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Background. Next-generation sequencing enables massively parallel processing, allowing lower cost than the other sequencing
technologies. In the subsequent analysis with the NGS data, one of the major concerns is the reliability of variant calls. Although
researchers can utilize raw quality scores of variant calling, they are forced to start the further analysis without any
preevaluation of the quality scores. Method. We presented a machine learning approach for estimating quality scores of variant
calls derived from BWA+GATK. We analyzed correlations between the quality score and these annotations, specifying
informative annotations which were used as features to predict variant quality scores. To test the predictive models, we
simulated 24 paired-end Illumina sequencing reads with 30x coverage base. Also, twenty-four human genome sequencing reads
resulting from Illumina paired-end sequencing with at least 30x coverage were secured from the Sequence Read Archive. Results.
Using BWA+GATK, VCFs were derived from simulated and real sequencing reads. We observed that the prediction models
learned by RFR outperformed other algorithms in both simulated and real data. The quality scores of variant calls were highly
predictable from informative features of GATK Annotation Modules in the simulated human genome VCF data (R2: 96.7%,
94.4%, and 89.8% for RFR, MLR, and NNR, respectively). The robustness of the proposed data-driven models was consistently
maintained in the real human genome VCF data (R2: 97.8% and 96.5% for RFR and MLR, respectively).

1. Introduction

With the development of next-generation sequencing (NGS)
technology, progress has been made in the field of bioinfor-
matics. The most important reason for this is that this new
data type is large and classical methods are slow and not
repeatable for doing the relevant analysis. Analysis pipeline
of NGS data is given in Figure 1. The most important stage
of this process is the stage of the alignment and variant call-
ing defined as secondary analysis. Industry standard of the
secondary analysis pipeline is Burrows-Wheeler Aligner
(BWA) and the Genome Analysis Toolkit (GATK), which
are part of the Broad Institute’s best practices analysis pipe-
line [1–4]. The GATK best practices provide step-by-step
recommendations for performing variant discovery analysis

in high-throughput sequencing (HTS) data [1]. One of the
most important data obtained from this pipeline is Variant
Calling Format (VCF) file.

VCF is a text file format (most likely stored in a com-
pressed manner). It contains metainformation lines, a header
line, and then data lines each containing information about
a position in the genome and for storing gene sequence
variations. The format also has the ability to contain geno-
type information on samples for each position [5]. VCF
files are flexible with eight fixed fields including chromosome
(CHROM), position (POS), known variant IDs such as
dbSNP identifications (ID), reference allele (REF), alternate
allele(s) (ALT), variant quality score (QUAL), filter infor-
mation summarizing why a variant was or was not consid-
ered valid by the variant calling software (FILTER), and an
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information field (INFO) [6]. One of the major parameters
of VCF files is Phred-scaled quality score (QUAL). 1000
Genomes Project defined VCF as follows.

QUAL Phred-scaled quality score for the assertion made
in ALT, i.e., give -10log_10 prob (call in ALT is wrong). If
ALT is “.” (no variant), then this is -10log_10 p(variant),
and if ALT is not “.,” this is -10log_10 p (no variant). High
QUAL scores indicate high confidence calls. Although
traditionally people use integer Phred scores, this field is per-
mitted to be a floating point to enable higher resolution for
low-confidence calls if desired [7]. The importance of QUAL
data came from its meaning: QUAL tells us how confident we
are that there is some kind of variation at a given site. The
variation may be present in one or more samples [7, 8].

Quality scores can be analyzed and their distributions
can be checked with different tools such as SAMtools [9]
and R-Bioconductor VariantAnnotation package [10]. BWA
+GATK best practices will create VCF files with QUAL, and
researchers are using this data for filtering, merging the varia-
tions in their studies. Therefore, QUAL is one of the impor-
tant parameters of VCF files.

Machine learning prediction algorithms are very helpful
for understanding and extracting the relevant information
of genomics data sets. Wood et al. developed a machine
learning approach called Cerebro that increased the accuracy
of calling validated somatic mutations in tumor samples
from cancer patients [11]. Trakadis et al. present a novel
predictor which could potentially enable studies exploring

disease-modifying intervention in the early stages of the dis-
ease with supervised machine learning (ML) methods [12].
Kawash et al. present ARIADNA (ARtificial Intelligence for
Ancient DNA), a novel approach based on machine learning
techniques, using specific aDNA characteristics as features to
yield improved mutation call [13]. We can give different
examples of using ML on genomics.

In this study, we developed a ML model that can predict
the “expected QUAL scores of VCF files.” The reason behind
this aim is researchers directly using the results of secondary
analysis pipelines without checking the parameters. On the
other hand, repeatability of the secondary analysis is a big
question for most of the implementations. If researchers do
not have “concordant secondary analysis pipelines,” they will
have different VCF files. This will directly affect the QUAL
scores which are used for filtering and QC purposes.
Researchers can predict the expected QUAL scores and our
model and trust their VCF files.

2. Materials and Methods

2.1. Data Set. In order to assess the predictive power of the
regression models, synthetic human genomes, as well as real
human genomes, were used in our evaluation. The simulation
of the human genomes was conducted with the sophisticated
genomic simulator, VarSim, considering the full spectrum of
variants [14]. The VarSim perturbs human reference genome
by injecting a wide range of variants, including single-
nucleotide variants, small indels, and large structural variants
into the reference genome. In total, twenty-four diploid
genomes were synthesized based on GRCh37/hg19 human
genome assembly with germline mutations which are sam-
pled from comprehensive genetic variation databases (dbSNP
and DGV) [15, 16]. The execution parameters adjusting the
number of each variant type of synthetic genome were varied
according to the distributions of the number of variants of five
different continental groups reported by the 1000 Genomes
Project [17]. Sequentially, we simulated next-generation
sequencing reads based on the synthetic human genomes
using ART, which was used as a primary tool for the sim-
ulation study of the 1000 Genomes Project [18]. The
empirical read quality profile derived from large real
sequencing data was utilized to simulate sequencing errors
when ART simulated paired-end Illumina sequencing reads
with ×30 coverage.

In addition to synthetic human genomes, real human
genome sequencing reads were secured from the Sequence
Read Archive (SRA) of the National Center for Biotechnol-
ogy Information (NCBI) [19]. We collected the twenty-
four whole-genome sequencing reads which resulted from
Illumina paired-end sequencing with at least ×30 coverage
using SRA toolkit 2.8.2.

2.2. Variant Calling. For both simulated and real sequencing
reads, variants were called using Microsoft Genomics Service
which is an advanced optimization of Broad Institute’s
best practices pipeline for genome reassembly—the
Burrows-Wheeler Aligner (BWA) and the Genome Analysis
Toolkit (GATK). Microsoft Genomics Service accelerates

Secondary analysis

BAM/FASTQ

BWA-MEM

Mark duplicates

Base
recalibrator

Samtools index

GATK
haplotypeCaller

Figure 1: Analysis pipeline of secondary analysis of NGS data.
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the secondary analysis of genomes by fully parallelizing
alignment and variant calling process on the cloud hardware.
The sequencing reads were aligned to the human reference
genome (GRCh37/hg19), and the genotypes were called
with parallelization of GATK HaplotypeCaller supported by
Microsoft Genomics Service.

2.3. Transforming Variant Calling Format into Machine
Learnable Structure. The variant calls of the secondary anal-
ysis powered by Microsoft Genomics Service were obtained
in the form of variant call format (VCF). We have used
R-Bioconductor “VariantAnnotation” [10] package to import
VCF files into an R environment and to convert the imported
VCF data into a data frame object in which INFO and geno-
type fields and their values for each variant were extracted as
well as FIXED fields. Table 1 shows the details of various fields
that were used as learning features of each called variant for
the following machine learning step.

2.4. Building Predictive Models. Prediction models were
trained on VCF data containing various fields derived from
the variant caller. These fields accommodating the technical
values of GATK Annotation Modules for each variant call

were used as features for regression models to estimate
quality score. We empirically selected informative features,
including “Allele count” (AC), approximate read depth
(DP), and allelic depths (AD) based on correlations between
quality score and other features averaged across the simu-
lated samples (Figure 2). To avoid unfair prediction, it was
prohibited to include Phred-scaled likelihoods (PL) in learn-
ing features as it directly derives quality score. Also, dupli-
cated features that are simply statistics of other features or
scaled values originated from other features were excluded
in feature selection step. Adjusted Pearson correlation coeffi-
cients for selected features are as follows: simulated data set:
AC (0.625), DP (0.366), and AD (-0.291) (Figure 2); real data
set: AC (0.639), DP (0.366), and AD (-0.261) (Figure 3).

We applied threemachine learning algorithms to estimate
a quality score of each variant call: multivariate linear regres-
sion, random forest regression, and neural network regres-
sion. Multivariate linear regression is simple and widely
used as a basic step in regression analysis, which attempts to
model a linear relationship between multiple independent
variables and dependent variable by minimizing estimation
errors. Random forest regression is a nonparametric regres-
sion method that aggregates results of regression trees.

Table 1: VCF fields extracted by VariantAnnotation package.

Category Field Type Description

INFO

AC Integer Allele count in genotypes, for each ALT allele, in the same order as listed

DB Flag dbSNP membership

DP Integer Approximate read depth: some reads may have been filtered

FS Float Phred-scaled p value using Fisher’s exact test to detect strand bias

MQ Float RMS mapping quality

SOR Float Symmetric odds ratio of 2 × 2 contingency table to detect strand bias

GENO
AD Integer Allelic depths for the ref and alt alleles in the order listed

GQ Integer Genotype quality

FIXED QUAL Float A quality score associated with the inference of the given alleles

AC DB DP FS MQ SOR AD GQ QUAL

AC 1.000

DB –0.017 1.000

DP –0.156 0.059 1.000

FS –0.352 0.026 0.211 1.000

MQ 0.098 –0.017 –0.189 –0.275 1.000

SOR –0.022 0.011 0.077 0.651 –0.340 1.000

AD –0.628 0.035 0.736 0.369 –0.255 0.158 1.000

GQ –0.151 0.007 0.151 0.036 0.187 –0.126 0.085 1.000

QUAL 0.625 0.038 0.366 –0.191 0.078 –0.085 –0.291 0.104 1.000

Figure 2: Average correlation coefficient matrix of simulated 24 data sets.
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Random forest regression algorithm draws bootstrap samples
from the original data and grows regression tree for each of the
bootstrap samples by choosing the best split at each node from
randomly sampled predictors. We obtained optimal parame-
ters of the number of trees in a forest (ntree) and the number
of randomly sampled predictors that are used as candidates
for best split at each node (mtry) using partially manual grid
search (ntree = 10 and mtry = 2). Neural network regression
was conducted by constructing a neural network which
consists of input, hidden, and output layers, sequentially.
Each layer contains one or multiple nodes, and each of
which receives a weighted summation of its inputs in the
preceding layer.

The weights of nodes are randomly assigned in an initial
stage and are adjusted in each iteration until the output layer
produces an optimal solution or the iteration reaches the
maximum iteration boundary. Each node in the input layer
takes the value of each variable in the input data vector.
The output layer has a single output node estimating a qual-
ity score. With partially manual grid search, we obtained
optimal parameters for learning task: node size of the learn-
ing rate = 0:01, hidden layer = 12, maximum iteration = 500,
and decay = 0:01.

In a learning scheme, each VCF data is split into training
data containing 80% of whole data points and test data

having the rest of the data points. Regression models were
trained on the training data and evaluated on the test data.
Prediction performance of regression models was evalu-
ated with five measurements, including R squared (R2),
root-mean-square error (RMSE), relative squared error
(RSE), mean absolute error (MAE), and relative absolute
error (RAE).

3. Results

We built data-driven predictive models for estimating quality
scores of variant calls in VCF data derived from 24 simulated
human genome reads and 24 real human genome reads using
supervised machine learning techniques. Three learning
algorithms, multivariate linear regression (MLR), random
forest regression (RFR), and neural network regression
(NNR), were used to train models based on the most infor-
mative features of GATK Annotation Modules for prediction
of quality scores. R2 and error measurements were averaged
over the simulated data set as shown in Table 2. The result
shows that quality scores of variant calls are highly predict-
able from informative features of GATK Annotation
Modules in simulated human genome VCF data. Interest-
ingly, the prediction models learned by RFR outperform
other models with an average R2 of 96.7%. The other

AC DB DP FS MQ SOR AD GQ QUAL

AC 1.000

DB –0.020 1.000

DP –0.176 0.059 1.000

FS –0.362 0.039 0.211 1.000

MQ 0.098 –0.017 –0.199 –0.275 1.000

SOR –0.032 0.011 0.077 0.671 –0.342 1.000

AD –0.688 0.035 0.736 0.368 –0.265 0.158 1.000

GQ –0.151 0.008 0.161 0.036 0.197 –0.116 0.084 1.000

QUAL 0.639 0.040 0.366 –0.191 0.078 –0.085 –0.261 0.104 1.000

Figure 3: Average correlation coefficient matrix of real 24 data sets.

Table 2: Prediction result for 24 simulated VCFs.

Metric Machine learning algorithm R2 RMSE RSE MAE RAE

Average

MLR 0.944 181.726 0.056 114.624 0.196

RFR 0.967 139.537 0.033 49.050 0.084

NNR 0.898 212.891 0.102 110.602 0.189

Standard deviation

MLR 0.003 4.346 0.003 3.180 0.007

RFR 0.004 8.387 0.004 1.254 0.003

NNR 0.191 124.380 0.191 100.858 0.172

MLR: multivariate linear regression; RFR: random forest regression; NNR: neural network regression; RMSE: root-mean-square error; RSE: relative squared
error; MAE: mean absolute error; RAE: relative absolute error.
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algorithms, MLR and NNR, also represent high predictive
power (94.4% for MLR and 89.8% for NNR). In addition,
RFR achieved lowest error in all four error measurements,
including RMSE, RSE, MAE, and RAE.

Robustness of the proposed data-driven models for pre-
dicting quality scores was consistently maintained in VCF
data of real human genomes (Table 3). The highest predictive
accuracy was achieved by models derived from RFR (average
R2 of 97.8%). In addition, MLRmodels show a relatively high
accuracy (an average R2 of 96.5%), whereas NNR models
present a relatively low accuracy (an average R2 of 59.3%).
RFR and MLR models trained on real VCF data resulted in
better performance than those models trained on simulated
VCF data, although the averaged R2 of NNR models trained
on real VCF data was decreased. Accuracies of NNR models
had largely fluctuated across the real VCFs (standard
deviation of R2: 34.5%) as well as simulated ones (standard
deviation of R2: 19.1%). Furthermore, two error measure-
ments, RMSE and RAE, of the models trained on real VCF
data had been increased when compared to that of the
other models trained on simulated data, while both MLR
and RFR models of real VCF data show the reduced RSE
andMAE than that of the corresponding models of simulated
VCF data.

4. Discussion

In this study, we have predicted the expected QUAL scores
with three different ML methods. Based on our results, RF
showed the highest accuracy for the predictions on test sets.
Researchers can develop their own models with their retro-
spective VCF databases. Once they have their VCF files from
the secondary analysis pipelines, they can use AC, DP, and
AD for checking the performance of the pipelines. In general,
for the benchmark, quality scores can be useful for perfor-
mance assessment. Although we have shown our ML results,
we recommend that users can predict their ownQUAL values
with publicly available data like NA12878 (http://www
.internationalgenome.org/data-portal/sample/NA12878).

Another output of the study is showing the difference of
simulated and real data on secondary analysis. There are dif-
ferent simulation approaches in the literature [14–18] but
there is no consensus for the effect of the simulation algo-
rithms on alignment and variant calling phase. In our study,
we have showed that neural network’s performance was dra-
matically decreased on real data set. These results will be
helpful for the researchers who are going to do simulation
and use NN for prediction. On the other hand, MLR is a

baseline model for most of the regression studies. In our
study, we showed that MLR is still valid and useful for pre-
dicting the QUAL on NGS data sets. MLR has statistical
assumptions but we have used three parameters and they
satisfied the assumptions.

Another importance of the approach we used in our
study is the possibility of generalization for other VCF
parameters (DP and QD). In this way, it is possible to per-
form supportive analyses especially for VCF concordance
analysis. When the secondary analysis studies in the litera-
ture are examined, the effects of the parameters on the ML
models are ignored. In our study, a new perspective has been
introduced to the researchers who are planning to work on
this subject. Whole-genome data sets were used in this study.
We are also working on developing ML models for exome
and other panel genome data with the same approach.

5. Conclusion

In summary, we introduced a secure and scalable quality
control workflow for sequence alignment and cohort level
germline variant calling for SNPs and indels. Our approach
leverages the elastic computing and largely follows common
bioinformatics best practices for germline variant calling.
Our optimized implementations of specific components
accelerate the research projects, shortening the concordance
analysis time from sequence data to cohort level variant calls.

The most important problem of genetic studies in recent
years is repeatability, consistency, and high cost. Thanks to
this study, genetic data control can be performed easily in
research projects with budget constraints. The proposed
approach is to make experiments that can be repeated more
difficult, rather than predicting an already known variable:
quality score. In particular, such cloud-based algorithms are
expected to produce much cheaper and much more reliable
tools with machine learning and deep learning.

Data Availability

Real and Simulated data can be found from: https://aka.ms/
genomicseducation.

Disclosure

Initial results of this study was presented at the American
Society of Human Genetics Conference 2018 as a poster in
bioinformatics session [20].

Table 3: Prediction result for 24 real VCFs.

Metric Machine learning algorithm R2 RMSE RSE MAE RAE

Average

MLR 0.965 250.403 0.036 88.170 0.302

RFR 0.978 205.793 0.023 26.474 0.085

NNR 0.593 804.970 0.409 180.281 0.599

Standard deviation

MLR 0.015 44.463 0.015 12.665 0.081

RFR 0.005 39.842 0.005 7.604 0.013

NNR 0.345 448.786 0.344 91.056 0.286
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