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Lens dose is a concern during the treatment of facial lesions with anterior electron 
beams. Lead shielding is routinely employed to reduce lens dose and minimize 
late complications. The purpose of this work is twofold: 1) to measure dose pro-
files under large-area lead shielding at the lens depth for clinical electron energies 
via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment plan-
ning system in calculating doses under lead shields. First, to simulate the clinical 
geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid 
Water phantom. With the lead shield inside the phantom, the film was positioned 
at a depth of 0.7 cm below the lead, while a variable thickness of solid water, 
simulating bolus, was placed on top. This geometry was reproduced in Pinnacle 
to calculate dose profiles using the pencil beam electron algorithm. The measured 
and calculated dose profiles were normalized to the central-axis dose maximum in 
a homogeneous phantom with no lead shielding. The resulting measured profiles, 
functions of bolus thickness and incident electron energy, can be used to estimate 
the lens dose under various clinical scenarios. These profiles showed a minimum 
lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to 
≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent 
overestimation of dose under the lead shield with discrepancies of ~ 25% occur-
ring near the shield edge. This discrepancy was found to increase with electron 
energy and bolus thickness and decrease with distance from the lead edge. Thus, 
the Pinnacle electron algorithm is not recommended for estimating lens dose in 
this situation. The film measurements, however, allow for a reasonable estimate of 
lens dose from electron beams and for clinicians to assess the lead margin required 
to reduce the lens dose to an acceptable level.
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I.	 INTRODUCTION

Electron beams are an effective tool in the treatment of superficial lesions due to the plateau of 
the high-dose region of the depth-dose curve and steep dose falloff with depth. The penumbra of 
electron beams, however, broadens with depth due to increased multiple Coulomb scattering,(1) 
leading to a bulging out of the low-dose region. This bulging of the low isodose lines can pose 
a problem for radiosensitive organs at risk (OARs) directly adjacent to targets regardless of 
whether or not they are within the direct field. This is the case concerning irradiation of facial 
lesions and the proximity of the lens of the eye to the treatment field.
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The lens of the eye is considered a highly radiosensitive organ with radiation-induced cata-
ractogenesis a main concern in modern radiotherapy. The incidence of cataract formation has 
been studied in the literature for single fraction and 2 Gy conventional fractionation schemes. 
Emami et al.(2) estimated that there is a 5% and 50% risk of cataract formation at five years 
from 10 and 18 Gy considering dose incident on the lens of the eye. Alternate studies have 
proposed deterministic threshold doses of as low as 2 Gy acute doses and 4 Gy convention-
ally fractionated doses with further estimates that onset of cataract formation may occur after 
only 0.5 Gy suggesting a linear, no-threshold complication model with a time to onset that is 
dose-related.(3-6) As such, sparing of the lens during treatment is an important objective when 
preparing a patient’s radiotherapy plan.

To achieve sufficient lens sparing, various techniques for the purposes of minimizing lens 
dose have been suggested depending on the site of the target. The first is the lens block used in 
the treatment of lesions within the eye such as: retinoblastoma and conjunctival lymphoma.(7-10)  
In this case, a pencil shield is positioned on the surface of the patient or with an offset, hanging 
in air from the electron applicator, with a thickness of 1 cm and a variable diameter ≥ 1.0 cm. 
The second is the internal eye shield designed to reduce the dose to the entire extent of the eye 
when treating the eyelid or canthus.(11-13) Here, lead or tungsten hemispherical shields are placed 
directly onto the eye in treatments with low-energy electrons (up to 9 MeV). The shields them-
selves are concentric with the eye with an anodized aluminum cap, dental acrylic, or wax layer 
on the proximal side of the shield to reduce electron backscatter dose to the interior of the eyelid. 
The third is large-area skin collimation that is used to spare the eye and underlying structures of 
unnecessary dose when treating skin lesions adjacent to the eye such as those that may occur on 
the nose.(11) Lead shielding is placed as skin collimation during treatment, covering the extent 
of the eye to maximally shield the lens with minimal effect on target coverage. When treating 
largely varying contours, superficial targets, or using higher energies, bolus may be placed atop 
the lead shielding and patient skin to create a flat surface for the electron beam to impinge upon, 
avoiding obliquity effects, and to achieve coverage of the target with the prescription isodose.

Determining the dose to the lens is not a simple task due to the cumbersome nature of 
in vivo dosimetry with the associated risk of inaccurate dosimeter placement, the difficulty in 
performing hand calculations for points distal to lead shielding, and the inaccuracy of modern 
treatment planning systems (TPSs) in the calculations of electron dose distributions with and 
without the presence of high density inhomogeneities.(1,11,14-15) Thus, the purpose of this work 
is twofold: 1) to measure dose profiles under lead shielding at the lens depth for a range of 
clinical electron energies and bolus thicknesses enabling lens dose estimation in the clinic, 
and 2) to assess the validity of the Pinnacle TPS, currently in use at our center, in calculating 
the dose under lead shielding with the Hogstrom pencil beam electron algorithm. This study 
is specifically designed to address lens dose estimations for the situation of large-area skin 
collimation with and without bolus.

 
II.	 MATERIALS AND METHODS

A. 	 Radiochromic film measurements
First, Gafchromic EBT3 (Ashland Inc., Covington, KY) film calibration curves were created 
for incident electron energies of 6 and 18 MeV, the lowest and highest electron beam ener-
gies investigated, for the purpose of characterizing the film response as a function of electron 
energy.(16) The dose-response curve was a combination of the 6 and 18 MeV data and was 
generated for 0 to 40 Gy in the green channel due to the increased sensitivity observed at doses 
greater than 10 Gy and the improved accuracy over the range of doses deposited in the film 
from the high-dose gradient at the lead edge compared to the red and blue channels.(17) The 
Epson Expression 10000XL flatbed scanner (Epson America Inc., Long Beach, CA) was used 
to scan the irradiated films in a consistent orientation. All films were scanned in transmission 
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mode with color corrections disabled, in 48-bit color, and with a resolution of 150 dpi. Films 
used to construct the calibration curve were taken from the same batch as those to be used for 
measurements and left to stabilize for 24 hrs between irradiation and scanning.

Next, a phantom consisting of solid water and incorporating a lead shield of dimensions 
4 × 10 cm2 and a thickness dependent on the incident beam energy, as recommended in the 
AAPM Task Group 25 report, was constructed.(18) Lead dimensions were selected such that 
the length of 10 cm extended beyond the field boundaries and the width of 4 cm removed any 
scattered dose contributions from points perpendicular to the off-axis profile, centered at depth 
under the lead shield, for all energies investigated. Figure 1 illustrates the experimental setup. 
EBT3 film was positioned in the phantom such that 10 cm of solid water supplied sufficient 
backscatter with the film extending 3 cm beyond the central axis of the electron beam. A 0.7 cm 
thick piece of solid water was placed on top of the film to approximate the average depth of 
the lens within the eye. The lead shield was then positioned on top of the solid water such that 
it extended into the open field by 3 cm from the field border. To simulate bolus placement, 
a variable thickness of solid water was placed atop the lead shield with custom-shaped solid 
water positioned laterally to the lead shield. A SSD of 100 cm and a field size of 9 × 9 cm2 in 
a 10 × 10 cm2 applicator were used for the irradiation. Off-axis dose profiles extending from 
the open field beyond the central axis to the edge of the lead shield furthest from the central 
axis were then obtained. Table 1 displays the thicknesses of lead shielding and bolus used for 
each electron energy with the bolus thicknesses chosen to span the range of clinical scenarios 
used for treatment and allow for interpolation between the measured data. The monitor units 

Fig. 1.  Film profile measurement phantom. The film is positioned at a depth of 0.7 cm beyond the bottom of the lead 
shielding with the edge aligned at 3 cm beyond the central axis of the incident beam. The lead shielding is aligned at 
1.5 cm from the central axis of the beam (protruding 3 cm within the field border). The surface of the Solid Water phantom 
is positioned 100 cm SSD (not to scale).
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(MUs) used for irradiation were selected to produce dose values in the lead-shielded region 
at depth that were within the limits of the electron dose calibration curve. This resulted in 
selecting 2000 MUs for thinner bolus thicknesses and 4000 MUs for thicker bolus thicknesses 
where the film is located at an increased depth. The off-axis dose profiles obtained from the 
film measurements were normalized to the central-axis dose maximum in a homogeneous solid 
water phantom with no lead shielding. Identification of the edge of the lead shielding on the film 
was accomplished by projecting the divergence of the beam from the lead shield onto the film 
and noting the distance from the central axis of the beam. This then allowed for the distance 
from the edge of the film at 3 cm beyond the central axis to the lead shield to be determined.

B. 	 Pinnacle model calculations
The geometry of the phantom in which the film measurements were performed was reproduced 
within our currently used clinical TPS, Pinnacle v9.2 (Philips Healthcare, Andover, MA). This 
was accomplished through the computed tomography (CT) reconstruction of a 30 × 30 × 30 cm3 
region set to a physical density of 1.0 g∙cm-3 to produce a virtual phantom with a manual density 
override of 11.3 g∙cm-3 applied at depth to simulate the presence of a lead shield producing 
the measurement phantom setup with applied bolus. Dose distributions were then generated 
using the Pinnacle pencil beam algorithm (PBA), with inhomogeneity corrections turned on 
and normalized to the dose at dmax in a homogeneous phantom, for the selected energies and 
associated bolus thicknesses listed in Table 1.(15,19) The resultant off-axis dose profiles, for a 
representative selection of electron energies and bolus thicknesses at a depth of 0.7 cm beyond 
the lead shielding and through the geometric centre of the electron field, were compared with 
the film measurements to assess the suitability of the heterogeneous PBA for lens dose cal-
culations using lead shielding. Alignment of the film profile measurements and the Pinnacle 
dose profiles was achieved by projecting the beam divergence from the lead edge to a depth of 
0.7 cm beneath the lead shielding and exporting data 5 cm in either direction along the dose 
profile such that the lead edge marked the center point.

 
III.	 RESULTS 

The electron film calibration curves for 6 and 18 MeV were found to be energy independent 
and valid for use over the energy range investigated, consistent with studies in the literature.(20) 
Figure 2 illustrates the electron calibration curve used to convert film net optical density in the 
green channel to dose for all energies under investigation. The measured off-axis dose profiles 
extracted from the irradiated films for electron energies 6, 9, 12, 15, and 18 MeV are plotted 
in Figs. 3–7, which can serve the purpose of providing a simple lens dose lookup source for 
use in the clinic. Overlaid in each figure are the profile measurements at a given energy for all 
bolus thicknesses investigated. The zero position on the x-axis marks the edge of the lead shield 
projected onto the film plane, accounting for beam divergence. Comparison plots between the 
Pinnacle TPS and film measurements for electron energies of 6, 12, and 18 MeV and selected 
bolus thicknesses listed in Table 1 are presented in Fig. 8.

 

Table 1.  Thicknesses of lead shields and bolus employed for the measurements.

	Energy	 Lead Thickness	 Bolus Thicknesses
	(MeV)	 (cm)	 (cm)

	 6	 0.4	 0.5, 1, 1.5, 2
	 9	 0.5	 0.5, 1, 2, 3, 3.5
	 12	 0.6	 0, 1, 2, 3, 4.5
	 15	 0.8	 0, 1, 2.5, 4, 6
	 18	 1.0	 0, 1, 2.5, 4, 6
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Fig. 2.  Electron film calibration curve (6-18 MeV). The dose vs. net optical density calibration curve is a combination of 
data obtained for both 6 and 18 MeV electron energies with the resultant fit generated using all data points. Calculation 
of netOD follows the procedure of Sorriaux et al.(20)

Fig. 3.  6 MeV EBT3 film profiles of relative dose vs. off-axis position. Dose is relative to central axis dose maximum, 
Dmax, in a homogeneous phantom with no lead shielding. The lead shielding extends from the inner edge (0 cm) to the 
outer edge (-10 cm); the inner edge is located at 1.5 cm from the central axis of the beam. Depth of measurement is 0.7 cm 
below the lead shielding of thickness 0.4 cm (depth = bolus thickness + 0.4 cm + 0.7 cm).
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Fig. 4.  9 MeV EBT3 film profiles of relative dose vs. off-axis position. Dose is relative to central axis dose maximum, 
Dmax, in a homogeneous phantom with no lead shielding. The lead shielding extends from the inner edge (0 cm) to the 
outer edge (-10 cm); the inner edge is located at 1.5 cm from the central axis of the beam. Depth of measurement is 0.7 cm 
below the lead shielding of thickness 0.5 cm (depth = bolus thickness + 0.5 cm + 0.7 cm).

Fig. 5.  12 MeV EBT3 film profiles of relative dose vs. off-axis position. Dose is relative to central axis dose maximum, 
Dmax, in a homogeneous phantom with no lead shielding. The lead shielding extends from the inner edge (0 cm) to the 
outer edge (-10 cm); the inner edge is located at 1.5 cm from the central axis of the beam. Depth of measurement is 0.7 cm 
below the lead shielding of thickness 0.6 cm (depth = bolus thickness + 0.6 cm + 0.7 cm).
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Fig. 6.  15 MeV EBT3 film profiles of relative dose vs. off-axis position. Dose is relative to central axis dose maximum, 
Dmax, in a homogeneous phantom with no lead shielding. The lead shielding extends from the inner edge (0 cm) to the 
outer edge (-10 cm); the inner edge is located at 1.5 cm from the central axis of the beam. Depth of measurement is 0.7 cm 
below the lead shielding of thickness 0.8 cm (depth = bolus thickness + 0.8 cm + 0.7 cm).

Fig. 7.  18 MeV EBT3 film profiles of relative dose vs. off-axis position. Dose is relative to central axis dose maximum, 
Dmax, in a homogeneous phantom with no lead shielding. The lead shielding extends from the inner edge (0 cm) to the 
outer edge (-10 cm); the inner edge is located at 1.5 cm from the central axis of the beam. Depth of measurement is 0.7 cm 
below the lead shielding of thickness 1.0 cm (depth = bolus thickness + 1.0 cm + 0.7 cm).
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IV.	 DISCUSSION

There are two main effects that govern the dose profiles obtained via film dosimetry. The first 
of these effects is the skin collimation stopping the electrons in the incident beam due to the 
presence of the lead shielding. The second effect is due to the increased lateral scatter of the 
electron beam as the bolus thickness is increased. The increased width of the angular distribution 
of the electron beam at the level of the lead shielding with increasing bolus thickness results 
in a larger proportion of electrons deflected laterally, directly increasing the dose deposited 
at depth beneath the lead shielding.(1) Thus, for each electron energy, as the bolus thickness 
increases, the dose gradient at the lead edge becomes less steep due to increased lateral scat-
tering of the electrons at increased depths. The film profile results given in Figs. 3–7 display 
this effect for all clinical electron energies considered. Utilizing Figs. 3–7, the dose to the lens 

Fig. 8.  Pinnacle vs. EBT3 film dose profiles for anterior electron beam dose deposited under a lead shield. The 0 point on 
the x-axis defines the edge of the lead shield with negative values denoting the region under the lead shield. The y-axis 
reflects percent dose relative to Dmax with the profiles normalized to central-axis dose maximum in a homogeneous 
phantom with no lead shielding.
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can be estimated by considering the choice of electron energy, the thickness of bolus proximal 
to the lead shield, and the distance of the lens from the lead edge.

In addition to estimating the dose to the lens using the data presented in this study, the clini-
cian can determine the margin of lead shielding from the edge of the lens required to reduce 
the lens dose to an acceptable amount. This should enable the construction of lens shielding 
tailored to the clinical choice of electron energy and bolus thickness. The measured profiles 
indicate that, in most situations, a minimum margin of 0.5 cm of lead in one-dimension from 
the edge of the lens with sufficient shielding on each of the other sides is necessary to reduce 
the lens dose to as low as 10% of the dose at dmax in a homogeneous medium. Notably, these 
observations correlate with trends shown in a Monte Carlo study with similar measurement 
conditions that simulated dose profiles at a depth of 0.7 cm in a Solid Water phantom as a func-
tion of thickness and diameter of lead shielding placed on the phantom’s surface and along the 
central axis for 4, 9, and 16 MeV electron beams.(21) Illustrated in the figures of that study, across 
all energies, is the requirement of a margin of > 0.5 cm in order for the lens to be shielded to 
< 10% of the dose relative to dmax. These findings are identical to those obtained from the film 
dose profile measurements across the range of electron energies examined for the worst-case 
scenario in which the bolus thickness is at a minimum. A margin of 0.5 cm thus represents our 
recommended minimum lateral extent of lead shielding that should be used. Effort should be 
made to maximize the extent of shielding while taking into account the choice of beam energy 
and patient-specific considerations for each clinical scenario.

Comparisons between Pinnacle v9.2 calculations and the measured electron off-axis dose 
profiles displayed in Fig. 8 reveals that the PBA consistently overestimates the dose deposited 
beneath the lead shielding. A contribution to this disagreement is the saturation of the electron 
stopping power lookup table as a function of physical density used in the Pinnacle TPS dose 
calculation. The current lookup table, shown in Table 2, extends to a maximum physical density 
of 7 g∙cm-3, resulting in density overrides above this value to be assigned the same collision 
stopping power ratio and angular scattering power ratio as that for 7 g∙cm-3. This results in 
the Pinnacle collision stopping power ratio to appear too low and allow some fraction of the 
incident electrons to penetrate the lead shield. This effect increases the dose deposited at depth 
and could be addressed by modifying the lead shield thicknesses to be greater than those used 
in patient collimation. In addition, the application of bolus upstream to high density skin col-
limation causes the central-axis approximation of the PBA to break down resulting in highly 
inaccurate electron beam dose computations.(22) Electrons scattered into the lead shield from the 
open field are not stopped in the PBA, incorrectly increasing dose deposited in the penumbral 
region under the lead shield while electrons incident over the lead shield and scattered into 
the open field are stopped in the PBA, incorrectly decreasing dose deposited in the penumbral 
region adjacent to the lead shielding. The net result of these contributing factors causes Pinnacle 
to calculate a penumbra that is too broad at the edge of the lead shield, depicted in the thicker 
bolus plots of Fig. 8 for each respective energy, with a smaller effect observed for thinner bolus 

Table 2.  Electron relative stopping and scattering power Pinnacle lookup table.

	Physical Density	 Collision Stopping	 Angular Scattering
	 (g∙cm-3)	 Power Ratio	 Power Ratio

	 0.000	 0.001	 0.001
	 0.291	 0.311	 0.292
	 0.927	 0.933	 0.729
	 1.000	 1.027	 0.912
	 1.047	 1.051	 1.040
	 1.100	 1.098	 1.135
	 1.427	 1.422	 1.863
	 1.940	 1.940	 3.026
	 7.000	 7.000	 9.900
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and higher energy cases causing the penumbra to appear similar in width, but offset due to the 
electrons penetrating the lead shield.

These Pinnacle limitations compound the uncertainty of the heterogeneous dose calculation 
algorithm resulting in a significant discrepancy between the measured and calculated dose val-
ues of up to 25% at the lead edge, with worse agreement in the open field region of the beam 
for select cases. A trend of increasing disagreement between the calculated and measured dose 
profiles was observed with increasing electron energy, decreasing distance from the lead edge, 
and increasing bolus thickness. As a result, it is not recommended that the heterogeneous PBA 
utilized in the Pinnacle TPS be used to estimate the lens dose in complex treatment situations 
as those observed here. Instead, reference dose data such as the lens dose profiles presented 
here should be the primary source of dose estimates, unless a TPS is employed with a properly 
validated and commissioned heterogeneous electron dose calculation algorithm.

 
V.	 CONCLUSIONS

The dose to the lens of the eye for adjacent facial lesions treated with anterior electron beams 
can be estimated using the data presented in this study. These measurements provide a useful 
estimate for the dose that the lens will receive, when shielded with lead, for a clinically-relevant 
range of electron energies and bolus thickness combinations. It also allows clinicians to assess 
the extent of lead margin required to reduce the lens dose to an acceptable level. Furthermore, 
the dose comparisons between Pinnacle v9.2 and Gafchromic EBT3 film measurements show 
that the Pinnacle pencil beam electron dose algorithm tends to overestimate the dose deposited 
under the in-field lead shield, requiring reference dose data, such as that presented here, to be 
used in estimating lens doses.

 
COPYRIGHT

This work is licensed under a Creative Commons Attribution 4.0 International License.

 
REFERENCES

	 1.	Hogstrom KR and Almond PR. Review of electron beam therapy physics. Phys Med Biol. 2006;51(13):R455-R489.
	 2.	Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol 

Phys. 1991;21(1):109–22.
	 3.	 ICRP. 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 

Annals ICRP. 1991;21(1–3).
	 4.	Gordon KB, Char DH, Sagerman RH. Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol 

Biol Phys. 1995;31(5):1123–39.
	 5.	 Jeganathan VS, Wirth A, MacManus MP. Ocular risks from orbital and periorbital radiation therapy: a critical 

review. Int J Radiat Oncol Biol Phys. 2011;79(3):650–59.
	 6.	Ainsbury EA, Bouffler SD, Dörr W, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res. 

2009;172(1):1–9.
	 7.	Steenbakkers R, Altschuler MD, D’Angio GJ, Goldwein JW, Kassaee A. Optimized lens-sparing treatment of 

retinoblastoma with electron beams. Int J Radiat Oncol Biol Phys. 1997;39(3):589–94.
	 8.	Kirsner SM, Hogstrom KR, Kurup RG, Moyers MF. Dosimetric evaluation in heterogeneous tissue of anterior 

electron beam irradiation for treatment of retinoblastoma. Med Phys. 1987;14(5):772–79.
	 9.	Dunbar SF, Linggood RM, Doppke KP, Duby A, Wang CC. Conjunctival lymphoma: results and treatment with 

a single anterior electron field. A lens sparing approach. Int J Radiat Oncol Biol Phys. 1990;19(2):249–57.
	 10.	Rustgi SN. Dose distribution under external eye shields for high energy electrons. Int J Radiat Oncol Biol Phys. 

1986;12(1):141–44.
	 11.	Klein EE. Electron-beam therapy: dosimetry, planning, and techniques. In: Halperin EC, Perez CA, Brady LW, 

editors. Perez and Brady’s principles and practice of radiation oncology, 5th edition. Philadelphia, PA: Lippincott 
Williams & Wilkins; 2008. p.190–217.

	 12.	Shiu AS, Tung SS, Gastorf RJ, Hogstrom KR, Morrison WH, Peters LJ. Dosimetric evaluation of lead and tungsten 
eye shields in electron beam treatment. Int J Radiat Oncol Biol Phys. 1996;35(3):599–604.

https://urldefense.proofpoint.com/v2/url?u=http-3A__creativecommons.org_licenses_by_4.0_&d=AwMFAg&c=SgMrq23dbjbGX6e0ZsSHgEZX6A4IAf1SO3AJ2bNrHlk&r=W7OS2arm7HC48L0cStRk8JAVcS2AWyTd5bUny_O6-7c&m=hDRuSOqc1Cbkl69t1p0aHz0q45hql-wqyEEGFTlMX1c&s=dO6PKuPeKbNMnXOtW17q1Bu5mDb0OH2O3sDjKJmAJFc&e=


314    Sonier et al.: Electron dose to lead-shielded lens	 314

Journal of Applied Clinical Medical Physics, Vol. 17, No. 2, 2016

	 13.	Reddy K, Strom T, Chen C. Primary radiotherapy for locally advanced skin cancer near the eye. Pract Radiat 
Oncol. 2012;2(1):63–72.

	 14.	Moylan R, Aland T, Kairn T. Dosimetric accuracy of Gafchromic EBT2 and EBT3 film for in vivo dosimetry. 
Australas Phys Eng Sci Med. 2013;36(3):331–37.

	 15.	Hogstrom KR, Mills MD, Almond PR. Electron beam dose calculations. Phys Med Biol. 1981;26(3):445–59.
	 16.	Niroomand-Rad A, Blackwell CR, Coursey BM, et al. Radiochromic film dosimetry: recommendations of AAPM 

Radiation Therapy Committee Task Group 55. Med Phys. 1998;25(11):2093–115.
	 17.	Casanova Borca V, Pasquino M, Russo G, et al. Dosimetric characterization and use of Gafchromic EBT3 film 

for IMRT dose verification. J Appl Clin Med Phys. 2013;14(2):158–71.
	 18.	Khan FM, Doppke KP, Hogstrom KR, et al. Clinical electron-beam dosimetry: report of AAPM Radiation Therapy 

Committee Task Group No. 25. Med Phys. 1991;18(1):73–109.
	 19.	Starkschall G, Shiu AS, Bujnowski SW, Wang LL, Low DA, Hogstrom KR. Effect of dimensionality of hetero-

geneity corrections on the implementation of a three-dimensional electron pencil-beam algorithm. Phys Med 
Biol. 1991;36(2):207–27.

	 20.	Sorriaux J, Kacperek A, Rossomme S, et al. Evaluation of Gafchromic EBT3 films characteristics in therapy 
photon, electron and proton beams. Phys Med. 2013;29(6):599–606.

	 21.	Chow JC and Grigorov GN. Dosimetric dependence of the dimensional characteristics on a lead shield in electron 
radiotherapy: a Monte Carlo study. J Appl Clin Med Phys. 2009;10(2):75–91.

	 22.	Hogstrom KR and Steadham RE. Electron beam dose computation. In: Mackie TR, Palta JR, editors. Teletherapy: 
present and future. Proceedings of the 1996 AAPM summer school. Madison, WI: Advanced Medical Publishing; 
1996. p.137–74.


