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a b s t r a c t

In the advent of the novel coronavirus epidemic since December 2019, governments and authorities
have been struggling to make critical decisions under high uncertainty at their best efforts. In
computer science, this represents a typical problem of machine learning over incomplete or limited
data in early epidemic Composite Monte-Carlo (CMC) simulation is a forecasting method which
extrapolates available data which are broken down from multiple correlated/casual micro-data sources
into many possible future outcomes by drawing random samples from some probability distributions.
For instance, the overall trend and propagation of the infested cases in China are influenced by the
temporal–spatial data of the nearby cities around the Wuhan city (where the virus is originated from),
in terms of the population density, travel mobility, medical resources such as hospital beds and the
timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the
underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future
events, and the correctness of the composite data relationships. In this paper, a case study of using
CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic
insights about the epidemic development is experimented. Instead of applying simplistic and uniform
assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction
of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC
outputs complemented by min–max rules that foretell about the extreme ranges of future possibilities
with respect to the epidemic.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

On top of devastating health effects, epidemic impacted hugely
on world economy. In the Ebola outbreak between 2014–2016
where more than 28,000 and cases were suspected and 10,000
deaths in West Africa [1], $2.2 billion was lost [2]. On the other
hand, SARS took over 648 lives from China including Hong Kong
and 700 lives worldwide between 2002 and 2003 [3]. Its losses on

✩ Peer-review under responsibility of the organizing committee of the 8th
International Conference on Advances in Information Technology.

∗ Corresponding author at: Department of Computer and Information Science,
University of Macau, Macau, SAR, China.
∗∗ Corresponding author.

E-mail addresses: ccfong@umac.mo (S.J. Fong), nilanjan.dey@tict.edu.in
(N. Dey).

global economy are up to a huge $100 billion, 1% and 0.5% dips
of GDPs in Chinese and Asian domestic markets respectively [3].
Although the current coronavirus (codename: NCP or COVID-
19) epidemic is not over yet, its economy impact is anticipated
by economists from IHS Market to be far worse than that of
SARS outbreak in 2003 [4]. The impact is so profound that will
lead to factories shut down, enterprises bankruptcy especially
those in tourism, retail and F&B industries, and suspensions or
withdrawals in long-term investment, if the outbreak cannot be
contained in time. Since the first case in December 2019, the
suspected cases and deaths around the world skyrocketed to over
76395 confirmed cases and 2348 deaths, mostly in China, by the
time of writing this article.

An early intervention measure in public health to thwart the
outbreak of COVID-19 is absolutely imperative. According to a
latest mathematical model that was reported in research article
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by The Lancet [5], the growth of the epidemic spreading rate
will ease down if the transmission rate of the new contagious
disease can be lowered by 0.25. Knowing that the early ending the
virus epidemic or even the reduction in the transmission rate be-
tween human to human, all governments especially China where
Wuhan is the epicentre are taking up all the necessary preventive
measures and all the national efforts to halt the spread. How
much input is really necessary? It is fundamentally challenging
in making a sound decision. When an epidemic has just started,
available data is scarce, information is limited, and uncertainty
is high. Unlike common Influenza, there is neither precedent
case exactly the same nor sufficient knowledge. Many decision
makers could only take references from SARS which is by far the
most similar virus to COVID-19. However, it is difficult as the
characteristics of the virus are not fully known, its details and
about how it spreads are gradually unfolded from day to day.
Given the limited information on hand about the new virus, and
the ever evolving of the epidemic situations both geographically
and temporally, it boils down to grand data analytics challenge
this analysis question: how much resources shall be enough to
slow down the transmission? This is a composite problem that
requires cooperation from multi-prong measures such as medical
provision, suspension of schools, factories and office, minimiz-
ing human gathering, limiting travel, strict city surveillance and
enforced quarantines and isolations in large scales. There is no
easy single equation that could tell the amount of resources in
terms of monetary values, manpower and other intangible usage
of infrastructure; at the same time there exist too many uncertain
variables from both societal factors and the new development of
the virus itself. For example, the effective incubation period of
the new virus was found to be longer than a week, only some
time later after the outbreak. Time is an essence in stopping the
epidemic so to reduce its damages as soon as possible. However,
uncertainties are the largest obstacle to obtain an accurate model
for forecasting the future behaviours of the epidemic should
intervention apply. In general, there is a choice of using deter-
ministic or stochastic modelling for data scientists; the former
technique based solely on past events which are already known
for sure, e.g. if we know the height and weight of a person,
we know his body mass index. Should any updates on the two
dependent variables, the BMI will be changed to a new value
which remains the same for sure no matter how many times
the calculation is repeated. The latter is called probabilistic or
stochastic model — instead of generating a single and absolute re-
sult, a stochastic model outputs a collection of possible outcomes
which may happen under some probabilities and conditions.

1.1. Background

Deterministic model is useful when the conditions of the
experiment are assumed rigid. It is useful to obtain direct fore-
casting result from a relatively simple and stable situation in
which its variables are unlikely to deviate in the future. Other-
wise, for a non-deterministic model, which is sometimes referred
as probabilistic or stochastic, the conditions of a future situation
under which the experiment will be observed, are simulated to
some probabilistic behaviour of the future observable outcome.
For an example of epidemic, we want to determine how many
lives could be saved from people who are infected by a new virus
as a composite result of multi-prong efforts that are put into
the medical resources, logistics, infrastructure, spread prevention,
and others; at the same time, other contributing factors also
matter, such as the percentage of high-risk patients who are
residing in that particular city, the population and its mobility, as
well as the severity and efficacy of the virus itself and its vaccine
respectively. Real-time tools like CDC data reporting and national

big data centres are available with which any latest case that
occurs can be recorded. However, behind all these records are
sequences of factors associated with high uncertainty. For exam-
ple, the disease transmission rate depends on uncertain variables
ranging from macro-scale of weather and economy of the city in
a particular season, to the individual’s personal hygiene and the
social interaction of commuters as a whole. They are dynamic in
nature that change quickly from time to time, person to person,
culture to culture and place to place. The phenomena can hardly
converge to a deterministic model. Rather, a probabilistic model
can capture more accurately the behaviours of the phenomena.
So for epidemic forecast, a deterministic model such as trending
is often used to the physical considerations to predict an almost
accurate outcome, whereas in a non-deterministic model we use
those considerations to predict more of a probable outcome that
is probability distribution oriented.

In order to capture and model such dynamic epidemic recov-
ery behaviours, stochastic methods ingest a collection of input
variables that have complex dependencies on multiple risk fac-
tors. The epidemic recovery can be viewed in abstract as a bipolar
force between the number of populations who has contracted
the disease and the number of patients who are cured from
the disease. Each group of the newly infested and eventually
cured (or unfortunately deceased) individuals are depending on
complex societal and physiological factors as well as preventive
measures and contagious control. Each of these factors have their
underlying and dependent factors carrying uncertain levels of
risks. A popular probabilistic approach for modelling the complex
conditions is known as Monte Carlo (MC) simulation which pro-
vides a means of estimating the outcome of complex functions by
simulating multiple random paths of the underlying risk factors.
Rather than deterministic analytic computation, MC uses random
number generation to generate random samples of input trials to
explore the behaviour of a complex epidemic situation for deci-
sion support. MC is particularly suitable for modelling epidemic
especially new and unknown disease like COVID-19 because the
data about the epidemic collected on hand in the early stage are
bound to change. In MC, data distributions are entered as input,
since precise values are either unknown or uncertain. Output of
MC is also in a form of distribution specifying a range of possible
values (or outcome) each of which has its own probability at
which it may occur. Compared to deterministic approach where
precise numbers are loaded as input and precise number is com-
puted to be output, MC simulates a broad spectrum of possible
outcomes for subsequent expert evaluation in a decision-making
process.

1.2. Monte Carlo Simulation for epidemics

Recently as epidemic is drawing global concern and costing
hugely on public health and world economy, the use of MC in epi-
demic modelling forecast has become popular. It offers decision
makers an extra dimension of probability information so called
risk factors for analysing the possibilities and their associated
risk as a whole. Decades ago, there has been a growing research
interest in using MC for quantitatively modelling epidemic be-
haviours. Since 1957, Bailey et al. was among the pioneers in
formulating mathematical theory of epidemics. Subsequently in
millennium, Andersson and Britton [6] adopted MC simulation
techniques to study the behaviour of stochastic epidemic models,
observing their statistical characteristics. In 2003, House et al.
attempted to estimate how big the final size of an epidemic is
likely to be, by using MC to simulate the course of a stochastic
epidemic. As a result, the probability mass function of the final
number of infections is calculated by drawing random samples
over small homogeneous and large heterogeneous populations.
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Yashima and Sasaki in 2013 extended the MC epidemic model
from over a population to a particular commute network model,
for studying the epidemic spread of an infectious disease within a
metropolitan area — Tokoyo train station. MC is used to simulate
the spread of infectious disease by considering the commuters
flow dynamics, the population sizes and other factors, the pro-
ceeding size of the epidemic and the timing of the epidemic peak.
It is claimed that the MC model is able to serve as a pre-warning
system forecasting the incoming spread of infection prior to its
actual arrival. Narrowing from the MC model which can capture
the temporal–spatial dynamics of the epidemic spread, a more
specific MC model is constructed by Fitzgerald et al. [7] in 2017
for simulating queuing behaviour of an emergency department.
The model incorporates queuing theory and buffer occupancy
which mimic the demand and nursing resource in the emergency
department respectively. It was found that adding a separate
fast track helps relieving the burden on handling of patient and
cutting down the overall median wait times during an emergency
virus outbreak and the operation hours are at peak. Mielczarek
and Zabawa [8] adopted a similar MC model to investigate how
erratic the population is, hence the changes in the number of
infested patients affect the fluctuations in emergency medical
services, assuming there are epidemiological changes such as
call-for-services, urgent admission to hospital and ICU usages.
Based on some empirical data obtained from EMS centre at Lower
Silesia Region in Poland, the EMS events and changes in demo-
graphic information are simulated as random variables. Due to
the randomness of the changes (in population sizes as people
migrate out, and infested cases increase) in both demand and
supply of an EMS, the less-structured model cannot be easily
examined by deterministic analytic means. However, MC model
allows decision makers to predict by studying the probabilities of
possible outcomes on how the changes impact the effectiveness
of the Polish EMS system. There are similar works which tap on
the stochastic nature of MC model for finding the most effective
escape route during emergency evacuation [9] and modelling
emergency responses [10].

1.3. Motivation and contributions

Overall, the above-mentioned related works have several fea-
tures in common: their studies are centred on using a proba-
bilistic approach to model complex real-life phenomena, where a
deterministic model may fall short in precisely finding the right
parameters to cater for every detail. The MC model is parsimo-
nious that means the model can achieve a satisfactory level of
explanation or insights by requiring as few predictor variables
as possible. The model which uses minimum predictor variables
and offers good explanation is selected by some goodness of fit as
BIC model selection criterion. The input or predictor variables are
often dynamic in nature whose values change over some spatial–
temporal distribution. Finally, the situation in question, which
is simulated by MC model, is not only complex but a prior in
nature. Just like the new COVID-19 pandemic, nobody can tell
when or whether it will end in the near future, as it depends
on too many dynamic variables. While the challenges of estab-
lishing an effective MC model is acknowledged for modelling a
completely new epidemic behaviour, the model reported in [10]
inspires us to design the MCmodel by decomposing it into several
sub-problems. Therefore, we proposed a new MC model called
composite MC or CMC in short which accepts predictor variables
from multi-prong data sources that have either correlations or
some kind of dependencies from one another. This helps provide
the decision maker a fuller view hence richer information that
contribute to an optimal decision (so called the best out of the
worst decision). The challenge here is to ensure that the input

variables though they may come from random distribution, their
underlying inference patterns must contribute to the final out-
come in question. The methodology is focused on finding the best
possible algorithmic approaches for generating stochastic future
outcomes, when a novel epidemic just emerged with very limited
available information on hand.

In computer science, this represents a typical problem of ma-
chine learning over incomplete/limited data in early epidemic.
Considering multi-prong data sources widen the spectrum of
possibly related input data, thereby enhancing the performance of
Monte Carlo simulation. However, naive MC by default does not
have any function to decide on the importance of input variables.
It is known that what matters for the underlying inference engine
of MC is the historical data distribution which tells none or little
information about the input variables prior to the running of MC
simulation. To this end, we propose a pre-processor, in the form
of optimized neural network namely BFGS-Polynomial Neural
Network is used at the front of MC simulator. BFGS-PNN serves
as both a filter for selecting important variables and forecaster
which generates future time-series as parts of the input variables
to the MC model. Traditionally all the input variables to the
MC are distributions that are drawn from the past data which
are usually random, uniform or some customized distribution
of sophisticated shape. In our proposed model here, a hybrid
input that is composed of both deterministic type and non-
deterministic type of variables. Deterministic variables come from
the forecasted time-series which are the outputs of the BFGS-
PNN. Non-deterministic variables are the usual random samples
that are drawn from data distributions. In the case of COVID-19,
the future forecasts of the time-series are the predictions of the
number of confirmed infection cases and the number of cured
cases. Observing from the historical records, nevertheless, these
two variables display very erratic trends, one of them contains
extreme outliers. They are difficult to be closely modelled by any
probability density function; intuitively imposing any standard
data distribution will not be helpful to delivering accurate out-
comes from the MC model. Therefore in our proposal, it is needed
to use a polynomial style of self-evolving neural network that was
found to be one of the most suited machine learning algorithm in
our prior work [11], to render a most likely future curve that is
unique to that particular data variable.

The composition of the multiple data sources is of those rel-
evant to the development (rise-and-decline) of the COVID-19
epidemic. Specifically, a case of how much daily monetary budget
that is required to struggle against the infection spread is to be
modelled by MC. The data sources of these factors are publicly
available from the Chinese government websites. More details
follow in Section 2 below. The rationale behind using a composite
model is that what appears to be an important figure, e.g. the
number of suspected cases are directly and indirectly related
to a number of sub-problems which of each carries different
levels of uncertainty: how a person gets infested, depends on
1) the intensity of travel (within a community, suburb, inter-
city, or oversea) 2) preventive measures 3) trail tracking of the
suspected and quarantining them 4) medical resources (isolation
beds) available, and 5) eventual cured or dead. Some of these data
sources are in opposing influences to one another. For example,
the tracking and quarantine measures gets tighten up, the num-
ber of infested drops, and vice-versa. In theory, more relevant
data are available, the better the performance and more accurate
outcomes of the MC can provide. MC plays an important role here
as the simulation is founded on probabilistic basis, the situation
and its factors are nothing but uncertainty. Given the available
data is scare as the epidemic is new, any deterministic model
is prone to high-errors under such high uncertainty about the
future.
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The contribution of this work has been twofold. Firstly, a
composite MC model, called CMCM is proposed which advocates
using non-deterministic data distributions along with future pre-
dictions from a deterministic model. The deterministic model in
use should be one that is selected from a collection of machine
learning models that is capable to minimize the prediction error
with its model parameters appropriately optimized. The advan-
tage of using both fits into the MC model is the flexibility that
embraces some input variables which are solely comprised of his-
torical data, e.g. trends of people infested. And those that under-
lying elements which contribute to the high uncertainty, e.g. the
chances of people gather, are best represented in probabilistic
distribution as non-deterministic variables to the MC model. By
this approach, a better-quality MC model can be established,
the outcomes from the MC model become more trustworthy.
Secondly, the sensitivity chart obtained from the MC simulation
is used as corrective feedback to rules that are generated from a
fuzzy rule induction (FRI) model. It is known that FRI outputs de-
cision rules with probabilities/certainty for each individual rule.
A rule consists of a series of testing nodes without any priority
weights. By referencing the feedbacks from the sensitivity chart,
decision makers can relate the priority of the variables which
are the tests along each sequence of decision rules. Combining
the twofold advantages, even under the conditions of high un-
certainty, decision makers are benefited with a better-quality
MC model which embraces considerations of composite input
variables, and fuzzy decision rules with tests ranked in priority.
This tool offers a comprehensive decision support at its best effort
under high uncertainty.

The remaining paper is structured as follow. Section 2 de-
scribes the proposed methodology called GROOMS+CMCM, fol-
lowed by introduction of two key soft computing algorithms —
BFGS-PNN and FRI which is adopted for forecasting some par-
ticular future trends as inputs to the MC model and generating
fuzzy decision rules respectively. Section 3 presents some pre-
liminary results from the proposed model followed by discussion.
Section 4 concludes this paper.

2. A novel methodology

MC has been applied for estimating epidemic characteristics
by researchers over the year, because the nature of epidemic
itself and its influences are full of uncertainty. An application
that is relatively less looked at but important is the direct cost
of fighting the virus. The direct cost is critical to keep the virus at
bay when it is still early before becoming a pandemic. But often
it is hard to estimate during the early days because of too many
unknown factors. Jiang et al. [12] have modelled the shape of a
typical epidemic concluding that the curve is almost exponential;
it took only less than a week from the first case growing to its
peak. If appropriate and urgent preventive measure was applied
early to have it stopped in time, the virus would probably not
escalate into an epidemic then pandemic. Ironically, during the
first few days (some call it the golden critical hours), most of the
time within this critical window was spent on observation, study,
even debating for funding allocation and strategies to apply. If a
effective simulation tool such as the one that is proposed here,
decision makers can be better informed the costs involved and
the corresponding uncertainty and risks. Therefore, the method-
ology would have to be designed in mind that the available data
is limited, each functional component of the methodology in the
form of soft computing model should be made as accurate as
possible. Being able to work with limited data, flexible in simulat-
ing input variables (hybrid deterministic and its counterpart), and
informative outcomes coupled with fuzzy rules and risks, would
be useful for experts making sound decision at the critical time.

Our novel methodology is based on Group of Optimized and Mul-
tisource Selection, (GROOMS) methodology [11] which is made
for choosing a machine learning method which has the highest
level of accuracy. GROOMS as a standalone optimizing process
is in aid of assuring the deterministic model that is to be used
as input variable for the subsequent MC simulation to have the
most accurate data source input. By default, MC model at its naive
form accepts only input variable from a limited range of standard
data distributions (Uniform, Normal, Bernoulli, Pareto, etc.); best
fitting curve technique is applied should the historical data shape
falls out of the common data distribution types. However, this
limitation is expanded in our composite MC model, so-called
CMCM in such a way that all relevant data sources are embraced,
both direct and indirect types. An enhanced version of neural
network is used to firstly capture the non-linearity (often with
high irregularity and lack of apparent trends and seasonality) of
the historical data. Out of the full spectrum of data sources, direct
and indirect, the selected data sources through feature selection
by correlation, that are filtered by the neural network, whose data
distributions would be taken as input variables to the MC model.
The combined methodology, GROOMS+CMCM is shown in Fig. 1.

2.1. Broyden–Fletcher–Goldfarb–Shanno optimized polynomial neu-
ral network (BFGS-PNN)

According to the methodology, a machine learning algorithm
candidate called BGFS-PNN which is basically PNN as selected as
the winning algorithm in [11] enhanced with further parameter
optimization function. The given time-series data fluctuated more
than the same that were collected earlier. As a data pre-processor,
BFGS-PNN has two functions. Firstly, for the non-deterministic
data, using a ClassifierBasedFilter function in a wrapper approach,
salient features could be found in feature selection. The selected
salient features are those very relevant to the forecast target in
the MC. In this case, it is composite MC model or CMCM as the
simulation engine intakes multiple data sources from types of de-
terministic and non-deterministic. The second function is to fore-
cast a future time-series as a type of deterministic input variable
for the CMCM. The formulation of BFGS-PNN is shown as follow.
The naïve version of PNN is identical to the one reported in [11].
BFGS-PNN uses BFGS (Broyden–Fletcher–Goldfarb–Shanno) algo-
rithm to optimize the parameters and network structure size in
an iterative manner using hill-climbing technique. BFGS theory
is basically for solving non-linear optimization problem itera-
tively by finding a stationary equilibrium through Quasi-Newton
method [13] and secant method [14]. Let PNN [15] take the form
of Kolmogorov–Gabor polynomial as a functional series in Eq. (1).

y = ε0 +

∑
t=1

εt=1xt=1 +

∑
t=1

∑
t=2

εt=1,t=2xt=1xt=2

+

∑
t=1

∑
t=2

∑
t=3

εt=1,t=2,t=3xt=1xt=2xt=3 + · · · (1)

The polynomial is capable to take form of any function which
is generalized as y = f (x). The induction process is a mat-
ter of finding all the values for the coefficient vector ε. As the
process iterates, the variables from x arrive in sequence fitting
into the polynomial via regression and minimizing the error. The
complexity grows incrementally by trying to add a neuron at a
time while the forecasting error is being monitored [16]. When
the number of neurons reach a pre-set level, the hidden layer
increases. This continues until there is no further performance
gain observed, the growth of the polynomial stops and taken as
the final equation for the PNN. It is noted that the increment of
the network growth is linear.

However, for the case of BFGS-PNN, the expansion of the poly-
nomial is non-linear and heuristic. The optimal state is achieved
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Fig. 1. GROOMS+CMCM methodology.

by unconstrainted hill-climbing method guided by Quasi-Network
and secant methods. Let an error function be e(p) where p is a vec-
tor of real numbers be a vector of network structure information
and parameters, i.e. neurons and layers in an ordered set. At the
start, when t = 0, pt=0 is initialized by randomly chosen states.
Let search direction be si at iteration i where time t = i. Let Hi be
Hessian which is a square matrix of 2nd-order partial derivatives
of function e. where i is the current iteration, H improves becomes
a better estimate as the process iterates. ∇e(pi) is the gradient
of the error function which needs to be minimized at t = i
by following the quasi-Newton search pattern using a gradient
function similar to Eq. (2). It seeks to search for the next state of
parameters values pi+1 by optimizing e(pi+S*si) where the scalar
S must be greater than 0. Eq. (2) then would have to obey the
quasi-Newton condition upon solving the approximation of the
Hessian Hi, in a way of Eq. (3).

Hisi = −∇e (pi) (2)

Hi+1 (ei+1 − ei) = ∇e (pi+1)− ∇e (pi) (3)

By the secant equation, we let the Hessian matrix take the
form as in Eq. (4).

ψi = ∇e (pi+1)− ∇e (pi) and ςi = ei+1 − ei,

so Hi+1 satisfies Hi+1 ∗ ςi = ψi (4)

The updating function for Hessian matrix is defined as Eq. (5)
following the secant method. The equation tries to impose the
condition and symmetry such that ψi = Hi+1ςi. Let Hi+1 ∗ ςi =

ψi, a = ψiandb = Hiςi, we can obtain two sub-equations in
Eq. (6) as coefficients to Eq. (5). Substituting Eq. (6) Into Eq. (5),
we obtain the updating function for Hessian matrix Hi+1.

Hi+1 = Hi + α(a · a⊺) + β(b · b⊺) (5)

α =
1

ψ
⊺
i ςi
, β = −

1
ς

⊺
i Hiςi

(6)

Hi+1 = Hi +
ψiψ

⊺
i

ψ
⊺
i ςi

−
Hiςiς

⊺
i H

⊺
i

ς
⊺
i Hiςi

(7)

By applying Sherman–Morrison formula [17] to Eq. (6), we
get Eq. (8) Which is the inverse of Hessian H matrix. Expanding
Eq. (8) to Eq. (9) we obtain an equation that can be calculated
quickly without needing any buffer space for fast optimization

which aims at minimizing e(*).

H−1
i+1 =

(
I −

ςiψ
⊺
i

ψ
⊺
i ςi

)
H−1

i

(
I −

ψiς
⊺
i

ψ
⊺
i ςi

)
+
ςiς

⊺
i

ψ
⊺
i ςi

where ψ⊺
i H

−1
i ψiandςiψ

⊺
i are scalars (8)

H−1
i+1 = H−1

i +

(
ς

⊺
i ψi + ψ

⊺
i H

−1
i ψi

) (
ςiς

⊺
i

)(
ς

⊺
i ψi

)2 −
H−1

i ψiς
⊺
i + ςiψ

⊺
i H

−1
i

ς
⊺
i ψi

(9)

2.2. Fuzzy Rule induction

By our GROOMS+CMCM methodology, raw data from multiple
sources are filtered, condensed, converted into insights of future
behaviours in several forms. Traditionally in MC simulation, prob-
ability density functions as simulated outcomes are generated, so
is sensitivity chart which ranks how each factor in relevance to
the predicted outcome. Fuzzy Rule Induction (FRI) plays a role in
the methodology by inferring a rule-based model which supplies
a series of conditional tests that lead to some consequences based
on the same data that were loaded into the MC engine. FRI serves
the threefold purpose of easy to use, neural and scalable. Firstly,
the decision rules are interpretable by users. They can comple-
ment the probability density functions which show a macro view
of the situation. FRI helps give another perspective in causality
assisting decision makers to investigate the logics of cause-and-
effect. Furthermore, different from other decision rule models,
FRI allows some fuzzy relaxation in bracketing the upper and
lower bounds, thereby a decision can be made based on the min–
max values pertaining to each conditional test (attribute in the
data). The FRI rules are formatted as branching-logic, which is
also known as predicate-logic that preserves the crudest form
of knowledge representation. Predicate logic has an IF-TEST[Min-
Max]-THEN-VERDICT basic structure and a propensity of how
often it exists in the dataset. The number of different groups of
FRI rules depend on how many different labels in the predicted
class. The second advantage is that the FRI rules are objective and
free from human bias as they are derived homogenously from
the data. Therefore, they are suitable ingredient for scientifically
devising policy and strategy for epidemic control. Thirdly FRI
rules can scale up or down not only in quantity, but also in
cardinality. A rule can consist of as many tests as the attributes of
the data are available. In other words, as a composite MC system,
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new source of data could be chipped in as per when it becomes
necessary or recently available; the attributes of the new data can
add on to the conditional tests of the FRI rules.

One drawback about FRI is the lack of indicators for each
specific conditional test (or attribute). By the current formulation
of FRI, the likelihood of the occurrence of the rule is assigned to
the rule as a whole. Little is known about how each conditional
test on the attribute is relatively contributing to the outcome that
is specified in the rule. In the light of this shortcoming, our pro-
posed methodology suggests that the scores from the sensitivity
charts with respect to the relations between the attributes and
the outcome, could be used at the rule by simple majority voting.

Rules are generated as a by-product of classification in data
mining. The process is through fuzzification of the data ranges
and the confidence factors in their effects in classification are
taken as indicators. Let a rule be a series of components constrain-
ing the attributes ai=1..m(with outcome yi= Y ) in the classification
model building, so that they can remain valid even though the
values are fuzzified. So a rule can be expressed in the predicate
rule format such that each ai∈λ, where λ ⊆Y is an membership
whose labels are mapped to the class labels, a membership takes
a range of positive R where λ = (-∞, ω]. If a rule embraces a
conditional test where (ai ≦ω), λ = [α, ∞) if it has a test (ai ≧α).
Let λ = [α, β] when it is comprised of two tests are combined. Re-
placing the absolute memberships by fuzzy memberships which
are defined as fuzzy sets governed by trapezoidal membership
function [18]. A fuzzy trapezoidal membership normally would
have to be structured by four parameters and expressed as λF=
(Θδ,↓,Θε,↓,Θε,↑,Θδ,↑). The functional logic is shown in Eq. (10):

λF (β) def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 Θε,↓ ≦ β ≦ Θε,↑

β −Θδ,↓

Θε,↓ −Θδ,↓
Θδ,↓ < β < Θε,↓

Θδ,↑
− β

Θδ,↑ −Θε,↑
Θε,↑ < β < Θδ,↓

0 else

(10)

where Θε,↓ and Θε,↑ are the lower and upper bounds of the
argument β which will map to a fuzzy membership of value
1. Similarly, the supports of the lower and upper bounds are
denoted by Θε,↑ and Θδ,↑.

The fuzzy rules are built on the decision rules which are
generated from standard decision tree algorithm, such as direct
rule-based classifier equipped with incremental reduced error
pruning via greedy search [19]. Given the rule sets generated, the
task here is to find the most suitable fuzzy extension for each
rule. The task can be seen as replacing the current memberships
of the rules by their corresponding fuzzy memberships, which is
not too computationally difficult as long as the rule structures
and the elements the same. In order to fuzzify a membership, the
following formula is applied over the antecedent (Ωi∈λi) of rule
set while considering the relevant data X i

T ; at the same time the
instances from the other antecedent (Ωj∈λ

F
j ), where j ̸= I are to

be nullified.

X i
T =

{
x |= (x1 . . . xn) ∈ XT | λ

F
j

(
xj
)
> 0∀j ̸= i

}
⊆ XT (11)

By this approach, the instances X i
T are divided into two subsets:

one subset contains all the positive instances X i
T+

and the other
subset contains all the negative instancesX i

T−
. After that, a purity

measure is used to further separate the two groups into two
extremes, positive and negative subgroups, by Eq. (12).

Purity =
ϕi

ϕi + (1 −ϖ )i
, (12)

where positive instances are denoted by ϕi, and the negative
instances are by ϖi,

ϕi
def
=

∑
x∈X i

T+

µai (x), and ϖi
def
=

∑
x∈X i

T−

µai (x). (13)

When it comes to actual operation, a certainty factor which serves
as an indicator about how much the new data instances indeed
belong to a subgroup, is needed to quantify the division. Followed
by segregating the data into fuzzy rules κ (j)

1 . . . κ
(j)
r by machine

learning the relations from their attributes and instance values
to some label classλj, further indicator is needed to quantify the
strength of each rule. Assume we have a new test instance x,
Eq. (14) computes the support of the rules of x as follow:

Sj(x)
def
=

∑
i=1...q

µ
κ
(j)
i
(x).C(κ (j)

i ), (14)

where C(κ (j)
i ) is the certainty factor pertaining to the ruleκ (j)

i . The
certainty factor C is expressed in Eq. (15):

C(κ (j)
i ) =

2

⏐⏐⏐X (j)
T

⏐⏐⏐
|XT |

+
∑

x∈X (j)
T
µ
κ
(j)
i
(x)

2 +
∑

x∈XT
µ
κ
(j)
i
(x)

, (15)

where X (j)
T denotes the subsets of training instances that are

labelled asλj. The result that is predicted by the default classifier
to be one of the class labels, is the one that has the greatest
value computed from the support function Eq. (14). At times,
some instances x could not be classified into rule or subgroup,
that happens when sj(x)=0 for all classes λj, x could be randomly
assigned or temporarily placed into a special group. Otherwise,
the fuzzy rules are formed, certainty and support indicators are
assigned to each one of them. The indicators mean how strong
the rules are with respect to the predictive power to the class
label possessed by the rules.

3. Experiment and results

For the purpose of validating the proposed GROOMS+CMCM
methodology, empirical data proceeding from The Chinese Center
for Disease Control and Prevention1 (CDCP), an official Chinese
government agency in Beijing, China. Since the beginning of the
COVID-19 outbreak, CDCP has been releasing the data to the
public and updating them daily via mainstream media Tencent
and its subsidiary2. The data come from mainly two sources: one
source is known to be deterministic in nature which is harvested
from CDCP in the form of time-series starting from 25 Jan 2020 to
25 Feb 2020. A snapshot of the published data is shown in Fig. 2
which are deterministic in nature as historical facts.

3.1. Deterministic input variables to CMC

The data collected for this experiment are only parts of the
total statistics available on the website. The data required for this
experiment are the numbers of people in China who have been
contracted with the COVID-19 disease in the following ways:
suspected of infection by displaying some symptoms, confirmed
of infection by medical tests, cumulative confirmed cases, current
number of confirmed cases, current number of suspected cases,
current number of critically ill, cumulative number of cured cases,
cumulative number of deceased cases, recovery (cured) rate % and
fatality rate %. This group of time-series are subject to GROOMS

1 http://www.chinacdc.cn/en (for China), and https://www.worldometers.
info/coronavirus (for global figures)
2 https://news.qq.com/zt2020/page/feiyan.htm

http://www.chinacdc.cn/en
https://www.worldometers.info/coronavirus
https://www.worldometers.info/coronavirus
https://news.qq.com/zt2020/page/feiyan.htm
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Fig. 2. COVID-19 data disseminated by CDCP with daily updates.

for finding the most accurate machine learning technique for
obtaining the forecasts as future trends under development. In
this case, BFGS-PNN was found to be the winning candidate
model, hence applied here for generating future trends for each
of the above-mentioned records. The forecasts based on these
selected data by BFGS-PNN are shown in Fig. 3. The forecasts are
in turn used as deterministic input variables to the CMC model.
They have relatively lowest errors in RMSE in comparison to
other time-series forecasting algorithms as tested in [11]. The
rationale is to use the most accurate possible forecasted inputs
for achieving the most reliable simulated outcomes from MC
simulation at the best effort.

The goal of this Monte Carlo simulation experiment, which
is a part of GROOMS+CMCM is to hypothetically estimate the
direct cost that is needed as an urgent part of national budget
planning to control the COVID-19 epidemic. Direct cost means the
cost of medical resources, that includes but not limit to medicine,
personnel, facilities, and other medical supplies, directly involved
in providing treatments to those patients due to the COVID-
19 outbreak. Of course, the grand total cost is much wider and
greater than the samples experimented here. The experiment
however aims at demonstrating the possibilities and flexibility of
embracing both types of deterministic and non-deterministic data
inputs by the composite MC methodology.

3.2. Non-deterministic input variables to CMC

The other group of data that would feed into the CMC are
non-deterministic or probabilistic because they would have to
bear a high level of uncertainty. They are subject to situation
that changes dynamically and there is little control over the
outcome. In the case of COVID-19 epidemic control, finding the
cure to the virus is a good example. There is best effort put into
treatment, but no certainty at all about a cure, let alone knowing
when exactly a cure could be developed, tested and proven to
be effective for use against the novel virus. There are other
probabilistic factors which are used in this experiment as well.
Selected main attributes are tabulated in Table 1. We assume a
simple equation for estimating the direct cost in fighting COVID-
19 using only data of quarantining and isolated medical treatment
as follow. Note that the variables shown are abbreviated from the
term names. E.g. d − i − r = days_till_recovery. The assumptions
and hypothesis are derived from past experiences about direct
costs involved in quarantine and isolation during the epidemic of
SARS in 2003 as published in [20], with reasonable adjustment.

The reasonable adjustment is the consideration of inflation since
2003, the capacity of medical infrastructure of today’s compared
to that of 2003. Another factor is the fact that during COVID-
19, the Chinese government has put in unprecedent efforts in
building temporary hospitals and pouring in tens of thousands of
medical doctors and nurses in an attempt of curing the infested
patients. This overhead cost came directly from the national fund-
ing, that should be taken account as a part of the total_daily_cost
which embraces direct and indirect material costs, additional
resources in the 5G communication infrastructure and a large
number of hospital beds that were exclusively built for containing
the COVID-19 outbreak. This effort was not seen in the same
intensity and magnitude for the SARS containment. The equation
for the total_daily_cost is listed in Eq. (16).

total_daily_cost
= cost_for_isolation_till_recovery + cost_for_isolation_till_death
= ((cured_rate ÷ (cured_rate + death_rate)

×(n − d − i − c × ppi/day × d − f − r)))
+((death_rate ÷ (cured_rate + death_rate)
×(n − d − i − c × ppi/day × d − i − d))) (16)

The variable total_daily_cost is a direct variable contributing to
the final medical cost in this simulation scenario. However, this
variable is influenced by a combination of deterministic and non-
deterministic variables under high uncertainty. The values for
the deterministic variables such as the cured_rate and death_rate
come from the forecast of the best selected prediction algorithm.
For the non-deterministic variables ppi/day, d − f − r and d −

t − d, the following assumptions are derived from [21]. These
variables are probabilistic in nature as shown in Table 1. E.g.
nobody can actually tell how long an infested patient could be
recovered and go home, nor how long the isolation needs to be
when the patient is in critical condition. All these are bounded by
some probabilities that can be expressed in statistical properties,
such as min–max, mean, standard deviation and so on. So some
probabilism functions are needed to describe them, and random
samples from these probabilities distributions are drawn to run
the simulation. The variable Days_till_death ( d− i− d ) however
is derived from SARS case which are not exactly the same, but the
most similar in terms of uncertainty. When the situation becomes
highly unpredictable and the disease is unknown in the early
stage, an educated guess is made based on whatever that is found
similar in the past. So the days assumed for Days_till_death is
taken from the SARS case from reference [21].
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Fig. 3. Forecasts of the main input variables to Monte Carlo simulation using BFGS-PNN: (a) new_daily_increase_confirmed, (b) new_daily_increase_suspected, (c)
cured_rate, and (d) death_rate.

It is assumed that the growth of daily medical cost ppi/day
follows a normal distribution with daily increase rate. The daily
increase rate is estimated from [20] to be rising as days go by,
because the Chinese government has been increasingly putting
in resources to stop the epidemic using national efforts. The
increase is due to the daily increase number of medical staff
who are flown to Wuhan from other cities, and the rise of the
volume of consumable medical items as well as their inflating
costs. The daily cost is anticipated to become increasingly higher
as long as the battle against COVID-19 continues at full force.
There are other supporting material costs and infrastructure re-
location costs such as imposing curfews and economy damages.
However, these other costs are not considered for the purpose of
demonstrating with a simple and easy-to-understand CMCmodel.

Normal distribution and uniform distribution are assumed
accountable for the increase and probability distributions that
describe the lengths of hospital stay. When more information
become available, one can consider refining them to Weibull dis-
tribution and Rayleigh distribution which can better describe the
progress of the epidemic in terms of severity and dual statistical
degree of freedom.

ppi/day = [Mean: initial_ppi/day× (1+ ppi_daily_increase_rate)
∧ #future_days, St.Dev = 9]

d − f − r = [Min:11,Max:26]

d − t − d = [Mean:35.9, Std.dev:6.37] (17)

This is a very simplified approach in guessing the daily cost of
the so-called medical expenses, based on only two interventions
— quarantine and isolation. Nevertheless, this CMC model though
simplified, is serving as an example of how Monte Carlo style
of modelling can help generate probabilistic outcomes, and to
demonstrate the flexibility and scalability of the modelling sys-
tem. Theoretically, the CMC system can expand from considering
two direct inputs (quarantining and isolation) to 20, or even 200
other direct and indirect inputs to estimate the future behaviour
of the epidemic. In practical application, data that are to be
considered shall be widely collected, pre-processed, examined
for quality check and relevance check (via GROOMS), and then
carefully loading into the CMC system for getting the outcomes.

3.3. Decision making under uncertainty

Stochastic simulation is well-suited for studying the risk fac-
tors of infectious disease outbreaks which always changes in their
figures across time and geographical dispersion, thereby posing
high level of uncertainty in decision making. Each model forecast
by MC simulation is an abstraction of a situation under obser-
vation — in our experiment, it is the impact of the dynamics of
epidemic development on the direct medical costs against COVID-
19. The model forecast depicts the future tendencies in real-life
situation rather than statements of future occurrence. The output
of MC simulation sheds light in understanding the possibilities of
outcomes anticipated.

Being a composite MC model, the ultimate performance of
the simulated outcomes would be sensitive to the choice of
the machine learning technique that generated the deterministic
forecast as input variable to the CMC model. In light of this, a
part of our experiment besides showcasing the MC outcomes by
the best available technique, is to compare the levels of accuracy
(or error) resulted from the wining candidate of GROOMS and a
standard (default) approach. The forecasting algorithms in com-
parison are BFGS+PNN and Linear Regression respectively. The
performance criterion is RMSE, which is consistent and unitless
ϵi = log

(
med(θ̂i)
θi

)
and RMSE=

(√
mean

(
ϵ2i

))
, as defined in [22].

At the same time, the total costs that are produced manually
by explicitly use of spreadsheet using human knowledge are
compared vis-à-vis with those of the forecast models by CMCM.
The comparative performances are tabulated in Table 2. The fore-
casting period is 14 days. The CMCM model is implemented on
Oracle Crystal Ball Release 11.1.2.4.850 (64-bit), running on a i7
CPU @ 2 GHz, 16Gb RAM and MS Windows 10 platform. 10,000
trials were set to run the simulation for each model. The reason
for choosing 10,000 trials is to try obtaining a stable result. The
10k number is an educated guess. The typical number of trials
as suggested by the maker of the software is 5,000. For a good
safety margin, the recommended number for a result is doubled
considering the comprise of the length of simulation time and
the incremental differences of the results when scaling up the
number of trials. It was found that by scaling over 10,000 trials
and more, the results differ in less than 0.01%. The parameters
that are used to run the MCMC model are shown in Appendix.
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Table 1
Selected input variables used in the CMC model.

Table 2
Comparative performance of various forecast model approaches.

It is apparent that as seen that from Table 2, the RMSE of
the Monte Carlo forecasting method using linear regression is
more than double that of the method using BFGS+PNN (approx-
imately 128K vs 62K). That is mainly due to the overly esti-
mate of all the deterministic input variables by linear regres-
sion. Referring to the first diagram in Fig. 3, the variable called
new_daily_increase_confirmed is non-stationary and it contains an
outlier which rose up unusually high near the end. Furthermore,
the other correlated variable called new_daily_increase_suspected,
which is a precedent of the trends of the confirmed cases, also is
non-stationary and having an upward trend near the end, though
it dips eventually. By using linear regression, the outlier and the
upward trends would encourage the predicted curve to continue
with the upward trend, linearly, with perhaps a sharp gradient.
Consequently, most of the forecast outcomes in the system have
been over-forecasted. As such, using linear regression causes
unstable stochastic simulation, leading to the more extreme final
results, compared to the other methods. This is evident that
the total_daily_cost has been largely over-forecasted and under-
forecasted by manual and MC approaches, in Table 2. Never-
theless this observation was accurate only up to the time the
article was written. New developments of pandemic hence the
data evolve every day, the results and conclusions are anticipated
to be different in future days to come.

On the other hand, when the BFGS+PNN is used, which is able
to better recognize non-linear mapping between attributes and
prediction class in forecasting, offers more realistic trends which
in turn are loaded into the CMCM. As a result, the range between
the final total_daily_cost results are narrower compared it to its
peer linear regression ([LR: 12mil – 83mil] vs [BFGS+PNN: 54mil
– 74mil]). The estimated direct medical cost for fighting COVID-
19 for a fortnight is estimated to be about 73.6 million USD given
the available data using GROOMS+CMCM.

According to the results in the form of probability distributions
in Fig. 4, different options are available for the user to choose from
when it comes to estimating the fortnightly budget in fighting
this COVID-19 given the existing situation. Each option comes
with different price tag, and at different levels of risks. In general,
the higher risk that the user thinks it can be tolerated, the
lower the budget it will be, and vice-versa. From the simulated
possible outcomes in Fig. 4, if budget is of constrained, the user
can consider bearing the risk (uncertainty of 50%) that a mean
of $74mil with [min:$69mil, max:$78mil] is forecasted to be
sufficient to fulfil the direct medical cost need. Likewise, if a high
certainty is to be assured, for example at 80% the chance that the

required budget would be met, it needs about a mean of $79mil
with [min:$66mil, max:$82mil]. For a high certainty of 98%, it is
forecasted that the budget will fall within a range of [min:$60mil,
max:$89mil] at the mean of $80mil. As a de-facto practice, some
users will take 80% certainty as Pareto Principle (80–20) deci-
sion [23] and accept the mean budget at $79mil. $79mil should
be a realistic and compromising figure when compared to manual
forecast without stochastic simulation, where $54mil and $84mil
budgets would have been forecasted by manual approach by
linear regression and neural network respectively.

3.4. Sensitivity chart and Fuzzy rules

Sensitivity chart, by its name, displays the extents of how the
output of a simulated MC model is affected by changes in some of
the input variables. It is useful in risk analysis of a so-called black
box model such as the CMCM used in this experiment by opening
up the information about how sensitive the simulated outcome
is to variations in the input variables. Since the MC output is an
opaque function of multiple inputs of composite variables that
were blended and simulated in a random fashion over many
times, the exact relationship between the input variables and the
simulated outcome will not be known except through sensitivity
chart. An output of sensitivity chart from our experiment is
generated and shown in Fig. 5.

As it can be observed from Fig. 5, the top three input variables
which are most influential to the predicted output, which is the
total medical cost in our experiment are: the average number of
days before recovery in Day 10 and Day 12, and average cost per
day for isolating a patient in day 2. The first two key variables are
about how soon a patient can recover from COVID-19, near the
final days. And the third most important variable is the average
daily cost for isolating patients at the beginning of the forecasting
period. This insight can be interpreted that an early recovery
near the final days and reasonably lower medical cost at the
beginning would impact the final budget to the greatest extend.
Consequently, decision makers could consider that based on the
results from the sensitivity analysis, putting in large or maximum
efforts in treating isolating patients at the beginning, observe for
a period of 10 days or so; if the medical efforts that were invested
in the early days take effect, the last several days of recovery will
become promising, hence leading to perhaps saving substantially
a large portion of medical bill.

Sensitivity chart can be extended to what-if scenario analysis
for epidemic key variable selection and modelling [24]. For exam-
ple, one can modify the quantity of each of the variables, and the
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Fig. 4. Probability Distributions as outcomes of CMCM at certainly levels of (a) 50%, (b) 80% and (C) 98%.

Fig. 5. Sensitivity chart showing the measured sensitivity between each variable
and the output.

effects on the output will be updated instantly. However, this is
beyond the scope of this paper though it is worth exploring for
it is helpful to fine-tune how the variables should be managed in
the effort of maximizing or minimizing the budget and impacts.

Since the effect of a group of independent variables on the
predicted output is known and ranked from the chart, it could
be used as an alternative to feature ranking or feature engi-
neering in data mining. The sensitivity chart is a by-product
generated by the MC after a long trial of repeating runs using
different random samples from the input distributions. Fig. 6
depicts how the sensitivity chart is related to the processes in the
proposed methodology. Effectively the top ranked variables could
be used to infer the most influential or relevant attributes from
the dataset that loads into an FRI model (described in Section 2.2)
for supervised learning. One suggested approach which is fast and
easy is to create a correlogram, from there one can do pairwise
matching between the most sensitive variables from the non-
deterministic data sources to the corresponding attributes from
the deterministic dataset. Ranking scores could be mapped over
too, by Boyer–Moore majority vote algorithm [25].

Some selected fuzzy rules generated by the methodology and
filtered by the sensitivity chart correlation mapping [26] are show
below. The display threshold is 0.82 which is arbitrarily chosen
to display only the top six rules where half of them predict a
reflection point for the struggle of controlling the COVID-19 can
be attained, the other half indicate otherwise. An FRI model in
a nutshell is a classification which predicts an output belonging
either one of two classes. In our experiment, we set up a clas-
sification model using FRI to predict whether an inflection point
of the epidemic could be reached. There is no standard definition
of inflection point, though it is generally agreed that is a turning
point at which the momentum of accumulation changes from one
direction to another or vice-versa. That could be interpreted as
either an intersection of two curves of which their trajectories
begins to switch. In the context of epidemic control, an inflection
point is the moment since when the rate of spreading starts
to subside, thereafter the trend of the epidemic is leading to
elimination or eradication.

Based on a sliding window of 3 days length, a formula for
computing the inflection point based on the three main attributes
of the COVID-19 data is given in Eq. (18), which is listed as follow:

Win :

Score = w1 × (∆ down-trend between the past 3 days of
new_daily_increase_confirmed (n.d.i.c))+
w2 × (∆ down-trend between the past 3 days of
current_confirmed)+
w3 × (∆ up-trend between the past 3 days of
cured_rate)

Lose :

Score = w1 × (∆ up-trend between the past 3 days of
new_daily_increase_confirmed (n.d.i.c))+
w2 × (∆ up-trend between the past 3 days of
current_confirmed)+
w3 × (∆ up-trend between the past 3 days of

death_rate) (18)

where w1 = 0.1, w2 = 0.15, and w3 = 0.25 which can be
arbitrarily set by the user. The weights reflect the importance
which one considers on how the up or downward trends of
confirmed cases and cured vs death rates contribute to reaching
the inflection point. A dual curve chart that depicts the inflection
point is shown in Fig. 7.

Interestingly, when near the end of the timeline (28/1 – 20/2)
that is from point 19th onwards, the two curves seem to inter-
vene, as it has been hoping that the winning curve is rise over
the losing curve. An inflection point might have reached, but
the momentum of the winning is there yet. Further observation
on the epidemic development is needed to confirm about the
certainty of winning. Nevertheless, the top six rules that are built
from classification of inflection point, and processed by feature
selection via sensitivity analysis, are shown below. CF stands for
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Fig. 6. Sensitivity chart and fuzzy rule induction as outputs from the GROOMS-CMCM methodology (*accuracy by GROOMS).

Fig. 7. Curve chart that approximates the search for inflection point during the epidemic.

confidence factor which indicates how strong the rule is. On
the winning side, the rules reveal that when the variables about
new confirmed cases fall below certain numbers, a win is scored,
contributing towards a reflection point.

Win:
RULE 1: (yester3days-ndic = ’(-∞.. 3581]’) → win=1 (CF = 0.96)
RULE 2: (ndic = ’(-∞.. 1874.4]’) → win=1 (CF = 0.92)
RULE 3: (yester2days-ndic = ’(-∞.. 5027.5]’) → win=1 (CF =

0.85)
Lose:
RULE 4: (cured_rate = ’(-∞.. 3.86]’) & (ndic = ’(1874.4 .. 3349.8]’)

→ win=0 (CF = 0.8)
RULE 5: (ndic = ’(13677.6 .. ∞)’) → win=0 (CF = 0.53)
RULE 6: (yester3days-ndic = ’(10706.5 .. ∞)’) → win=0 (CF =

0.53)
The strongest rules of the two forces are Rules 1 and 4. Rule

1 shows that to win an epidemic control the down trend over
consecutive three days must fall below 3581; on the other hand,
the epidemic control may lead to failure, if the cured rate stays
less than 3.86% and the new daily increase in confirmed cases
remain high between 1874 and 3350 (round up the decimal
points).

4. Conclusion

Since the outbreak of the novel coronavirus (COVID-19) in
December 2019, the pandemic which started as a very contagious
domestic epidemic gave rise to an emergency situation where
critical decisions were demanded for. The virus was novel and
very little information was known about the epidemic at the early

stage. With incomplete information, limited data on hand, and
ever changing on the epidemic development, it is extremely hard
for anybody to decide using only deterministic approach which
foretells precisely the future behaviour of the epidemic. The work
reported in this paper is focused on solving the problem of
incomplete data available for stochastic decision making. In this
paper a composite Monte-Carlo model (CMCM) is proposed to be
used in conjunction with GROOMS methodology [21] which finds
the best performing deterministic forecasting algorithm. Coupling
GROOMS+CMCM together offers the flexibility of embracing both
deterministic and non-deterministic input data into the Monte
Carlo simulation where random samples are drawn from the
distributions of the data from the non-deterministic data sources
for reliable outputs. During the early period of disease outbreaks,
data are scarce and full of uncertainty. The advantage of CMC is
that a range of possible outcomes are generated associated with
probabilities. Subsequently sensitivity analysis, what-if analysis
and other scenario planning can be done for decision support. As
a part of the GROOMS+CMCM methodology, fuzzy rule induction
is also proposed, which provides another dimension of insights
in the form of decision rules for decision support. A case study
of the recent novel coronavirus epidemic (which are also known
as Wuhan coronavirus, COVID-19 or 2019-nCoV) is used as an ex-
ample in demonstrating the efficacy of GROOMS+CMCM. Through
the experimentation over the empirical COVID-19 data collected
from the Chinese government agency, it was found that the out-
comes generated from Monte Carlo simulation are superior to the
traditional methods. A collection of soft computing techniques,
such as BFGS+PNN, Fuzzy Rule Induction, and other supporting
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Table 3
Assumed parameters values for the simulation model.
Methods Rank RMSE MAD MAPE Theil’s U Durbin–Watson

ARIMA(0,1,2) 3 0.377797286 0.154576397 0.075464854 0.525839954 1.992976321
ARIMA(2,1,1) 2 1.650040667 0.822540658 0.144476662 0.973748908 2.187529197
ARIMA(5,2,2) 1 539.9901609 334.6537318 0.122208376 0.707004411 2.016801928
ARIMA(9,1,4) 1 1982.877409 1181.854077 0.56389354 1.596011778 1.967498782
Damped Trend Non-Seasonal 3.25 736.3747536 365.0306825 0.240931097 0.982062458 2.033016783
Double Exponential Smoothing 3.75 746.3788246 410.31494 0.241303134 1.044145056 1.955115204
Double Moving Average 3.25 949.1562194 562.5036533 0.245757604 2.044582566 1.065237993
Single Exponential Smoothing 4.5 764.4758927 398.057743 0.258685136 1.031872233 1.977003965
Single Moving Average 4.5 828.4515473 425.6190098 0.250385153 1.429116336 1.366212845

Table 4
Performance in RMSE for each key input elements to MCMC using different classical time series forecasting methods and data mining methods.

algorithms to GROOMS+CMCM could be able to produce qual-
itative results for better decision support, when used together
with Monte Carlo simulation, than any of deterministic forecast-
ers alone. Forecasting carries very high uncertainty; the forecast
results are much influenced by government policy and human
intervention factors. The essence is to obtain the most accurate
possible results given what is available in the current situation.
The main contribution of our methodology is not to pursue an
utmost accurate forecasting model; rather, it is on about fusing
deterministic and non-deterministic data series into a MC sim-
ulation for fuzzy decision making. The experiment reported in
this paper represents a typical scenario of decision making for
a novel disease in the early days since the outbreak. It does not
mean to describe how this COVID-19 progressed, as it still evolves
at the time of writing. However, it shows a possible solution in
generating future outcomes from the GROOMS+CMCM when the
data is limited and incomplete. Early decision making is critical
in the initial stage of novel epidemic, using multi-prong data
sources, from both deterministic and non-deterministic domains.
GROOMS+CMCM was designed to fulfil this solution.

5. Future works

By the time this article was written, there are thousands of
people struggling for lives in hospital and WHO has already
declared COVID-19 as a global pandemic. Latest data are updated
frequently [27]. It is anticipated that MCMC would evolve in
several directions, becoming more useful, detailed and pragmatic
in actual deployment. One direction is the fusion of big data ana-
lytics which is going to be a truly multi-prong, multi-dimensional,
and full volume of all possibly available information to be loaded
into MCMC for the most reliable simulation. Following this di-
rection, several technical challenges are required to be met. That
includes extraction of only the most relevant information from
big data which are often sparse and unstructured, efficient pro-
cessing cloud platform and powerful computing hardware [28],
and theoretical validation of the MCMC model as well as its
results [29]. There are similar prior arts [30,31] in modelling

Fig. 8. Radar chart of the performance comparison.

epidemic reported in literature. An ensemble like MC model [32]
is applied to modelling a group of components using different
MC model, and piecing up the results together for a full view.
Although their underlying techniques are different, it is academi-
cally interesting to compare and contrast the differences between
them, as well as their pros and cons. Most of the past works
targeted at modelling disease itself. The methodology proposed
here is to enhance decision making for novel disease. The contri-
bution in this paper is unique for its one of the few approaches
using stochastic simulation using multi-prong data sources. They
are important because the decision made could be directly or
indirectly determining the lives of thousands of patients and the
fate of the epidemic control. Other directions are pertaining to
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the input data which shall be refined to micro-level for accu-
racy. Micro-level data include those influential data that describe
the epidemic events, e.g. the demography of the patients, their
prognosis, and records of critical illness, if any; precise medical
costs per day per hospital, and the mobility of people who travels
which shall be modelled accurately, for the sake of generating
highly possible outcomes.
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Appendix

ppi/day: 34.93
ppq/day: 25.12
min_days_for_recovery: 11
max_days_for_recovery: 26
mean_days_till_death: 35.9
std_days_till_death: 6.37
quarantine_days: 14
last_current_suspected: 7264
last_current_confirmed: 58010
last_cured_rate: 15.2
last_death_rate: 2.5
ppi_daily_increase_rate: 0.005
std_ppi/day: 9

Assumptions:
Non-deterministic inputs: Let ppi/day, days_for_recovery, and

days_till_death be of PROBABILITIES to be modelled by MCMC
Deterministic inputs: The future values of the 4 main variables

(ndi_suspected, ndi_confirmed, cured_rate, death_rate, are from
CB Forecasting software), with algorithms used such as Linear
Regression and ARIMA.

For the deterministic forecast results, the following perfor-
mances in terms of RMSE was chosen as the sole criterion in
selecting the best model with the best parameters, in alignment
with the procedure in GROOMS methodology (see Table 3).

Furthermore, in comparison with classical time series fore-
casting method, such as ARIMA and others as listed above, the
same was compared with machine learning styles of time series
forecasting. The results are tabulated in Table 4 and visually
charted as radar chart for comparison as Fig. 8.
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