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Systematic comparison of somatic 
variant calling performance among 
different sequencing depth and 
mutation frequency
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In the past decade, treatments for tumors have made remarkable progress, such as the successful 
clinical application of targeted therapies. Nowadays, targeted therapies are based primarily on the 
detection of mutations, and next-generation sequencing (NGS) plays an important role in relevant 
clinical research. The mutation frequency is a major problem in tumor mutation detection and 
increasing sequencing depth is a widely used method to improve mutation calling performance. 
Therefore, it is necessary to evaluate the effect of different sequencing depth and mutation frequency 
as well as mutation calling tools. In this study, Strelka2 and Mutect2 tools were used in detecting the 
performance of 30 combinations of sequencing depth and mutation frequency. Results showed that the 
precision rate kept greater than 95% in most of the samples. Generally, for higher mutation frequency 
(≥20%), sequencing depth ≥200X is sufficient for calling 95% mutations; for lower mutation frequency 
(≤10%), we recommend improving experimental method rather than increasing sequencing depth. 
Besides, according to our results, although Strelka2 and Mutect2 performed similarly, the former 
performed slightly better than the latter one at higher mutation frequency (≥20%), while Mutect2 
performed better when the mutation frequency was lower than 10%. Besides, Strelka2 was 17 to 22 
times faster than Mutect2 on average. Our research will provide a useful and comprehensive guideline 
for clinical genomic researches on somatic mutation identification through systematic performance 
comparison among different sequencing depths and mutation frequency.

Cancer is one of the major diseases that threaten human health. It is estimated that there are approximately 18.1 
million new cancer cases and 9.6 million cancer deaths in 20181. Due to cancer heterogeneity, the same treat-
ment approach could result in huge efficacy differences for different individuals with the same type of cancer2,3. 
Therefore, no therapy can be universally applied to all cancers so far and more precise therapies should be devel-
oped. In recent years, cancer treatments have made great progress, especially targeted therapy. Currently, most 
targeted cancer therapies are based on detecting genes mutation. For example, some tyrosine kinase inhibitors, 
such as afatinib and erlotinib, are applied to target the mutation of epidermal growth factor receptor (EGFR) in 
non-small-cell lung cancer4,5. The B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) inhibitors, such as 
Sorafenib, are developed based on the trial of melanoma with the V600E mutation in BRAF6. Moreover, olaparib, 
a poly (ADP-ribose) polymerase (PARP) inhibitor, is used to treat advanced ovarian cancer with BRCA gene 
mutation7.

Therefore, mutation research is one of the vital steps to reveal the mechanisms of cancers and could help 
develop more targeted drugs. Whole-exome sequencing (WES) is an effective approach to detect genome muta-
tions. It is reported that WES can detect 95% coding regions and >98% mutations by targeted capture chips and 
next-generation sequencing8,9. Because of its relatively low-cost, it is suitable for large cohort research and has 
been successfully applied to several cohort researches10–12.

Single-cell sequencing researches have proved that several subclones could coexist in one patient, the per-
centage of each subclone would be different and each subclone may have a different genetic background13,14. 
Furthermore, the pathogenic subclones may coexist with different percentages, which might result in different 
mutation frequency and lead to more difficulties in detecting them. The result of detecting somatic mutations can 
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be influenced by many factors, such as sequencing depth, the proportion of pathological mutated subclone and 
mutation calling software.

A large number of tools are able to call somatic mutations, such as Mutect2, Varscan, Vardict, Strelka2, 
DeepVariant etc15–18. The Mutect2 tool in GATK is developed by the Broad Institute and is one of the most widely 
used mutation-calling tools. Strelka2 software is developed in recent years and claimed to be time-efficient, which 
is a very important aspect of clinical usage. There are several studies in recent literature on the performance of 
these mutation-calling tools19–21, in these studies, the overall performance of both GATK-Mutect2 and Strelka2 
was stable and relatively accurate. Therefore, we choose Mutect2 and Strelka2 for somatic mutation-calling pipe-
line in the present study.

Up to now, which sequencing depth can provide sufficient information to detect low-frequency mutations 
remains to be investigated. To systematically evaluate the performance of sequencing depth and mutation fre-
quency combinations of Strelka2 and Mutect2 tools, we conducted Illumina high-depth sequencing on two stand-
ard DNA samples (NA12878 and YH-1), the sequencing data were mapped to reference genome and duplicated 
reads were removed, then the data were downsampled and mixed to simulate different sequencing depths and 
different mutation frequency, the mixed samples were used to call somatic mutation by Strelka2 and Mutect2, 
respectively. Finally, the mutation-calling performance was assessed. The result of our study can provide a useful 
reference and guidance to obtain reliable somatic mutation using WES sequencing in clinical researches and 
targeted cancer therapy.

Results
A summary of datasets and analysis.  The workflow of our research was presented in Fig. 1. WES-
sequencing of two standard DNA samples was conducted, the detailed information of sequencing data is pre-
sented in Table 1. After obtaining the raw sequencing data, quality control was conducted, reads were mapped 
to the hg19 reference genome, after removing duplicated reads using Picard, the average depth of NA12878 and 
YH-1 was 819.96X and 411.10X, respectively. Then the NA12878 bam file was down-sampled to 100X as a normal 
control for the following somatic calling pipeline, and the YH-1 bam file was set as a “tumor” sample and mixed 
with NA12878. Different mutation frequency was simulated by controlling different YH-1 percentages in the sam-
ple mixing step. Only sites with completely different homozygous genotypes between YH-1 and NA12878 were 
selected into true mutations set, thus the percentage of YH-1 can be taken as the somatic mutation frequency 
for the mixed sample. The depths of mixed bam files were grouped into 100X, 200X, 300X, 500X and 800X, and 
for each depth, 1%, 5%, 10%, 20%, 30% and 40% of YH-1 was mixed with NA12878, separately. To reduce the 
influence of random effect in down-sampling, three replicates were generated for each depth and percentage. All 
90 bam files above were used to call somatic variants by Strelka2 and Mutect2 tools, respectively. Figure 2 shows 
the precision-recall curves of the replicate group 1, and Supplementary Figs. S1 and S2 present curves of replicate 
groups 2 and 3, respectively. The recall rate, precision and F-score of three replicates and the average value of three 
replicates are listed in Supplementary Tables S1 and S2. Three replicate groups showed well concordance, and the 
differences among these replicate groups for almost all combinations were less than 2%, 3.5% and 0.022 for recall 
rate, precision and F-score, respectively.

Somatic variant calling performance comparison between different sequencing depth.  In 
order to evaluate the somatic mutation calling performance at different sequencing depth, we compared precision 
rate, recall rate and F-score, and drew the precision-recall curves for each mixed sample (Fig. 2, Supplementary 
Figs. S1 and S2). The P-R curves manifested that a higher sequencing depth could improve the recall rate, which 
was increased by 0.6~44% when the depth increased from 100X to 200~800X. We also observed a decrease in 
precision when sequencing depth was greater than 200X, and the decreased scale of precision was less than 
0.7%. Furthermore, we compared F-score between different sequencing depth, the box-scatter plot presented 
the F-scores of all mixed samples between sequencing depths (Fig. 3a). Additionally, in concordance with P-R 
curves, higher sequencing depth can improve the performance of somatic mutation calling, increasing sequenc-
ing depth to 200~800X can improve the F-score by 0.02~0.45 compared with those of 100X across all mutation 
frequency and software (see Supplementary Table S2). In general, among all sequencing depths in our study, the 
result of 800X showed the best, with 23~97% recall rate, more than 93% precision, and relative highest F-score 
(0.374~0.96) across all mutation frequency and tools (Fig. 3b, Supplementary Figs. S1 and S2).

Somatic variant calling performance comparison between different mutation frequency.  The 
result of the P-R curves revealed that mutation frequency can largely influence the performance benefit of increas-
ing sequencing depth (Fig. 2, Supplementary Figs. S1 and S2). Obviously, a low mutation frequency (1%) led to 
poor performance in somatic mutation calling and low recall rate (2.7~34.5%) across all depths and software (see 
Supplementary Table S1). For a higher proportion, the recall rate reached 48~96% and 92~97% for 5~10% and 
20~40% mutation frequency, respectively. In the meantime, the precision rate was 68.9~100% across all depths 
and software. Figure 3b shows the F-score distribution among different mutation frequency. The F-scores were 
0.05~0.51 when the mutation frequency was 1%, and they were 0.63~0.95 and 0.94~0.96 when the mutation fre-
quency were 5~10% and 20~40%, respectively (see Supplementary Table S2).

Somatic variant calling performance and concordance between Strelka2 and Mutect2.  
Considering that the choice of different tools would cause a significant effect on mutation-calling, the perfor-
mance and concordance between Strelka2 and Mutect2 were further compared. In general, both Strelka2 and 
Mutect2 performed well when analyzing higher mutation frequency (≥20%) data, because over 90% variants 
were identified when precision kept greater than 95% and the F-scores ranged between 0.94 and 0.965 under 
these depths. The precision rate, the recall rate and the F-score of Strelka2 were slightly greater than Mutect2 but 
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the difference between them was less than 1%. For mutation frequency of 5~10%, compared with Mutect2, the 
precision of Strelka2 was higher (96.2~96.5% vs 95.5~95.9%), and the recall of Strelka2 was lower (48~93% vs 
50~96%), which led to the F-score of Strelka2 was lower than Mutect2 (0.64~0.94 vs 0.65~0.95). For the lowest 
mutation frequency (1%) data, the F-score of Strelka2 (0.06~0.19) was slightly higher than Mutect2 (0.05~0.19) 
when sequencing depth was 100X~300X, but the F-score of Mutet2 (0.32~0.50) surpassed Strelka2 (0.27~0.37) 
when sequencing depth increased to 500X and 800X (see Supplementary Tables S1 and S2).
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Figure 1.  The work flowchart of the experiment design. Two DNA samples were first sent to sequencing, 
the sequencing reads mapped to hg19 reference genome. Then the germline mutation calling pipeline were 
conducted to obtain true mutation set; the high depth data were downsampled and mixed to simulate tumor 
samples and then conduct somatic mutation calling pipeline. The results of somatic mutation calling were then 
compared with true mutation set and visualized for further dissusion.

Sample
Total 
reads(M)

Clean 
Reads(M)

Total 
base(G)

Q20 
base(G)

Q30 
base(G) Q20% Q30%

GC 
content

Duplication 
rate

Average Depth 
(removed duplicates)

NA12878 635.17 614.43 95.28 91.12 86.89 95.64 91.20 0.50 0.19 819.96

YH-1 298.25 292.09 44.74 42.76 41.63 95.57 93.05 0.49 0.16 411.1

Table 1.  Detailed information of sequencing data.
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The overall concordance of Strelka2 and Mutect2 in different sequencing depths and mutation frequency 
is presented in Supplementary Table 2. Generally, the concordance between Strelka2 and Mutet2 was higher 
than 90% except when the mutation frequency was low (1% and 5%). Concordance of the two software was 
20~41% when the mutation frequency was 1%, and it was 75~89% when the mutation frequency was 5% (see 
Supplementary Table 3).

Somatic variant calling efficiency of Strelka2 and Mutect2.  An important aspect of somatic variant 
calling is the time efficiency, especially when somatic variant calling is applied to clinical diagnosis. Therefore, 
we estimated the program running time in the previous somatic variant calling step. 60 GB memory size and 24 
threads were allocated for both Mutect2 and Strelka2, finally, 180 running time data was collected. The detailed 
running time for each sample is presented in Supplementary Table 4. Figure 4 presented the runtime of Mutect2 
and Strelka2, the average runtime of the samples with the same sequencing depth was calculated. Strelka2 took 
less than 10 minutes and less than 40 minutes to deal with 100X WES samples and 800X WES samples, respec-
tively. Mutect2 took ~167 minutes and ~776 minutes to process 100X WES and 800X WES samples, respectively. 
In general, our results showed that Strelka2 was 17.8~22.6 times faster than Mutect2. It should be noted that 60 
GB memory might not be enough for memory costing algorithms such as Mutect2, thus might influence the tim-
ings, a further timing study on the Mutect2 with the recommended environment would be interesting.

Discussion
Many tools and pipelines have been developed to call somatic mutations, and several studies compared software 
and pipelines to assess the performance21–24. However, the accuracy of somatic mutation calling can be largely 
affected by sequencing depth and mutation frequency, which bring these researches limitations. Therefore, we 
performed a systematic comparison of performance on simulated tumor data of different sequencing depths and 
mutation frequency, as well as different somatic mutation calling tools. In our study, two standard DNA samples 
were used to conduct high-depth sequencing, and several pre-treatments were performed for down-sampling, 
then the files were down-sampled and mixed to simulate different sequencing and mutation frequency. After that, 
30 combinations of sequencing depth and mutation frequency with 3 replicates each combination were generated, 

Figure 2.  P-R curves of Strelka2 and Mutect2 for different mutation frequency and sequencing depth. The 
P-R curves of replicate group 1. The colors in the figure represent different sequencing depths, the dotted lines 
represent Strelka2 and the solid lines represent Mutect2.
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these files were then used to call somatic mutation by Strelka2 and Mutect2, respectively. Finally, 180 VCF files 
were produced for further assessment and comparison.

The tool used in data analysis is an important factor that influences the mutation calling performance. Our 
study showed that Mutect2 and Strelka2 performed similarly and both of these tools are useable, it was in con-
cordance with a previous study that reported that EBCall, Virmid, Strelka and Mutect are the most reliable muta-
tion callers for SNV calling, all of them performed well and similarly21. In addition, our study revealed that 
the advantage of Strelka2 was the higher recall and precision than Mutect2 when analyzing higher mutation 
frequency (≥20%) data, and its weakness was the lower recall rate and F-score than Mutect2 when mutation 
frequency was lower than 10%. It should be addressed that Strelka2 requires both normal and tumor sample for 
somatic mutation calling pipeline while Mutect2 can run in “tumor-only” mode, in the present study, Mutect2 
was run in “normal-tumor” paired mode and the germline mutations from normal sample were excluded in the 

Figure 3.  F-score box-scatter plot. The box-scatter plot of F-score, the colors represent different mutation 
frequency (a) and sequencing depths (b).
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Figure 4.  Software running time. The running time of Strelka2 and Mutect2 for each sample.
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result, if Mutect2 run in “tumor-only” mode, only known germline mutation sites in databases will be excluded. 
In clinical studies, such “normal-tumor” paired strategy could be costly, thus it is interesting to find out if the 
“tumor-only” strategy could be a choice. Several studies have reported the performance of Mutect2 “tumor-only” 
mode and reported that tumor-only mutation detection resulted in a large number of false positive mutation 
sites23,25, thus may lead to inappropriate guidance for cancer therapies which is highly related to the patient 
safety and health care costs. Given these results, we did not perform the test between “tumor-only” mode and 
“normal-tumor” paired mode of Mutect2.

Our results showed that the mutation frequency also influenced the mutation calling performance. Across all 
sequencing depth and software, the performance of somatic mutation calling was better with 20~40% mutation 
frequency and worse with 1~10% mutation frequency. When mutation frequency was 1%, the recall rate was 
less than 35% across all sequencing depth and software, indicating that low-frequency mutation could not be 
well identified by the normal WES approach, improving on sequencing depth or other methods is needed to be 
applied. Furthermore, our results presented the influences of different sequencing depth for somatic mutation 
calling. Compared with 100X sequencing depth, increasing sequencing depth to 200X~800X could improve the 
recall rate and F-score by 0.6~44% and 0.02~0.45, respectively. Similar results have been reported by several stud-
ies that performed a comparison between two different sequencing depth and concluded that higher sequencing 
depth could improve somatic calling performance19,21. However, although 800X sequencing depth showed the 
best performance in our study, it is not recommended by us for the reason of high cost. Moreover, the drawback 
of an extreme high sequencing depth may also bring us new challenges. For example, the error rate of DNA poly-
merase and Illumina Hiseq sequencing platform are 10−7~10−5 and 0.2%, respectively. Besides, the PCR reaction 
of extreme high depth sequencing may exaggerate these errors and bring more false-positive results26. Hence, 
other methods providing high performance for detecting low frequency mutations are needed to be applied. 
Many error correction methods on WES have been developed and commonly used nowadays27–33, the unique 
molecular identifiers (UMIs) based error correction strategy is very useful in the above context. UMIs can tag 
sequences to help track molecules and remove errors in amplification and sequencing34–38, Michael et al. devel-
oped a method called “duplex sequencing” which tagged the sequencing adapter by a degenerated 12 randomized 
base (Duplex Tag) and 4 base length fixed sequence27. This approach can effectively classify the real mutation sites 
and PCR error thus can be useful for low-frequency mutation detection.

In addition to WES, amplicon sequencing and gene panel sequencing are two widely used methods in detecting 
mutations39–41. The advantages of gene panel and amplicon are that they require a lower initial sample concentra-
tion than WES and can easily achieve much higher sequencing depth, which enables them to detect gene relatively 
low-frequency somatic mutation, besides, gene panel and amplicon sequencing are cost-effective, makes them com-
petitive in clinical diagnostic service42–44. However, gene panel and amplicon only target a small number of specific 
genes or short regions while WES can detect nearly all human exon regions42–45. Therefore, WES is used in the pres-
ent study to detect enough mutation sites, which can help in obtaining a relatively accurate recall and precision value. 
In addition, the data analysis pipeline varies between WES, gene panel and amplicon sequencing. For WES data, a 
deduplication step is usually applied to remove PCR duplication, however, in gene panel and amplicon sequencing, 
the depth could be higher than 30000X and each molecule could have 10 PCR duplicates, the duplicates can be 
combined computationally into a consensus read, which helps sort out errors, thus the deduplication step is not 
needed46. Therefore, differences between pipelines may also influence the performance of mutation detection, thus 
it is interesting for future studies to focus on the performance and the comparison of different pipelines.

The shortcoming of this research is that we used a mixture of bam files instead of using the mixture of 
real-world DNA samples and send them for sequencing. However, since the sequencing or capture error of the 
experimental steps may be random, the reads quality control and filter should reduce experimental effects on 
mutation calling performance. As expected, different mutation frequency and sequencing depths had greater 
impacts on accuracy. Another point is the coverage bias introduced by mixing BAM files, thus we checked 
the coverage bias for 1~10% mutation frequency, the results showed that coverage bias was observed in sam-
ple with 100X and 1% mutation frequency, but in general, our mixed data is acceptable in coverage bias (see 
Supplementary Figs. S3 to S5).

In general, our study systematically evaluated the influence of different sequencing depths, mutation frequency 
and software, which will provide a comprehensive guidance for clinical somatic mutation research: using 200X 
sequencing depth for a relatively high mutation frequency (≥20%), applying other methods instead of using extreme 
sequencing depth for a relatively low mutation frequency (≤10%). In addition, since gene panel sequencing and 
amplicon sequencing have been successfully applied in clinical research, evaluating the two pipelines based on 
sequencing depth and mutation frequency systematically will be valuable for clinical practice in the future.

Materials and Methods
Sample preparation.  Fifty μg each of NA12878 and YanHuang No.1 (YH-1) cell line genomic DNA were 
prepared after detecting their concentration by Qubit fluorometer 3.0 (Invitrogen), followed by the detection 
of purification using 1% Agarose Gel Electrophoresis. After sample purification, the genomic DNA was con-
structed as Illumina exome library. For library construction, 1 μg each of NA12878 and YH-1 genomic DNA was 
fragmented by Covaris E220 to DNA fragments with length of 100 to 500 bp, and then the Illumina adapter was 
ligated to both ends of each DNA fragment using SureSelectXT Reagent Kit (Cat No. G9611A, Agilent), followed 
by PCR amplification of each sample. In addition, the exome library was captured using the Human All Exon V5 
Target Enrichment Baits (Cat No. 519-6216, Agilent).

Sequencing data acquisition and data pretreatment.  After library construction, all samples were 
sent to perform PE150 whole-exome sequencing (WES) on Illumina NovaSeq sequencing platform, with average 
sequencing depth was approximately 800X and 400X for NA12878 and YH cell line, respectively. Raw reads were 
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first filtered and trimmed adapters using fastp (v0.19.4)47. After quality control, reads were mapped to the hg19 
reference genome by BWA-MEM (v0.7.17)48 with the default parameter. Aligned SAM files were converted to 
BAM files and sorted by coordinate with Samtools (v1.7)49,50. The MarkDuplicate function of Picard (http://broa-
dinstitute.github.io/picard, v2.18.11) was applied to remove duplicated reads of each bam file.

Acquisition of true mutations set.  All bam files from the previous steps were used to call true muta-
tions set using Strelka2 (v2.9.7)17 and Genome Analysis Tool Kit HaplotypeCaller (v4.1.0.0)51. The germline 
mutation-calling pipeline with default parameters plus an “–exome” option of Strelka2 was conducted on both 
NA12878 and YH-1 data. After mutation calling, single nucleotide variation (SNV) sites were extracted and 
only sites with a “PASS” filter flag were kept. For GATK, mutation calling pipeline followed GATK’s best practice 
(https://software.broadinstitute.org/gatk/best-practices), and a hard filter (QD <2.0, FS >60.0, SOR >3.0, MQ 
<40.0, MQRankSum <−12.5, ReadPosRankSum <−8.0) was applied to both NA12878 and YH-1. For both 
Strelka2 and GATK, the SNVs which were homozygous in YH-1 but not in the absence of NA12878 were kept as 
true mutations set. The intersection of true mutation set which respectively derived from Strelka2 and GATK was 
considered as final true mutations set and used in the following analysis.

Down-sampling, mixing bam files and calling mutations.  Bam files which marked duplicates and 
sorted previously were down-sampled to different depths with Function DownsampleSam in Picard tools. The 
down-sampled bam files of NA12878 and YH-1 were merged by samtools to simulate tumor sample with different 
mutation frequency.

Both Strelka2 and GATK’s Mutect2 were used to call mutation according to their somatic pipeline, respec-
tively. As recommended by Strelka2, the Manta variation caller (v1.5.0)52 was run first using the same parameters 
as Strelka2. And then the indel file derived from Manta was input into Strelka2 to help improve the precision of 
mutation calling, setting the parameter as default plus the “–exome” option. All SNVs with “PASS” filter flag were 
kept for the following evaluation. Besides, Mutect2 ran with default parameters except the “–disable-read-filter” 
option was set to “MateOnSameContigOrNoMappedMateReadFilter”, then a hard filter (QD <2.0, FS >60.0, 
SOR >3.0, MQ <40.0, MQRankSum <−12.5, ReadPosRankSum <−8.0) was applied to the SNV files.

Evaluating mutation results.  These SNVs were then compared with true mutations set using som.py, 
which is a somatic mutation evaluating tool in hap.py53 (https://github.com/Illumina/hap.py). The metrics we 
used to assess the performance were true positive (TP), false positive (FP), false negative (FN), precision, recall 
and F-score. The FP region was restricted to ± 10 bp from the true mutation sites. Precision rate, recall rate and 
F-score were defined as TP/(TP + FP), TP/(TP + FN) and 2*recall*precision/(recall + precision), respectively.

Data availability
The raw sequencing reads and two deduplicated BAM files used to generate downsampled files are available in 
the NCBI sequence read archive (SRA) database (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA549767). All 
the codes and scripts used to generate our data are available in GitHub (https://github.com/zic12345/SR2019).
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