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Spiking Neural Networks (SNNs) are often considered the third generation of Artificial

Neural Networks (ANNs), owing to their high information processing capability and

the accurate simulation of biological neural network behaviors. Though the research

for SNNs has been quite active in recent years, there are still some challenges to

applying SNNs to various potential applications, especially for robot control. In this

study, a biologically inspired autonomous learning algorithm based on reward modulated

spike-timing-dependent plasticity is proposed, where a novel rewarding generation

mechanism is used to generate the reward signals for both learning and decision-making

processes. The proposed learning algorithm is evaluated by a mobile robot obstacle

avoidance task and experimental results show that the mobile robot with the proposed

algorithm exhibits a good learning ability. The robot can successfully avoid obstacles in

the environment after some learning trials. This provides an alternative method to design

and apply the bio-inspired robot with autonomous learning capability in the typical robotic

task scenario.

Keywords: neuroanimats, spiking neural networks, reinforcement learning, spike-timing-dependent

plasticity, robot

1. INTRODUCTION

The human brain is a complex system that has billions of neurons and trillions of synapses
(Azevedo et al., 2009). The number of neurons is so large that it is a challenge to know what
happens in the brain, especially the connection between the microscopic properties of neurons and
macroscopic biological behavior. However, based on the studies of the biological nervous system,
researchers still get a lot of inspiration from them, i.e., Artificial Neural Networks (ANNs). ANNs
are programming paradigms inspired by the biological nervous system, which allows computers to
learn from observation data and has been used to solve various problems. Spiking Neural Networks
(SNNs) are often called the third generation ANNs and focus on the accurate simulation of
biological network behavior, and provide a promising computing paradigm due to their biological
basis (Wang et al., 2010). For example, a novel spike-based continual meta-learning called meta-
learning with minimum error entropy is proposed by Yang et al. (2022b), where the experimental
results show that the scheme has good performance in three experiments, including autonomous
navigation, robust working memory in the store-recall task and robust meta-learning capability
for the sequential MNIST data set. In Yang et al. (2022a), a novel self-adaptive multicompartment
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neuron model is proposed, and a recurrent SNN architecture,
along with spike-driven learning algorithms in supervised and
meta-learning frameworks is constructed based on this neuron
model. This scheme also performs well in agent navigation and
meta-learning of MNIST classification tasks.

The robot controlled by biological neurons is often called the
neuroanimats, where animat represents “animal” and “automat”
(Chicca et al., 2014). The target is that a robot learns by using
SNNs, and its behavior is the same as an animal in a real-world
environment. Since the concept was first proposed by Brand et al.
(1995), many successful neuroanimats cases have been reported.
A tactile robot called CARL-SJR is constructed in the approach
of Chou et al. (2015). CARL_SJR can feel the touch of the real
world and change the color of its surface to respond to different
types of touch. In Rothman and Silver (2014), a crocodile
robot and its control bracelet are reported. The control bracelet
can detect hand gestures via myographic signals and send
corresponding commands to the crocodile robot. Besides, the
crocodile robot can learn from the environment and reproduce
crocodiles’ basic behavior, such as searching and “eating” an
object. In Lobov et al. (2020), a LEGO robot controlled by
SNN is proposed. The robot can learn to avoid obstacles and
relearn when the environment changes. These cases are relatively
successful, however, the potential of neuroanimats is still not fully
exploited due to two aspects (Bing et al., 2019b): (1). Unlike
the second generation, ANNs with backpropagation algorithms
and deep learning approaches, SNNs lack effective learning
algorithms. The main problem faced by the researchers building
neuroanimats is the absence of learning algorithms (Lobov et al.,
2020). In a more general context, the learning principles of
biological neural networks are not explored up to a sufficient
level for designing engineering solutions (Gorban et al., 2019).
(2). Software simulation is a common way to implement SNNs,
but for complex SNNs, computational cost greatly increases
the processing time and affects the real-time performance of
the networks (Brette et al., 2007; Shayani et al., 2008; Kulkarni
et al., 2017). Besides, neuroanimats need to explore and learn
in the real world, so their power consumption is also needing
to be considered. The demand for high performance and low
power consumption makes the general processor unable to meet
the needs.

To solve these problems, the following two works are carried
out in this article. (1) The existing algorithm reward modulated
Spike-Timing-dependent Plasticity (STDP) is improved to match
the macroscopic biological behavior observed by existing studies.
Subsequently, an SNN with psychologically plausible at the
macroscopic level and biologically plausible at the microscopic
level is designed for mobile robot obstacle avoidance based
on the improved algorithm. Finally, the effectiveness of the
designed SNN was deployed on a mobile robot for verification.
Besides, a biologically plausible rewarding generationmechanism
is used to generate the reward signals. With the help of this
mechanism, the release of reward signals is controlled by special
dopamine neurons rather than simple function mapping. (2)
For the SNN with a high energy consumption ratio and simple
implementation on hardware characteristics (Liu et al., 2018;
Yang et al., 2020, 2021), combined with the application scenario

TABLE 1 | The parameters used in Spiking Neural Network (SNN) models and

learning algorithm.

Parameter Parameter description Value

RIF Membrane resistance of IF neuron 1 M�

τ Membrane time constant of IF neuron 1 ms

RLIF Membrane resistance of LIF neuron 1 M�

τm Membrane time constant 5 ms

vrest Resting potential 0 mV

τs Synapse current time constant 10 ms

A+ Positive amplitude of STDP 1

A− Negative amplitude of STDP –1

τ+ Pre-synaptic spike trace time constant 10 ms

τ− Post-synaptic spike trace time constant 10 ms

τc Eligibility trace time constant 10 ms

l Constant of learning rate 0.00003

w0 Initial weight 1

τr Reward signal time constant 2 ms

Cr Constant of reward signal 0.07

ofmobile robot, the proposed SNN is implemented by using Field
Programmable Gate Array (FPGA). It improves the ability of data
processing of the mobile robot and provides a hardware system
for future expansion.

The rest of this article is organized as follows. Neuron
models, synapse models, learning methods, SNN’s architecture,
and hardware platform of the mobile robot are presented in
Section 2. Experimental results are given in Section 3. Section 4 is
the discussion, and Section 5 is the conclusion.

2. MATERIALS AND METHODS

In this section, the neuron models, synapse models, and learning
methods are presented. It will start by introducing Integrate-
and-Fire (IF) neuron model, Leaky Integrate-and-Fire (LIF)
neuron model, and synapse model. Then, the STDP and
reward modulated STDP will be introduced. From this, the
autonomous learning algorithm based on reward modulated
STDP and biological plausible rewarding generation mechanism
are proposed. All the parameters used in the above sections can
be found in Table 1. Finally, the SNN’s architecture and hardware
platform of the mobile robot are presented.

2.1. Neurons and Synapse Models
Neurons are the elementary processing unit in the nervous
system of animals and play an important role in SNNs. According
to Izhikevich (2004), there are more than ten kinds of commonly
used neuron models. The difference between these neuron
models is the level of detail in describing the behavior of
biological neurons (Liu et al., 2019a,b). Since the purpose of using
neurons in this article is to verify the effectiveness of the proposed
algorithm, two types of simple neuron models are chosen (Lu
et al., 2021). The first type is the IF neuron model, which is used
to encode external environment information of mobile robots
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into spike trains. The dynamics of a single IF neuron can be
described as

τ
dvIF

dt
= vrest + RIFIIF (t) , (1)

where τ is the time constant, vIF is the membrane potential, vrest
is the resting potential, RIF is the membrane resistance and IIF (t)
is the injected current. The second type is the LIF model which
is used for decision making and generating reward signals. It
can be considered as an IF model with a leaky term and can be
expressed as

τm
dvLIF

dt
= −(vLIF − vrest)+ RLIFILIF(t), (2)

where τm is the membrane potential time constant, vLIF is the
membrane potential, vrest is the resting potential, RLIF is the
membrane resistance and ILIF(t) is the injected current. Neuron
models used in this paper have the same threshold voltage of
30 mV and resting potential vrest . When the membrane potential
of a neuron reaches the threshold voltage, a spike is fired
immediately and the membrane potential is set to vrest . Then the
LIF neuron enters a refractory period lasting 2 ms. IF model used
in this article has no refractory period.

In SNNs, the transmission of information between neurons
is carried out through synapses. The synapse model used in
this article has the shape of an alpha function and is often
called the alpha synapse, which is used in Destexhe et al. (1994)
and Gabbiani et al. (1994). The dynamics of a synapse can be
described as

τs
dIsyn

dt
= −Isyn +

n
∑

i=1

wijδ (t − ti), (3)

where τs is the time constant of synapse current, Isyn is the
synapse current, n is the number of spikes fired by pre-synaptic
neuron i, δ(t) is the Dirac delta function,wij is the synaptic weight
between pre-synaptic neuron i and post-synaptic j, and ti is the
fire time of pre-synaptic neuron.

2.2. Spike-Timing-Dependent Plasticity
Spike-Timing-dependent Plasticity is often considered a variant
of the Hebbian learning rule and has been proven to have a
biological basis. The Hebbian learning rule is that if neurons
are activated at the same time, the connection between them
will increase. Conversely, if neurons always cannot be activated
synchronously, the connection between them will be weakened
(Markram, 2011). Consider that two neurons are connected by

one synapse, the pre-synaptic neuron i fires spike at time t
f
i and

post-synaptic neuron j fires spike at time t
f
j , then the change of

weight 1wij is a function of time interval 1t = t
f
j − t

f
i . The

standard form of STDP is shown in Figure 1, where A+ and
A− are the amplitude. The weight change when the pre-synaptic
spike or post-synaptic spike is fired. If 1t > 0, the weight will be
increased. If 1t < 0, the weight will be decreased.

However, all possible pairs of pre-synaptic and post-synaptic
spike times need to be considered if this process is implemented

FIGURE 1 | Standard Spike-Timing-dependent Plasticity (STDP) curve.

plainly, this will consume lots of computing resources, especially
in hardware implementation (Mahadevuni and Li, 2017). To
solve this problem, pair-based STDP (PSTDP) which proposed
by Morrison et al. (2008) is used in this article, which can be
described as
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where τ+ and τ− are the time constant, δ(t) is the Dirac delta

function, t
f
i and t

f
j are the firing time of pre-synaptic and post-

synaptic neurons, respectively. Then the weight change of the
synapse is calculated by

dwij

dt
= A−y (t)

∑

f

δ

(

t − t
f
i

)

+ A+x (t)
∑

f

δ

(

t − t
f
j

)

, (5)

where A− and A+ are the amplitude. The graphical
representation of PSTDP is shown in Figure 2, wij decreases
when the pre-synaptic spike arrives, otherwise wij increases.

2.3. Reward Modulated STDP
Rewardmodulated STDP, also called dopaminemodulated STDP,
is a learning algorithm that combines reinforcement learning
and STDP. In reward modulated STDP, the influence of pre-
and post-synaptic spikes is not immediately reflected in weight
but collected by eligibility trace (Florian, 2007; Izhikevich, 2007).
Eligibility trace can be seen as a memory of the pre-and post-
synaptic spike. Besides, weight change also is affected by reward
signals. The weight can only be changed when there are reward
signals. The weight dynamics of reward modulated STDP can be
described as

dwij

dt
= γ r (t) cij (t) , (6)
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FIGURE 2 | Illustration of PSTDP, where x is the pre-synaptic spike trace, i is the spikes of pre-synaptic neuron, j is the spikes of post-synaptic neuron, y is the

post-synaptic pike trace, and wij is the synaptic weight.

where r(t) is the reward signals, γ is the learning rate and cij
is the eligibility trace. The dynamics of eligibility trace can be
expressed as

dcij

dt
= −

cij

τc
+ STDP (1t) δ

(

t − tij
)

, (7)

where τc is the time constant of eligibility trace, STDP(1t) is the
STDP term mentioned in Equation 5 and tij is the fire time of
the pre- or post-synaptic spike. The graphical representation of
reward modulated STDP is shown in Figure 3. As can be seen,
postsynaptic neuron j fires a spike at time t1, which causes an
increase of the eligibility trace cij immediately. However, weight
wij does not change at this time due to the absence of reward
signals. At the time t2, a positive reward signal is released and
the weight wij begins to increase. After t2, even if there are spikes
fired by the pre- and post-synaptic neurons, wij is not changed.

2.4. The Improved Algorithm
Reward modulated STDP can explain how behavioral relevant
adaptive changes in complex neural networks could be achieved
in a self-organizing manner through local synaptic plasticity
(Legenstein et al., 2008). At present, the reward modulated
STDP algorithm updates the weights by providing the reward
signal on demand during the training process and once the
training is completed, the reward signals are no longer provided.
This is similar to the approaches of Shim and Li (2017) and
Chou et al. (2015). However, in biological neural networks, the
generation of reward signals is determined by the stimulation
of the external environment and the internal network activities
(Schultz et al., 1997), so the above process may not be consistent
with the biological basis. In addition, existing studies show that

reward signals may play an important role in the decision-
making process, e.g., the main cause of Parkinson’s disease is the
decrease of dopamine due to the death of dopaminergic neurons
(Freed et al., 2001). Dopamine activity is also an important
factor in schizophrenia (Davis et al., 1991). Therefore, this article
makes the following two changes to the algorithm based on the
assumption that the reward signals are involved in the decision
making, i.e., the weights that decay over time and the learning
rate affected by the time. The former is derived from Kohonen
(1988), often referred to as the forgetting process. The latter is
still consistent with the standard reward modulated STDP (in its
original form γ can be a function related to time). Then the new
algorithm can be described as

dwij

dt
= γ (t) r (t) cij (t) −

wij − w0

τw
, (8)

where γ (t) is the learning rate, r(t) is the reward signals, cij (t)
is the eligibility trace, τw is the time constant of weight and w0

is the initial weight. The dynamic characteristics of γ (t) can be
described as

dγ

dt
= l · r (t) cij(t) (9)

where l is the constant. Since the weight decay over time in the
absence of reward signals, long-term memory of learning is no
longer retained in the weights but is preserved in the learning
rate. The learning rate can memorize the process of weight
change, if weight is increased, then the learning rate will also be
increased. This will lead to more increases in the weights with
the same reward stimulus. This design is also consistent with the
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FIGURE 3 | Illustration of reward modulated STDP, where i is the spike fired by the pre-synaptic neuron, j is the spike fired by post-synaptic neuron, r is the reward

signals, cij is the eligibility trace, and wij is the synaptic weight.

Hebbian learning rule, i.e., if neurons are activated at the same
time, the connection between them will increase.

2.5. The Release of Reward Signals
The release of reward signals is important for SNNs and the
generation of reward signals is usually a function that directly
converts environmental information into reward values. For
example, in Bing et al. (2019a), to perform the target tracking
task, the reward value is set as a function of the difference
between the target and the center position in the image sensor. In
Ozturk and Halliday (2016), to map spatial-temporally encoded
patterns in spiking neurons, the reward value is set as a function
of normalized measure between the actual and desired spike
trains for the output neuron. However, in the brain the reward
signal is generated within the biological neural network, i.e., it is
released by dopaminergic neurons. Therefore, in this section, a
biologically plausible reward generation mechanism is designed.
Dopaminergic neurons are the neuron that controls the release
of dopamine and exist in the mammalian brain (Tobler, 2005).
According to Schultz et al. (1997), dopaminergic neurons will
maintain a baseline level of activity in the absence of external
stimuli. If dopaminergic neurons are stimulated, e.g., the change
in environment, then the activity of them will increase, i.e., the
average number of action potentials they fired per unit of time
will increase. Finally, when the stimuli wear off, the activity of
dopaminergic neurons will quickly return to the baseline level.
To simulate this process, the LIF neuron model is used. The
only change is when the membrane potential of a dopaminergic
neuron reaches the threshold voltage, a reward signal is released
rather than a spike. Then the reward signal decay exponentially.
From this, all reward signals existing in the proposed SNN can be
expressed as

TABLE 2 | The parameters used in the data transform.

Parameter Parameter description Value

dmin Minimum distance that can be measured 15 cm

dmax Maximum distance that can be measured 30 cm

I0 Init current of coding neuron 0.225 nA

CI Conversion coefficient of distance 0.005 nA/cm

dr

dt
= −

r

τr
+ Cr

n
∑

i=0

δ(t − ti), (10)

where r is the reward signals that exist in the proposed SNN, τr
is the time constant of reward signals, Cr is the constant, n is the
total number of reward signals released, δ (t) is the Dirac delta
function, and ti is the release time of ith reward signal.

2.6. SNN Architecture
To verify the effectiveness of the algorithm, an SNN based on
the proposed algorithm for mobile robot obstacle avoidance is
designed. The task of the SNN is to learn to avoid obstacles on the
left or right side. To protect the robot from damage, a structure to
control the braking is included in the network. The architecture
of the whole SNN can be divided into two parts, the first part is
related to obstacle avoidance and the second is related to brake.
Next, two different parts of the SNNwill be introduced separately
and all the parameters that appeared in this section can be found
in Table 2.

The first part is the obstacle avoidance architecture of SNN,
as shown in Figure 4A. The solid arrow in the SNN module
indicates the presence of a synapse, while the dashed arrow
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FIGURE 4 | The proposed SNN, where (A) is the obstacle avoidance part and (B) is the brake part.

indicates that the reward signals are released into the synapse.
The role of neurons Right and Left is to convert the distance
data measured by ultrasonic sensors into spike trains. For
convenience, these two neurons are the IF model, and the
remaining neurons are the LIF model. Iright and Ileft are the
injected current and can be calculated by

{

Ileft = I0 − Cidleft

Iright = I0 − Cidright
, (11)

where I0 and Ci are the constant, dleft and dright are the distance
informationmeasured by the left and right ultrasonic sensors and
are clipped in [dmin, dmax]. Neuron Right or Left fire spikes about
25 Hz when dleft or dright is dmax and fire about 50 Hz when dleft
or dright is dmin. Neurons R1 and R2 are dopaminergic neurons
and are responsible for the release of the reward signals. Neurons
N1, N2 and Neurons N3, N4 are two pairs of neurons implicated
in information processing. These two pairs of neurons are used
to simulate the cortical neurons in the brain (Lobov et al., 2020).
Neurons N1 and N3 have no external input and they fire spikes
at 25 Hz at all times. Neuron Out is responsible for decision
making. The synapse between N2 and Out is inhibitory while
excitatory between N4 and Out. The decision making of the SNN
is determined by spike frequency of neuron Out. Robot keeping
straight when neuron Out is firing from 8Hz to 18Hz. When the
frequency is greater than 18Hz, the robot turns left. When the
frequency is less than 8Hz, the robot turns right.

The following is a brief description of how the network works.
When there is no obstacle, the negative current provided by N2
and the positive current provided by N4 remains the same, so
the firing frequency of neuron Out is kept between 8 and 18 Hz.
As the left side gradually approaches the obstacle, the frequency
of spikes fired by the Left increases, leading to a higher level of
the membrane potential of the dopamine neuron. In this case,

R2 releases the reward signal when a spike is fired by N4. Since
the spikes fired by N4 cause the release of the reward, the weight
between N3 and N4 increases while the weight between N1 and
N4 does not (The weight changes only when both the eligibility
trace and the reward signal are present). As a result of increasing
weights, the frequency of N4 and Out firing spike increases,
which leads the network to make the decision to turn right. The
increase in weight also leads to an increase in the γ in Equation 8.
After avoiding the obstacles, the frequency of spike fired by Left
decreases and R2 stops releasing the reward signal. The weight
between N1 and N4 gradually decays back to its initial value and
the network also starts to return to its original state.

From the above process, it can be seen that the function of
the weight decay in Equation 8 is to restore the weight to its
initial value, once the robot has completed obstacle avoidance.
Without this, the network will keep the decision to turn right
after the decision is made. This problem of not being able to turn
straight ahead after turning right has appeared in the Lobov et al.
(2020), and the weight decay can solve this problem. However,
the decay of the weights over time means that the network
cannot remember the experience and is not capable of learning.
Therefore, in the improved algorithm, the learning rate γ is
designed to be the same form as the weight in the original reward
modulated STDP learning algorithm. This leads to a shift in the
learning parameters of the network from the weights to the rate
of change of the weights. Since the upper and lower parts of the
network are symmetrical, the network works exactly the same as
the left side when an obstacle appears on the right side.

The second part of the SNN architecture is shown in
Figure 4B, it is a simple network composed of three neurons.
All synapse between them is excitatory. Neurons Left and Right
are mentioned above, and Stop is the neuron that controls the
robot to move or stop. If neurons Left and Right both fire spikes
near 50 Hz, in other words, obstacles appear on both sides of
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FIGURE 5 | The hardware platform to implement the proposed SNN, where (A) is the mobile robot and (B) is the Zedboard development kit.

the robot, neuron Stop will fire spikes, then the robot stops
moving. Otherwise, neuron Stop will not fire spikes, and the
robot keeps straight.

2.7. Hardware Implementation
In this part, the hardware platform of the mobile robot is
introduced. The platform can be divided into two parts. The first
part is the torso of the robot, as shown in Figure 5A, an ARM
Cortex microcontroller is used for controlling all the actions of
the robot. The robot is equipped with two ultrasonic sensors with
a 60◦ at the front, this makes the robot able to detect obstacles
ahead. Moreover, the robot is also equipped with two motors
and one servo, which are used to drive the robot and control
the direction. The second part is a Zedboard development kit,
which is responsible for decision making and can be considered
the brain. All the SNN components proposed in this article are
implemented in this part, as shown in Figure 5B. Two parts
of the robot are communicated via Bluetooth interface and
exchange data every 100 ms. The robot needs to send distance
data measured by two ultrasonic sensors to the Zedboard, then
the SNN in Zedboard analyses these data and sends the command
to the robot. There are four kinds of commands, namely, keep
straight, turn left, turn right, and stop.

Figure 6 shows the hardware implementation of the main
components of the proposed SNN. The first is the LIF neuron,
as shown in Figure 6A. This model can be divided into two
parts, the refractory period counting part and the membrane
potential update part. The register rf _count is used to represent
the state of the neuron, rf _count > 0 means that the neuron is
in the refractory period and rf _count = 0 means the opposite.
At each SNN time step, if a spike is fired by this neuron, the
register rf _count is set to the rf , otherwise, the rf _count will
be subtracted by 1 until it reaches 0. The register Vm stores the
membrane potential of the neuron, the neuron will fire a spike
when Vm > Vth and set the value of Vm to Vrest . If Vm <= Vth,
Vm will be updated according to the injected current Isyn and
its current value. The second part is the α synapse, as shown in
Figure 6B. The function of this part is that at each SNN time step
if a spike is fired by the pre-synaptic neuron,w∗A is accumulated

in the register Isyn, otherwise, the value of the register Isyn decays.
In this part, w is the synapse weight, A is a constant and its
value is 0.5.The third part shows the proposed algorithm, as
shown in Figure 6C. In this part, the hardware structure remains
essentially the same as in the previous equations, trace_y and
trace_x are the traces left by the post-synaptic and pre-synaptic
spike, respectively, corresponding to y(t) and x(t) in Equation
5. Similarly, γ , r, c, and w are corresponding to γ (t), r(t),
cij(t), and wij in Equation 8. Based on the above models, this
article uses a direct connection for the SNN implementation
shown in Figure 4, which means that each unit in the SNN has
a corresponding hardware circuit. The hardware resource cost
of the SNN implemented based on the above model is shown
in Table 3. The frequency of the system is 50 MHz, and the
simulation data used in the proposed SNN is represented by
24-bit fixed-point numbers.

3. RESULTS

This section gives two experimental results of the mobile robot.
The first experiment introduces how the robot learns to avoid
obstacles by using the proposed algorithm, and the second is the
obstacle avoidance performance test. In the second test, several
obstacles are placed in the forward path of the robot to evaluate
the avoidance performance of the robot.

3.1. The Demonstration of the Proposed
Learning Algorithm
In this part, the mobile robot will be placed in an environment
with only one obstacle and then learn to avoid obstacles. Since
the learning process for obstacle avoidance on the left and right
sides is similar, results for only the left side are provided here.
The learning process on the left side is shown in Figure 7.
These pictures capture the moment when the robot decides to
turn right.

In the learning process, the robot is far from the obstacle at
the beginning, so it keeps straight. As the robot gets close to the
obstacle, the robot decides to turn right. However, in the first
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FIGURE 6 | The hardware implementation of the main components in the proposed SNN, where (A) is the LIF neuron model, (B) is the α synapse, and (C) is the

proposed algorithm.

TABLE 3 | The hardware resource cost of the proposed SNN.

Module LUT FF DSP

LIF neuron model 240 38 0

α synapse 250 33 0

The proposed algorithm 1331 265 3

The proposed SNN 7792 1395 10

The whole system 7892 1524 10

learning process, the robot is not skilled at avoiding an obstacle,
so it cannot avoid the obstacle. As shown in Figure 7A, when the
robot decides to turn right, it has already hit the obstacle, so it is
a failed obstacle avoidance. In the second learning, its obstacle
avoidance ability has been improved. As shown in Figure 7B,
when the robot decides to turn right, there is still a certain
distance between it and the obstacle. This is successful obstacle
avoidance. In the third learning, the obstacle avoidance skill of
the robot is further improved. As shown in Figure 7C, the robot
decides to turn right even further away from the obstacle. This
makes the robot more likely to avoid obstacles.

The main parameters change during the above learning
process are shown in Figure 8, where Distance is the distance
data measured by the left ultrasonic sensor,Weight is the weight
between neuron N3 and N4, and Reward is the reward signals
released by dopaminergic neuron R2. The three columns of data

in Figure 8 correspond to the learning process in Figure 7. Take
the first learning process as an example, when distance measured
by ultrasonic sensor reaches the minimum value, the reward
signals are released and weight begins to increase, as shown in
Figures 8A,D,G. When the weight reaches near the maximum
value, the robot decides to turn right, as shown in Figure 7A. It
can be seen from Figure 8D that the time it takes for the weight
to rise from the initial value to the maximum is 1.17 s, this is the
reason why the obstacle cannot be avoided. However, during the
second and third obstacle avoidance, the accumulated experience
in obstacle avoidancemakes it only need 0.64 and 0.23 s, as shown
in Figures 8E,F. After each learning process, the learning rate
of the corresponding synapse has increased. A higher learning
rate means more proficiency in obstacle avoidance and less
decision time.

3.2. Multiple Obstacle Avoidances
In this part, the robot has gone through sufficient learning and
the obstacle avoidance performance of the mobile robot is tested
in Section 4.1. The task of the mobile robot is to avoid several
successively placed obstacles and then stop in front of the last
obstacle. As shown in Figure 9, obstacles 1∼4 all consist of a
single carton, while obstacle 5 consists of two. This placement
will let both left and right ultrasonic sensors detect the obstacle
when the mobile robot reaches obstacle 5.

The red solid line in Figure 9 shows the trajectory of the
robot’s movement. It can be seen from the trajectory that the
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FIGURE 7 | The moment when the mobile robot makes a steering decision in three learning, where (A–C) are the first learning, the second learning, and the third

learning, respectively.

FIGURE 8 | The main parameters change in the first experiment, where (A–C) are the distance data measured by the left ultrasonic sensor, (D–F) are the synaptic

weight of neurons N3 and N4, and (G–I) are the reward signals released by neuron R2.

robot always keeps a certain distance from obstacles during
obstacle avoidance. Figure 9 also shows how the robot act when
encountering each obstacle. This result shows that the robot has

completed its intended task. The changes in the main parameters
in this obstacle avoidance process are given in Figure 10. All these
data are collected in real-time from the Zedboard.
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FIGURE 9 | The travel route of the mobile robot when avoiding obstacles.

In the beginning, no obstacles are detected, the spike
frequency of neuron Out is about 12 Hz and the robot keeps
straight. At approximately 0.3 s, the robot encounters obstacle
1 and weight w34 begins to rise under the action of the reward
signals. As a result, the spike frequency of neuron Out gradually
decreases, and the robot turns right. Afterward, at approximately
2.5 s, the robot immediately encounters obstacle 2, weight w12

begins to rise at about 3.3 s while w34 decays to its initial value at
about 6 s. This causes an increase in spike frequency of neuron
Out and the robot turn left. The data’s changes in Obstacles 3
and 4 are the same as 1 and 2’s. Note that in the processes of
avoiding obstacles 1∼4, neuron Stop does not fire spikes, so the
robot always keeps moving. However, when the robot encounters
obstacle 5 at 11 s, both left and right ultrasonic sensors detect
the obstacle, hence neuron Stop starts firing spikes and the robot
stops moving.

4. DISCUSSION

For the problem of obstacle avoidance, a rule-based design may
be simpler. However, to explore how to build more intelligent,
biologically inspired robots based on SNNmodels, the evaluation
of the system performance should be based on biological
behaviors. Therefore, we use a qualitative analysis (Mayer, 2002)
to evaluate the system by classifying its learning types. According
to Mayer (2002), there are two key factors of learning, namely
retention and transfer. Retention is the ability to remember
material and transfer is the ability to use what was learned to

solve new problems. Depending on the presence or absence of
retention and transfer, learning can be classified as no learning,
rote learning, and meaningful learning. Meaningful learning has
both retention and transfer while rote learning only has retention,
and no learning has neither retention nor transfer. Therefore,
within this scope of definitions, the experiment in Section 3.1
shows that the robot can successfully avoid the obstacle with
a fixed position on the left side, i.e., the robot has the ability
of retention. The experiment in Section 3.2 shows that after
learning, the robot can successfully avoid multiple obstacles
placed on both sides that it has never seen before, i.e., the robot
has the ability of transfer. Therefore, the robot designed in this
study successfully implements meaningful learning. All these
behaviors only require a network with ten neurons and a learning
rule, which demonstrates that even a simple neural network can
show behaviors that look remarkably sophisticated to outside
observers (Reynolds, 1987).

There have also been previous articles exploring the use of
SNNs to model biological behavior which is listed in Table 4.
In Lobov et al. (2020), an SNN model implements associative
learning through an STDP algorithm and is used for controlling
the mobile robot. The mobile robot exhibits successful learning
at the behavioral level in the form of classical and operant
conditioning. However, that mobile robot is only able to avoid
one side of the obstacles after learning and if the environment
changes, the robot needs to relearn. This suggests that although
the robot learns the behavior of obstacle avoidance, it cannot
extend it to a more complex environment. Therefore, the robot
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FIGURE 10 | Parameters’ changes in the obstacle avoidance test, where (A) is the distance data measured by left ultrasonic sensor, (B) is the synaptic weight w34,

(C) is the distance data measured by the right ultrasonic sensor, (D) is the synaptic weight w12, (E) is the spike fired by neuron out, and (F) is the spike fired by

neuron Stop.

in Lobov et al. (2020) could be considered only performed rote
learning. In Blum et al. (2017), a robotic vehicle equipped with
a dynamic vision sensor is designed to solve obstacle avoidance
and target acquisition problem. The experiment results show
that the robot can achieve the expected results in a variety
of test environments, demonstrating the potential of SNN for
solving complex problems. However, the ability of the robot
to avoid obstacles and acquire targets is innate, i.e., it has

these abilities without a learning process. The robot does not
have the ability to learn, so there is no retention and transfer
process (no learning). In Shim and Li (2017), a multiplicative
reward modulated STDP is proposed and applied to the mobile
robot collision avoidance. The mobile robot can reach the target
location without collision, and it needs only 20 training trails.
The mobile robot designed by Tang and Michmizos (2018) uses
an SNN to learn how to explore an unknown environment.
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TABLE 4 | Comparisons with previous studies.

Approach Function Learning algorithm Learning type Hardware platform

Lobov et al. (2020) Mobile robot which can learn to avoid obstacles STDP Rote learning PC and ARM Cortex microcontroller

Blum et al. (2017) Mobile robot which can avoid obstacles and acquire

target

NA No learning Neuromorphic chip and ARM Cortex

microcontroller

Shim and Li (2017) Mobile robot which can learn to avoid obstacles and

reach a specific location

Reward modulated

STDP

Rote learning Software simulation

Tang and Michmizos (2018) Mobile robot which can learn to explore in real word STDP Rote learning Software simulation

This work Mobile robot which can avoid obstacles Reward modulated

STDP

Meaningful

learning

FPGA and ARM Cortex

microcontroller

However, these two robots are also limited by the environment
and need to relearn when the environment changes, so they
can only perform rote learning. In addition, all those reported
performances are based on software simulation.

In addition to the ability to learn, the hardware platform is
also an important part of the implementation of neuroanimats.
Due to the large number of computational resources needed to
be spent on simulating the behavior of biological neurons, Tang
and Michmizos (2018) and Lobov et al. (2020) both use PC for
the implementation of the proposed SNN. However, the large size
and power consumption of PC are not suitable for neuroanimats,
especially when neuroanimats need to explore the environment.
A neuromorphic processor like Blum et al. (2017) used is another
option. But as mentioned in the article, all neurons are used and
it is impossible to extend their work with additional behaviors.
This shows that the fixed architecture neuromorphic processors
are not flexible enough in the research phase. Therefore, the
combination of microcontroller and FPGAmay be more suitable
for neuroanimat researchers.

5. CONCLUSION

A biologically inspired autonomous learning algorithm is
proposed in this paper to explore the learning mechanism
in the brain. Based on this algorithm, an SNN with special
dopaminergic neurons is designed. The stimulation of
dopaminergic neurons is related to environmental changes,
and the reward signals released by dopaminergic neurons
determine which actions the robot takes. Experimental results
show that the mobile robot can successfully solve the obstacle
avoidance problem and simulates the learning process of animals
well. With only a few learning sessions, the mobile robot can

avoid obstacles on one side and apply its obstacle avoidance
ability to more complex environments. Even if the robot does
not have any prior knowledge about the test environment, it
can avoid all obstacles without collision. Besides, the FPGA
hardware system is designed to accelerate the proposed SNN,
which not only improves the performance of real-time data
processing of the robot but also provides a hardware platform for
further expansion. Future study is planned to apply the proposed
algorithm to solve more complex problems of robot control,
such as object tracking and route planning.
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