also prepared 1,3,5-triphenyl-s-
triazine-based dendrimers, which exhibited a columnar phase after being mixed with
1:1 molar ratio of trinitrofluorenone [55]. However, there has been less study of triazine-
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based LC dendrimers, and most are main-chain types of LC dendrimers. Induction of the
LC phases of triazine-based dendrimers can be achieved by manipulating the molecular
morphology of the dendrimer themselves or by adding extra components to form an LC
dendritic mixture by intermolecular H-bond or face-to-face π–π interactions. By reviewing
this system, we hope to guide future work in this field.

Nanomaterials 2021, 11, x FOR PEER REVIEW 3 of 15 
 

 

third substituents can undergo similar substitutions at room temperature and above 60 
°C, respectively (Scheme 2) [49,50]. The triazine-based dendrimers were first prepared by 
Takagi [51] and later investigated by others [52,53]. Little progress on LC dendrimers 
based on the triazine unit has been reported since then. To the best of our knowledge, in 
2008, Lai and co-workers were the first to report LC dendrimers on the basis of the 1,3,5-
triamino-s-triazine unit [54]. Kotha and colleagues also prepared 1,3,5-triphenyl-s-tria-
zine-based dendrimers, which exhibited a columnar phase after being mixed with 1:1 mo-
lar ratio of trinitrofluorenone [55]. However, there has been less study of triazine-based 
LC dendrimers, and most are main-chain types of LC dendrimers. Induction of the LC 
phases of triazine-based dendrimers can be achieved by manipulating the molecular mor-
phology of the dendrimer themselves or by adding extra components to form an LC den-
dritic mixture by intermolecular H-bond or face-to-face π–π interactions. By reviewing 
this system, we hope to guide future work in this field. 

 
Scheme 2. Reaction of amines with cyanuric chlorides at different temperatures. 

2. Formation of Triazine-Based LC Dendrimers by Manipulating Their Molecular 
Morphology 
2.1. LC Dendrimers with C2 Symmetry 

The LC dendrimer with a C2-symmetry on the basis of a 1,3,5-triamino-s-triazine unit 
was first reported by Lai and colleagues [54]. They prepared the fourth generation LC 
dendrimer 1 by the convergent approach (Figure 1), with a single molecular weight of 
~12,479. Compound 1 is a monotropic material, showing no mesophase during heating 
but a columnar hexagonal phase between ~160 and ~143 °C on cooling. Additionally, com-
pound 1 did not show any significant absorbance beyond 280 nm in the UV-vis spectrum 
and started to decompose at 300 °C under nitrogen by TGA analysis, which is an im-
portant characteristic required for opto- and electro-applications. However, the third gen-
eration triazine-based dendrimer 2 did not exhibit mesogenic behavior on thermal treat-
ment, isotropic at ~133 °C on heating, and crystallized at ~98 °C on cooling. Computer 
simulations for the conformations of dendrimers 1 and 2 showed that the steric effect from 
the peripheral skeleton of 1 is more significant than that of 2 [54], i.e., the dendritic con-
formation of 1 is less coplanar due to congestion between the branched mainframe, thus 
reducing the face-to-face π–π interactions between dendritic molecules and forming the 
columnar phase on thermal treatment. Compared with traditional disk molecules, den-
drimer 1 with a C2-symmetry having a columnar LC phase on cooling, is unusual. To ex-
hibit columnar mesophases, the traditional C2-symmetry molecules may consist of a mac-
rocyclic core [56,57]. Introducing a chiral core to result in helical stacking columns by 
modulating the intermolecular π–π interaction between molecules is another approach 
[58]. 

Scheme 2. Reaction of amines with cyanuric chlorides at different temperatures.

2. Formation of Triazine-Based LC Dendrimers by Manipulating Their Molecular
Morphology
2.1. LC Dendrimers with C2 Symmetry

The LC dendrimer with a C2-symmetry on the basis of a 1,3,5-triamino-s-triazine unit
was first reported by Lai and colleagues [54]. They prepared the fourth generation LC
dendrimer 1 by the convergent approach (Figure 1), with a single molecular weight of
~12,479. Compound 1 is a monotropic material, showing no mesophase during heating
but a columnar hexagonal phase between ~160 and ~143 ◦C on cooling. Additionally,
compound 1 did not show any significant absorbance beyond 280 nm in the UV-vis
spectrum and started to decompose at 300 ◦C under nitrogen by TGA analysis, which is an
important characteristic required for opto- and electro-applications. However, the third
generation triazine-based dendrimer 2 did not exhibit mesogenic behavior on thermal
treatment, isotropic at ~133 ◦C on heating, and crystallized at ~98 ◦C on cooling. Computer
simulations for the conformations of dendrimers 1 and 2 showed that the steric effect
from the peripheral skeleton of 1 is more significant than that of 2 [54], i.e., the dendritic
conformation of 1 is less coplanar due to congestion between the branched mainframe,
thus reducing the face-to-face π–π interactions between dendritic molecules and forming
the columnar phase on thermal treatment. Compared with traditional disk molecules,
dendrimer 1 with a C2-symmetry having a columnar LC phase on cooling, is unusual. To
exhibit columnar mesophases, the traditional C2-symmetry molecules may consist of a
macrocyclic core [56,57]. Introducing a chiral core to result in helical stacking columns by
modulating the intermolecular π–π interaction between molecules is another approach [58].

2.2. LC Dendrimers with C3 Symmetry

In addition, deforming the planarity of trigonal disk molecules to reduce face-to-
face π–π interactions in traditional molecules can also lead to the formation of columnar
mesophases [59]. Therefore, changing the shape of the rigid cores can be an efficient
approach for preparing dendrimers with columnar LC phases, and thus two C3-symmetry
dendrimers based on a triazine unit have been reported (Figure 2) [60]. Dendrimer 3, with a
molecular weight of ~9248, is a monotropic material, which did not exhibit any mesogenic
behavior on heating but showed a columnar phase between ~137 and ~100 ◦C on cooling.
Dendrimer 4 exhibited a columnar phase from ~141 to ~173 ◦C on heating and from ~168
to ~136 ◦C on cooling.

As demonstrated by dendrimers 1 and 2, high molecular weight deforms the planar
mainframe of dendritic molecules and leads to the formation of LC phases on thermal
treatment. However, the molecular weight of dendrimer 4 (~4423) is much smaller than
that of dendrimer 2 (~6034). Apparently, the C2-to-C3 approach significantly changes
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planarity of the internal mainframe of dendrimers. Thus 4 exhibits a columnar LC phase
during the thermal process although there is less congestion from the dendritic mainframe
when compared with that of 2.
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Figure 1. Structures of dendrimers (1) and (2) with C2-symmetry. 
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2.3. LC Dendrimers with the Loss of C2 Symmetry by Changing the Peripheral Groups

Reducing the intermolecular face-to-face π–π interactions between the molecules of
triazine-based dendrimer seems to be a good strategy for forming mesogenic phases on
thermal treatment. According to literature [61], mixing two pure components can reduce the
molecular interaction in the solid state, and thus lowers the melting point of the mixture. For
example, the m.p. of (R)-(−)-2-amino-1-propanol is ~24–26 ◦C, which is the same as that of
(S)-(+)-2-amino-1-propanol, but the m.p. of the 1:1 mixture of these two components drops
to ~8–10 ◦C. Accordingly, four triazine-based LC dendrimers were prepared (Figure 3) [62].
Dendrimer 5, with the loss of the C2-symmetry, exhibited a columnar phase from ~95 to
~152 ◦C on heating and from ~147 to ~64 ◦C on cooling. Dendrimer 6, also with the loss
of the C2-symmetry, is a monotropic material, only showing a columnar phase between



Nanomaterials 2021, 11, 2112 5 of 14

~123 and ~145 ◦C on heating. Dendrimers 7 and 8, with a C2-symmetry, did not exhibit
any mesogenic phase on thermal treatment. Dendrimer 7 became isotropic at ~132 ◦C
on heating and crystallized at ~117 ◦C on cooling; and dendrimer 8 became isotropic at
~229 ◦C on heating and solidified at ~221 ◦C on cooling. Dendrimers 5, 6, 7, and 8 all have
similar molecular weights of ~2368, ~2030, ~2813, and ~2363, respectively. Based on the
molecular simulation investigations [62], they are almost co-planar and the congestions
between their dendritic frameworks are negligible. However, dendrimers 5 and 6 are
isomeric. As shown in Figure 4, dendrimers 5 or 6, in principle, can be produced from the
combination of the corresponding Cl-dendron and piperazino-dendron, respectively. Each
dendron consists of at least four isomers, and therefore, dendrimers 5 and 6 have many
isomers in their solid stackings, reducing their intermolecular face-to-face π–π interactions
and forming LC phase during the thermal process.
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2.4. LC Dendrimers with the Loss of C2 Symmetry by Changing the Central Cores

Partially changing the peripheral group to break C2-symmetry of molecules can
lead dendrimers to contain isomers, and face-to-face π–π interactions between dendritic
molecules are thus modulated to form the LC phase with thermal treatment. This strategy
can also be applied to central linkers of dendrimers. With the peripheral group fixed
by the dialkylamino units, the central linker is modulated as C5H10, C4H8, C3H6, and
C2H4 (Figure 5) [63]. Dendrimers 9 and 11, with the odd-number carbon linker in the
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dendritic core, are LCs. Dendrimer 9 was observed to exhibit a columnar phase from
~109 to ~168 ◦C on heating and from ~146 to ~87 ◦C on cooling. Dendrimer 11 showed
a columnar phase between ~107 and ~144 ◦C on heating and between ~115 and ~81 ◦C
on cooling. Dendrimers 10 and 12 with the even-number carbon linker in the dendritic
core are not liquid crystalline. The solid-phase-to-isotropic-phase (solid-to-iso) transition
temperatures for dendrimers 10 and 12 are ~132 and ~147 ◦C, respectively, on heating, and
the isotropic-phase-to-solid-phase (iso-to-solid) transition temperatures for 10 and 12 are
~100 and ~90 ◦C, respectively, on cooling.
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Molecular weights for dendrimers 9–12 are similar: ~6050, ~6036, ~6022, and ~6008,
respectively. A computer simulation for molecular conformations of dendrimers 9 and
10 showed that 9 is asymmetrical and 10 is symmetrical along with the central linkers,
and a diagram can show their differences [63]. As shown in Figure 6, dendrimer 10, with
a 4-carbon linker in the dendritic core, allows the dendronic halves to be located at the
anti-position of the C4H8 linker to reduce repulsions between Hs (at C2 and C3) and the
dendronic halves. Therefore, the molecular conformation of 10 is almost symmetrical.
Accordingly, dendrimer 11 with a 3-carbon linker leads both the dendronic halves to
exist in the syn-position of the C3H6 linker to reduce corresponding repulsions; in this
conformation, two isomers of dendrimer 11 should exist since the left dendronic half may
be on the top or bottom of the right dendronic half (Figure 6). Because of the isomeric effect,
the intermolecular face-to-face π–π interactions are reduced in the solid stacking, and the
columnar phases of dendrimers 9 and 11 are thus formed on thermal treatment. To further
understand the isomeric effect on influencing their stackings in LC state, their molecular
volumes (Vm) and cell volumes (Vcell) were calculated on the basis of powder-XRD data of
dendrimers 9 and 11 [63]. Since the calculated volumes are temperature-dependent, and
the XRD data for 9 and 11 were collected at different temperatures, the Vm/Vcell ratios,
instead of Vm or Vcell, were compared to remove the temperature factor. The Vm/Vcell
ratios of 9 and 11 were calculated to be ~1.03 and ~0.95, respectively. For the non-mesogenic
compounds 10 and 12, crystalline XRD data were also used for calculation, assuming that
both formed the columnar hexagonal crystalline phase; the Vm/Vcell ratios of 10 and 12
were estimated to be ~0.92 and ~0.87, respectively.
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The ratios of Vm/Vcell for 9 and 11 are larger than those for 10 and 12, indicating that
the stackings of 9 and 11 in the solid state are somewhat looser than those of 10 and 12.
This further indicates that the isomeric effect on dendrimers can probably modulate the
face-to-face π–π interactions between dendritic molecules.

As indicated previously, the repulsion between dendronic halves and the Hs (at C2 or
C3) significantly influences the conformation of dendrimer 10. If the central linker of 10
was methylated on nitrogen, then the repulsion between Me and the Hs (at C2 or C3)
should increase, although the repulsion should be smaller than that between the dendronic
halves and the corresponding Hs (at C2 or C3). However, this should convert several of
the dendronic halves at the anti-position of C4H8 linker to the syn-position. Specifically,
dendrimer 13 should have three isomers in the solid state, as shown in Figure 7 [64],
although most of the 13 exists as the form of isomer 13-I and, as expected, dendrimer 13
exhibited a columnar phase on thermal treatment (Figure 8). The mesogenic range is from
~111 to ~123 ◦C on heating and from ~115 to ~94 ◦C on cooling. Accordingly, dendrimer 14
has three isomers in the solid state but showed only a columnar phase between ~94 and
~72 ◦C on cooling without showing any mesogenic behavior on heating.

The solid-to-iso transition temperatures of dendrimers 10 and 12 on heating are ~132
and ~147 ◦C, respectively, which are higher than those of corresponding dendrimers 13
and 14 (~118 and 123 ◦C, respectively). This indicates that methylation of nitrogen in
the central linker affects their molecular morphology and somewhat loosens their solid
stacking. Based on the powder-XRD data of dendrimers 13 and 14, their ratios of Vm/Vcell
were also calculated. The Vm/Vcell ratio of 13 was ~0.92, similar to that of 10 (~0.92) and
the Vm/Vcell ratio of 14 was ~0.80, which is smaller to that of 12 (~0.87).
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Although methylation of nitrogens in the central linker of dendrimers converts non-
mesogenic 10 and 12 to become mesogenic 13 and 14, respectively, the isomeric effect seems
to not be significant in reducing intermolecular face-to-face π–π interactions, allowing
dendrimers 13 and 14 to be looser in the solid stacking than dendrimers 10 and 12. Based
on the optimal conformation of 13 [64], it was discovered that four intramolecular H-bond
interactions arise between Na (a = 7, 8, 9, 10) and H (at Cb; b = 1, 4, 5, 6), respectively, as
shown in Figure 9. Accordingly, only two intramolecular H-bond interactions arise between
Na (a = 5, 6) and H (at Cb; b = 1, 4,) in dendrimer 10. Therefore, dendrimer 13 that mostly
exists in the form of 13-I should be more rigid and is less distorted than dendrimer 10, and
therefore the void space inside the solid stacking of 10 should be larger than that inside
the dendritic framework of 13-I. However, because of the isomeric effect, the face-to-face
π–π interactions between dendritic molecules of 13 is reduced and therefore its dendritic
framework is fluffier. As a result, dendrimers 10 and 13 have almost the same Vm/Vcell
ratio (~0.92) on the basis of balancing the two conflicting factors. When the central linker
is shortened, congestion from dendritic halves of 12 is more vigorous and the distortion
allows dendrimer 12 to become more porous. Therefore, the Vm/Vcell ratio of 12 (~0.87) is
larger than that of 14 (~0.80).
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and (13).

The central linkers in triazine-based dendrimers significantly influence their morphol-
ogy and consequently affect the formation of the mesophase during the thermal process.
Instead of N-alkylation of an even-number carbon central linker, this strategy was also
undertaken to an odd-number carbon central linker. As dendrimer 11 has already been
observed to exhibit a columnar phase on thermal treatment, a strong CN polar group was
incorporated in the central linker to investigate its influence on the mesogenic behavior.
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Dendrimers 15 and 16 were therefore further prepared for studying their LC properties
(Figure 10) [65]. Dendrimer 15 exhibited a columnar phase between ~102 and ~118 ◦C on
heating and between ~115 and ~82 ◦C on cooling. Dendrimer 16 showed a columnar phase
from ~88 to ~144 ◦C on heating and from ~138 to ~68 ◦C on cooling. Compared with the
DSC behaviors of 11, the solid-to-iso transition temperature of 15 (~118 ◦C) was lower than
that of 11 (~144 ◦C) on heating, indicating that the alkylation on N in the central linker
increased the steric congestion of triazine-based dendrimer and somewhat loosened their
solid stacking as shown in the study of dendrimers 10, 12, 13 and 14. The solid-to-iso tran-
sition temperature of 16 (~144 ◦C) was similar to that of 11 (~144 ◦C), and the mesogenic
range of 16 on cooling (from ~138 to ~68 ◦C) was broader than that of 11 (from ~115 to
~81 ◦C). The CN group in the central linker not only lowered the solidifying temperature
but also raised the isotropic-phase-to-columnar-mesophase (iso-to-col) transition temper-
ature on cooling. In principle, the steric congestion from benzyl moiety in the central
linker of dendrimers 15 should not differ from and 4-cyanobenzyl moiety in 16, but their
mesogenic behaviors on thermal treatment are significantly different. The strong polarity
of the CN group strengthens intermolecular interactions between face-to-face dendritic
molecules. For further understanding, the Vm/Vcell ratios of 15 and 16 were estimated on
the basis of their powder-XRD data as ~0.80 and ~0.98, respectively. The Vm/Vcell ratio
of dendrimer 16 was larger than that of 11 (~0.95), but that of dendrimer 15 was smaller,
indicating that the loose order of their stacking is 16 > 11 > 15. As dendrimers 11, 15, and 16
all show a columnar phase in the mesogenic range, the face-to-face distances between two
dendritic molecules (dslice) for 11, 15, and 16 can be obtained from the powder-XRD data in a
similar manner and are calculated to be 13.14, 13.28, and 13.68 Å, respectively. The Vm/Vcell
ratios and dslice distances show that the strong polarity of CN group significantly increased
the face-to-face distance between dendritic molecules within columns. This reasonably
explains that the col-to-solid transition temperature on cooling of 16 is lower than those
of 11 and 15. However, as indicated previously, the solid-to-iso transition temperature
of 16 (~144 ◦C) is similar to that of 11 (~144 ◦C) on heating, which can also be ascribed to
the strong polarity of the CN group. During the heating process, the strong intermolecular
polar-to-polar interactions within columns led dendrimer 16 to have the same solid-to-iso
transition temperature as 11, although the stacking of 16 was looser. Neither dendrimer 11
nor 15 contains any functional group in the central linker, but the dslice distance of 15 within
columns is 13.28 Å, only slightly larger than that of 11 (13.14 Å). The more void space
between dendritic molecules of 15 is occupied by the benzyl group, which results in the
lower Vm/Vcell ratio of 15 (0.80) versus that of 11 (0.95). Since the dslice distances of 11 and
15 do not differ from each other, the mesophase ranges of both dendrimer are also similar
to each other.

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

space between dendritic molecules of 15 is occupied by the benzyl group, which results 
in the lower Vm/Vcell ratio of 15 (0.80) versus that of 11 (0.95). Since the dslice distances of 11 
and 15 do not differ from each other, the mesophase ranges of both dendrimer are also 
similar to each other. 

 
Figure 10. Structures of dendrimers (15) and (16). 

3. Formation of Triazine-Based LC Dendrimers by Adding Extra Components 
3.1. Formation of LC Dendrimers by Intermolecular π–π Interaction 

In addition to manipulating the morphology of dendritic molecules to form their LC 
phase, mixing extra components to non-liquid-crystalline (non-LC) triazine-based den-
drimers can lead to the mesophase formation. Dendrimers 17 and 18 were reported to be 
non-LC on thermal treatment (Figure 11) [55]. Compound 17 became isotropic at ~66 °C 
on heating but no transition was observed on cooling. Compound 18 became isotropic at 
~57 °C on heating and crystallized at ~32 °C on cooling. After mixing with 1:1 molar ratio 
of trinitrofluorenone (TNF), the mixture of 17-TNF showed a columnar phase between 
~56 and ~78 °C on heating but still no transition was observed on cooling. The mixture of 
18-TNF exhibited a columnar phase from ~51 to ~102 °C on heating and from ~97 °C to 
room temperature on cooling [55]. It is believed that TNF forms a complex mixture with 
17 or 18 through the face-to-face π-π interactions, thereby adjusting the distance between 
dendritic molecules and showing LC phases on thermal treatment. 

 
Figure 11. Structures of dendrimers (17) and (18). 

Figure 10. Structures of dendrimers (15) and (16).



Nanomaterials 2021, 11, 2112 10 of 14

3. Formation of Triazine-Based LC Dendrimers by Adding Extra Components
3.1. Formation of LC Dendrimers by Intermolecular π–π Interaction

In addition to manipulating the morphology of dendritic molecules to form their
LC phase, mixing extra components to non-liquid-crystalline (non-LC) triazine-based
dendrimers can lead to the mesophase formation. Dendrimers 17 and 18 were reported to
be non-LC on thermal treatment (Figure 11) [55]. Compound 17 became isotropic at ~66 ◦C
on heating but no transition was observed on cooling. Compound 18 became isotropic at
~57 ◦C on heating and crystallized at ~32 ◦C on cooling. After mixing with 1:1 molar ratio
of trinitrofluorenone (TNF), the mixture of 17-TNF showed a columnar phase between
~56 and ~78 ◦C on heating but still no transition was observed on cooling. The mixture of
18-TNF exhibited a columnar phase from ~51 to ~102 ◦C on heating and from ~97 ◦C to
room temperature on cooling [55]. It is believed that TNF forms a complex mixture with 17
or 18 through the face-to-face π-π interactions, thereby adjusting the distance between
dendritic molecules and showing LC phases on thermal treatment.
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3.2. Formation of LC Dendrimers by Intermolecular H-Bond Interaction

Apart from the face-to-face π–π interactions, the LC dendritic mixtures can also
be formed by the intermolecular H-bond interaction. Mixing 2,4-diamino-6-dodecyl-
1,3,4- triazine with carboxylic acid-containing dendron in a 1:3 ratio generates H-bonded
dendrimers 19 and 20, as shown in Figure 12 [66]. The acid-containing dendrons 21 and 22
did not exhibit any mesophase on thermal treatment. Compound 21 showed only a glass-
phase-to-isotropic-phase (glass-to-iso) transition temperature at ~52 ◦C on heating, and
compound 22 showed a glass-to-iso transition temperature at ~46 ◦C on heating. Instead
of a columnar phase, dendrimer 19 exhibited a nematic phase between ~4 and ~35 ◦C on
heating, and dendrimer 20 was observed to exhibit a SmA phase from ~43 and ~70 ◦C
on heating. Neither dendrimers nor dendrons were reported to show any mesophase on
cooling. A carbazole unit was incorporated in dendrimers and dendrons for studying their
photoconductivities, but the performances of dendrons 21 and 22 were slightly better than
those of dendrimers 19 and 20, respectively.
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4. Possible Applications 
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nearly transparent beyond 280 nm in the UV/Vis range [54]. Moreover, these dendrimers 
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in a long-range domain. In solvating guest materials, such as carbon nanotubes and nano-
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significantly displayed [28–34]. As shown in the introduction, dendrimers have been 
shown to be useful in the fields of catalysis [10–16] and light harvesting [17–22]. With the 

Figure 12. Structures of dendrimers (19) and (20) and and dendrons (21) and (22).

4. Possible Applications

As shown in the literature, the triazine-based LC dendrimers are thermally stable and
nearly transparent beyond 280 nm in the UV/Vis range [54]. Moreover, these dendrimers
are electrochemically stable in solution and can survive in acidic media for a period of
time [52]. These characteristics are important and are often required for opto- and electro-
applications. In addition, LC dendrimers often have a high molecular weight, exhibiting
columnar phases on thermal treatment and thus exhibiting good self-assembling ability in
a long-range domain. In solvating guest materials, such as carbon nanotubes and nano-
size catalysts, the LC dendrimers can lead the physical properties of guest molecules to
be significantly displayed [28–34]. As shown in the introduction, dendrimers have been
shown to be useful in the fields of catalysis [10–16] and light harvesting [17–22]. With the
assistance of LC dendrimers, the guest molecules should be more regularly arranged, thus
exhibiting their physical characteristics significantly.

5. Conclusions and Prospect

Three approaches have been described to prepare triazine-based dendrimers with
mesogenic phase on thermal treatment. The first is to properly incorporate mesogenic units
onto triazine and piperazine framework in a straightforward manner by molecular design.

The second approach is to mix components to form LC dendritic mixtures by ad-
justing intermolecular face-to-face π–π interactions, which is valuable for 1,3,5-triamino-
s-triazine-based LC dendrimers. The mixing approach allows versatile preparation of
1,3,5-triamino-s-triazine-based dendrimers, which were observed to form strong π–π inter-
actions with tetrafluorbenzoquinone (TFB) in CH2Cl2, and the red shift of absorbance from
the dendrimer-TFB complexes in the UV-Vis spectra can be up to ~180 nm [67].

Intermolecular H-bond interactions can also be applied to prepare 1,3,5-triamino-s-
triazine-based dendrimers with the columnar phase. Figure 13 shows an example of a
central core with a C2 symmetry that can be efficiently prepared according to the litera-
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tures [62–67]. Incorporating special functional groups at the periphery of dendrons can
give desired physical properties to the LC triazine-based dendritic mixtures. Although
the photoconductivity of the resulting dendrimers from the mixtures of 2,4-diamino-6-
dodecyl-1,3,4-triazine and the corresponding dendrons is not better than those of dendrons
alone, this property may be improved if columnar phases are formed on the thermal treat-
ment of the dendritic mixtures since these columnar mesogens show better long-range
self-assembling ability. Compound 23 may be likely to form columnar mesophases when
treated with proper acid-containing dendrons.
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